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Preface

Ecology is sexy. Teaching ecology is therefore the art of presenting a fascinating
topic to well-predisposed audiences. It is not easy: the complexities of modern
ecological science go well beyond the introductory chapters taught in high schools
or the marvellous movies about ecosystems presented on TV. But well-predisposed
audiences are ready to make the effort. Numerical ecology is another story. For
some unclear reasons, a majority of ecology-oriented people are strangely reluctant
when it comes to quantifying nature and using mathematical tools to help under-
stand it. As if nature was inherently non-mathematical, which it is certainly not:
mathematics is the common language of all sciences. Teachers of biostatistics and
numerical ecology thus have to overcome this reluctance: before even beginning to
teach the subject itself, they must convince their audience of the interest and
necessity of it.

During many decades, ecologists, be they students or researchers (in the
academic, private or government spheres), used to plan their research and collect
data with few, if any, statistical consideration, and then entrusted the “statistical”
analyses of their results to a person hired especially for that purpose. That person
may well have been a competent statistician, and indeed in many cases, the progres-
sive integration of statistics into the whole process of ecological research was trig-
gered by such people. In other cases, however, the end product was a large amount
of data summarized using a handful of basic statistics and tests of significance that
were far from revealing all the richness of the structures hidden in the data tables.
The separation of the ecological and statistical worlds presented many problems.
The most important were that the ecologists were unaware of the array of methods
available at the time, and the statisticians were unaware of the ecological hypoth-
eses to be tested and the specific requirements of ecological data (the double-zero
problem is a good example). Apart from preventing the data to be exploited prop-
erly, this double unawareness prevented the development of methods specifically
tailored to ecological problems.

The answer to this situation is to form mathematically inclined ecologists.
Fortunately, more and more such people have appeared during the past four
decades. The result of their work is a huge development of statistical ecology, the
availability of several excellent textbooks and the increasing awareness of the
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responsibility of ecologists with regard to the proper design and analysis of their
research. This awareness makes the task easier for teachers as well.

Until relatively recently, however, a critical ingredient was still missing for the
teaching to be efficient and for the practice of statistics to become generalized
among ecologists: a set of standard packages available to everyone, everywhere.
A biostatistics or numerical ecology course means nothing without practical exer-
cises. A course linked to a commercial software is much better, but it is bound to
restrict future applications if the researcher moves and loses access to the software
that he or she knows. Furthermore, commercial packages are in most cases written
for larger audiences than the community of ecologists and they may not include all
the functions required for analysing ecological data. The R language resolved that
issue, thanks to the dedication of the many researchers who created and freely
contributed extensive, well-designed and well-documented packages. Now, the
teacher no longer has to say: “this is the way PCA works... on paper”; she or he
can say instead: “this is the way PCA works, now I show you on-screen how to run
one, and in a few minutes you will be able to run your own, and do it anywhere in
the world on your own data!”.

Another fundamental property of the R language is that it is meant as a self-
learning environment. A book on R is therefore bound to follow that philosophy,
and must provide the support necessary for anyone wishing to explore the subject
by himself or herself. This book has been written to provide a bridge between the
theory and practice of numerical ecology that anyone can cross. Our dearest hope
is that it will make many happy teachers and happy ecologists.

Montréal, QC Daniel Borcard
Besangon, France Francois Gillet
Montréal, QC Pierre Legendre
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Chapter 1
Introduction

1.1 Why Numerical Ecology?

Although multivariate analysis of ecological data already existed and was being
actively developed in the 1960s, it really flourished in the years 1970 and later.
Many textbooks were published during these years; among them were the seminal
Ecologie numérique (Legendre and Legendre 1979) and its English translation
Numerical Ecology (Legendre and Legendre 1983). The authors of these books
unified, under one single roof, a very wide array of statistical and other numerical
techniques and presented them in a comprehensive way, not only to help researchers
understand the available methods of analyses, but also to explain how to choose and
apply them in an ordered, logical way to reach their research goals. Mathematical
explanations are not absent from these books, and they provide a precious insider
look into the various techniques, which is appealing to readers wishing to go
beyond the simple user level.

Since then, numerical ecology has become ubiquitous. Every serious researcher
or practitioner has become aware of the tremendous interest of exploiting the pain-
fully acquired data as efficiently as possible. Other manuals have been published
(e.g. Orldci and Kenkel 1985; Jongman et al. 1995; McCune and Grace 2002;
McGarigal et al. 2000; Zuur et al. 2007). A second English edition of Numerical
Ecology was published in 1998, broadening the perspective and introducing numerous
methods that were unavailable at the time of the previous editions. The progress
continues, and since 1998, many important breakthroughs have occurred. In the
present book, we present some of these developments that we consider most impor-
tant, albeit in a more user-oriented way than in the above mentioned manuals, using
the R language. For the most recent methods, we provide explanations at a more
fundamental level when we consider it appropriate and helpful.

Not all existing methods of data analysis are addressed in the book, of course.
Apart from the most widely used and fruitful methods, our choices are based on our
own experience as quantitative community ecologists. However, small sections
have sometimes been added to briefly describe other avenues than the main ones,
without going into details.

D. Borcard et al., Numerical Ecology with R, Use R, 1
DOI 10.1007/978-1-4419-7976-6_1, © Springer Science+Business Media, LLC 2011
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1.2 Why R?

The R language has experienced such a tremendous development and reached such
a wide array of users during the recent years that a justification of its application to
numerical ecology is not required. Development also means that more and more
domains of numerical ecology are now covered, up to the point where, computa-
tionally speaking, some of the most recent methods are actually only available
through R packages.

This book is not intended as a primer in R, however. To find that kind of support,
readers should consult the CRAN Web page (http://www.R-project.org). The link
to Manuals provides many free electronic documents and the link to Books many
references. Readers are expected to have a minimal working knowledge of the
basics of the language, e.g. formatting data and importing them into R, awareness
of the main classes of objects handled in this environment (vectors, matrices, data
frames and factors), as well as the basic syntax necessary to manipulate, create, and
otherwise use objects within R. Nevertheless, Chap. 2 starts at an elementary level
as far as multivariate objects are concerned, since these are the main targets of most
analyses addressed throughout the book, while not necessarily being most familiar
to many users.

The book is by far not exhaustive as to the array of functions devoted to any of
the methods. Usually, we present one or several variants, but often other functions
are available in R. Centring the book on a small number of well-integrated pack-
ages and adding some functions of our own, when necessary, helps users up the
learning curve while keeping the amount of package-level idiosyncrasies at a
reasonable level. Our choices do not imply that other existing packages are inferior
to the ones used in the book.

1.3 Readership and Structure of the Book

The intended audience of this book is the researchers, practitioners, graduate
students and teachers who already have a background in general and multivariate
statistics and wish to apply their knowledge to their data using the R language, as
well as people willing to accompany their learning of the discipline with practical
applications. Although an important part of this book follows the organization and
symbolism of Legendre and Legendre (1998) and many references to that book are
made herein, readers may draw their training from other sources without problem.

Combining an application-oriented book such as this one with a detailed exposé
of the methods used in numerical ecology would have led to an impossibly long and
cumbersome opus. However, all chapters start with a short introduction summarizing
its subject matter, to ensure that readers are aware of the scope of the chapter and
can appreciate the point of view from which the methods are addressed. Depending
on the amount of documentation already existing in statistical textbooks, some
introductions are longer than others.
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Overall, the book guides readers through an applied exploration of the major
methods of multivariate data analysis, as seen through the eye of an ecologist.
Starting with some exploratory approaches (Chap. 2), it proceeds logically with the
construction of the key building blocks of most techniques, i.e. association measures
and matrices (Chap. 3), and then submits example data to three families of approaches:
clustering (Chap. 4), ordination and canonical ordination (Chaps. 5 and 6), and finally
spatial analysis (Chap. 7). The aims of methods thus range from descriptive to
explanatory and to predictive and encompass a wide variety of approaches that should
provide readers with an extensive toolbox that can address a wide palette of questions
arising in contemporary multivariate ecological analysis.

1.4 How to Use This Book

The book is meant as a companion when working at the computer. The authors
pictured a reader studying a chapter by reading the text and simultaneously executing
the code. To fully understand the various methods, it is preferable to go through the
chapters sequentially, since each builds upon the previous ones. At the beginning of
each chapter, an empty R console is assumed to be open. All the necessary data files,
the scripts used in the chapters, as well as the R functions and packages that are not
available through the CRAN Web site, can be downloaded from a Web page acces-
sible through the Springer Web site (http://www.springer.com/978-1-4419-7975-9).
Some of the homemade functions duplicate existing ones, providing alternative solu-
tions (for instance, different or expanded graphical outputs), while others have been
written to streamline complex sequences of operations.

Although the code provided can be run in one single copy-and-paste shot within
each chapter (with some rare exceptions for interactive functions), the best proce-
dure is to proceed through the code slowly and explore each set of commands
carefully. Although the use and meaning of some arguments is explained within
the code or in the text, readers are warmly invited to use and abuse of the R help
files (function name following a question mark) to learn about and explore the
various options available. Our aim is not to describe all options of all functions,
which would be an impossible and useless task. We are confident that an avid user,
willing to go beyond the provided examples, will be kept busy for months exploring
the options that he or she deems the most interesting.

Within each chapter, after the introduction, readers are invited to import the data
for the exercises, as well as the R packages necessary for the whole chapter. The
R code used in each chapter is self-contained, i.e. it can be run in one step without
resorting to intermediate results produced in previous chapters. If such objects are
needed, they are recomputed at the beginning of the chapter.

In everyday use, one generally does not produce an R object for every single
operation, nor does one create and name a new graphical window for every plot. We
do that in the R scripts to provide readers with all the entities necessary to backtrack
the procedures, compare results and explore variants. Therefore, after having run
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most of the code in a chapter, if one decides to explore another path using some
intermediate result, the corresponding object will be available without the need to
recompute it. This is particularly handy for results of computer-intensive methods
(like some based on large numbers of random permutations), especially if one uses
a relatively slow computer.

In the code sections of the book, all calls to graphical windows have been deleted
for brevity. They are found in the electronic code scripts, however. Furthermore, the
book shows several, but not all, graphical outputs for reference. They are printed
in grey scale, although some are in colour when produced by R. This is an incentive
for readers to be active users of the book and of its code.

Sometimes, readers are made aware of some special features of the code or of
tricks used to obtain particular results, by means of hint boxes located at the bottom
of code sections.

Although many methods are applied to the example data, ecological interpreta-
tions is not provided in all cases. Sometimes, questions are left open to readers, as
an incentive to verify if she or he has correctly understood the method, and hence
its application and the numerical or graphical outputs.

Lastly, for some methods programming-oriented readers are invited to write
their own code. These incentives are placed in boxes called “code-it-yourself
corners”. When examples are readily written, they are meant for pedagogical
purposes and do not pretend at computational efficiency. The aim of these boxes is
to help interested readers code the matrix algebra equations presented in Legendre
and Legendre (1998) into R and obtain the main outputs that ready-made packages
provide. The whole idea is, of course, to reach the deepest possible understanding
of the mathematical working of some key methods.

1.5 The Data Sets

Apart from rare cases where ad hoc fictitious data are built for special purposes, the
applications rely on two main data sets that are readily available in R. However,
data provided in R packages can change over the years. Therefore, we prefer to
provide them also in the electronic material accompanying this book because this
ensures that the results obtained by the readers are exactly the same as those
presented in the book. The two data sets are briefly presented here. The first
(Doubs) data set is explored in more detail in Chap. 2, and readers are encouraged
to apply the same exploratory methods to the second one.

1.5.1 The Doubs Fish Data

In an important doctoral thesis, Verneaux (1973; see also Verneaux et al. 2003)
proposed to use fish species to characterize ecological zones along European rivers
and streams. He showed that fish communities were good biological indicators of
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Table 1.1 Environmental variables of the Doubs data set used
in this book and their units

Variable Code Units
Distance from source das km
Altitude alt m a.s.l.
Slope pen %o
Mean minimum discharge deb m3s!
pH of water pH -
Calcium concentration (hardness) dur mgL!
Phosphate concentration pho mgL™!
Nitrate concentration nit mgL™!
Ammonium concentration amm mgL~!
Dissolved oxygen oxy mgL~!
Biological oxygen demand dbo mgL™!

these water bodies. Starting from the source, Verneaux proposed a typology in four
zones, and he named each one after a characteristic species: the trout zone (from
the brown trout Salmo trutta fario), the grayling zone (from Thymallus thymallus),
the barbel zone (from Barbus barbus) and the bream zone (from the common bream
Abramis brama). The two upper zones are considered as the “Salmonid region” and
the two lowermost ones constitute the “Cyprinid region”. The corresponding
ecological conditions, with much variation among rivers, range from relatively
pristine, well oxygenated and oligotrophic to eutrophic and oxygen-deprived waters.

The Doubs data set that is used in the present book consists of three matrices
containing part of the data used by Verneaux for his studies. These data have been
collected at 30 sites along the Doubs River, which runs near the France—Switzerland
border in the Jura Mountains. The first matrix contains coded abundances of
27 fish species, the second matrix contains 11 environmental variables related to
the hydrology, geomorphology and chemistry of the river, and the third matrix
contains the geographical coordinates (Cartesian, X and Y) of the sites. These data
have already served as test cases in the development of numerical techniques
(Chessel et al. 1994).

Working with the environmental data available in the R package ade4 (at the
time of this writing, i.e. ade4 version 1.4-14), we corrected a mistake in the das
variable and restored the variables to their original units, which are presented in
Table 1.1.

1.5.2 The Oribatid Mite Data

Oribatid mites (Acari: Oribatida) are a very diversified group of small (0.2—1.2 mm)
soil-dwelling, mostly microphytophagous and detritivorous arthropods. A well-
aerated soil or a complex substrate like Sphagnum mosses present in bogs and wet
forests can harbour up to several hundred thousand (10°) individuals per square
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metre. Local assemblages are sometimes composed of over a hundred species,
including many rare ones. This diversity makes oribatid mites an interesting target
group to study community—environment relationships at very local scales.

The example data set is composed of 70 cores of mostly Sphagnum mosses
collected on the territory of the Station de biologie des Laurentides of Université
de Montréal, Québec, Canada in June 1989. The data were collected in order to test
various ecological hypotheses about the relationships between living communities

Table 1.2 Environmental variables of the oribatid mite data set used in this
book and their units

Variable Code Units
Substrate density (dry matter) SubsDens gdm™
Water content WatrCont g dm™
Substrate Substrate 7 unordered classes
Shrubs Shrub 3 ordered classes
Microtopography Topo Blanket — Hummock
Table 1.3 Several help resources in R
Action Use Example Remark
? (question Obtain information ?decostand The package to
mark) about a function which the
function
belongs must
be active
?? (double Obtain information ??diversity The search is
question mark) on the basis of a done in all
keyword the packages
installed in the
computer
Type the name Display the code diversity Not all functions
of a function of the function can be displayed
on-screen fully; some
contain

help
(package="....")

data
(package="...")

Search on the CRAN
Web site

Displays information
on the package,
including a list of
all functions and
data

Lists the data sets
contained in a
package

Broader search than
above; access to
discussion lists

help
(package="aded")

data
(package="vegan")

Go to http://cran.r-
project.org/, click on
the “Search” link and
choose one of the
links

compiled code

Outside the R
master Web
server
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and their environment when the latter is spatially structured, and develop statistical
techniques for the analysis of the spatial structure of living communities. It has
since become a classical test data set, used in several publications (e.g. Borcard
et al. 1992, 2004; Borcard and Legendre 1994; Wagner 2004; Legendre 2005;
Dray et al. 2006; Griffith and Peres-Neto 2006).

The data set comprises three files that contain the abundances of 35 morpho-
species, 5 substrate and microtopographic variables, and the x—y Cartesian coordi-
nates of the 70 cores. The environmental variables are listed in Table 1.2.

1.6 A Quick Reminder about Help Sources

The R language is intended as a self-learning tool. So please use and abuse of the
various ways to ask questions, display code, run examples that are imbedded in
the framework. Some important help tools are presented in Table 1.3.

1.7 Now It Is Time...

... to get you hands full of code, numerical outputs and plots. Revise the basics of
the methods, explore the code, analyse it, change it, try to apply it to your data and
interpret your results. Above all, we hope to show that doing numerical ecology in
R is fun!






Chapter 2
Exploratory Data Analysis

2.1 Objectives

Nowadays, most ecological research is done with hypothesis testing and modelling
in mind. However, Exploratory Data Analysis (EDA), which uses visualization
tools and computes synthetic descriptors, is still required at the beginning of the
statistical analysis of multidimensional data, in order to:

¢ Get an overview of the data
¢ Transform or recode some variables
e Orient further analyses

As a worked example, we explore a classical dataset to introduce some techniques
of EDA using R functions found in standard packages. In this chapter, you will:

e Learn or revise some bases of the R language
* Learn some EDA techniques applied to multidimensional ecological data
* Explore the Doubs dataset in hydrobiology as a first worked example

2.2 Data Exploration

2.2.1 Data Extraction

The Doubs dataset used here is available in the form of three comma separated
values (CSV) files along with the rest of the material (see Chap. 1).

¥ “rwort the date fromw 8V files
# R

¥ oSpecies (communizyy desta frame (fisn abundsnoes)
spe <- read.csv{"CoubsSpe.csv", row.names—1)

D. Borcard et al., Numerical Ecology with R, Use R, 9
DOI 10.1007/978-1-4419-7976-6_2, © Springer Science+Business Media, LLC 2011
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# Ervironmental cata frame
aenv <— read.czsv ("DoubsEnv.csv”, row.names=1})

f Spatial data Zrame
spa <—- reead.csv("Doubsipa.csv", row.names=1)

Hints At the beginning of a session, make sure to place all necessary data
files and scripts in a single folder and define this folder as your work-
ing directory, either through the menu or by using function
setwd().

If you are wuncertain of the class of an object, type
class (object name).

2.2.2 Species Data: First Contact

We can start data exploration, which first focuses on the community data (object
spe created above). Verneaux used a semi-quantitative, species-specific, abun-
dance scale (0-5) so that comparisons between species abundances make sense.
However, species-specific codes cannot be understood as unbiased estimates of the
true abundances (number or density of individuals) or biomasses at the sites.

We first apply some basic R functions and draw a barplot (Fig. 2.1):

£ Basic Zuncticns
# ok ow ko k ko Aok ok ohw o

spe ¥ Disp_ay the whole cata frame in
# the conscle. Not reccmmended for
¥ large datasets'
spe[l:5,1:1C]

Ak

Disp_cy orly 5 lines and 10

Co_unns

Lead(spe) # Disp_zay orly the Zirst few lines
nrow(spc) % Numbcr of rows {sitcs)

~col {spe) # Xumber of columns (speciles)

din{sce) Dimensions of The caca frame
(rowa, colunns)
co_rames {(spe)
spenies)
rowrames {spe)
SUNmary (sve)

I

Column lake’s {descriztors =

=k

Row _zkels

= sites)
Descriptive statistics

for colurns

# Compare median and mean abundances. Are most distributions
# symmetrical?

f Overall distrizutlion of acuncarces {dominance codeg)
# R R i e i R R
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¥ Minimun ang raximum of aburdanice values ir the whole data

range (spe)

¥ Count ceses for each sbundance class

ab <- table(unlist(spe))

alz

f Barzlct of the distrizution, all specles conZounded
col=gray(3:C/5))

# Xunocr of zbscnccs

sur{goe == )
¥ Progortion of zcreos Zn the communify data sct
suni{sve == G)/(nrow (spe)*nccl (spe))

# Look at the barplot of abundance classes. How do you
# interpret the high frequency of zeros (absences) in the
# data frame?

barp_ol{an, las=_, xlab="&hurdznace c_ass", y_ab="Treguency™,

set

400 —

300 —

200

Frequency

100

o ] ]

0 1 2 3 4 5
Abundance class

Fig. 2.1 Barplot of abundance classes
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2.2.3 Species Data: A Closer Look

The commands above give an idea about the data structure. But codes and numbers
are not very attractive or inspiring, so let us illustrate some features. We first create
a map of the sites (Fig. 2.2):

¥ Map of the positicns of the sizes
# EE R R R R R R R R R R S

¥ Create an empty frame (proportiona’ azes 1:1, with Z—itlas)
¥ Geographic coordinates x and y Zrom the spa data Zrans
plot {spa, asp=1l, type="n", main="S5ite Locations™,

xlab="x cocrdinats (km)™, ylab="v cecordinate (xr)"}

f 2dd a Lklue line conrecting the sites (Joubs river)
lines (spa, col="_icht blue™)

# ndd site Zzbels
Tex:t(spa, row.ramas(spa), cex=1,8, col=

F Rdd Lexl hlocks
—ex- (50, 10, "Upstream", cex=1.Z2, cc’_="red")
Lax, (20, 220, "Downslrezm", cex=

Site Locations

24 23
25 do "
15
26 14
27
28 13

o
= 0 — 29
E- 12
2 50 "
.E Downstream
S 10
3 8- .
>

8
7
S - 6
3
4
> 3
Upstream 1
o
I I I I I I
0 50 100 150 200 250

x coordinate (km)

Fig. 2.2 Map of the 30 sampling sites along the Doubs River
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Now, the river looks more real, but where are the fish? To show the distribution
and abundance of the four species used to characterize ecological zones in European
rivers (Fig. 2.3), one can type:

¥ Maps oI some Ilsh speciles
# REmk bk E ATk F R m oAk Rk ko ok

£ Divide the plot window intc £ frames, 2 per row
par{nfrow=c(2,2)]

plo: (spa, asp=l, col="brown", cex=speSTR7, mein="3rown trcut",
xlab="x cocrdinate (km]", vlab="v ccordinste (xm} ™}
lines (spa, col="_icht blue")

plot{zpa, asp=1l, col="krown", cex=3pei3C0MB, main="Gravling",
xlab="%x cocrdinale (kr}™, ylab="v ccordinzale (xr)")
lines (spa, col="ligat blue™)

ploT (spa, asp=1, col="brown", cex=spes3LkR, mein="3arbe ",
xlab="% cocrdinate (km]", ylab="vy ccordinate {xm)"}

lines (sgpa, col-"_ight klue™)

plot(spa, asp-1, col-"brown", cex—spei3CO, mezin-"Cocrruncn bream”,
xlab="x cocrdinats (km)™, ylab="yv ccordinzte (<m) ")

lines({spa, col-"_ight blue™)

# From these graphs you should understand why Verneaux chose
# these four species as ecological indicators. More about the
# environmental conditions later.

Hint Note the use of the cex argument in the plot () function: cex is
used to define the size of an item in a graph. Here its value is a vector
of the spe data frame, i.e. the abundances of a given species (e.g.
cex=speSTRU). The result is a series of bubbles whose diameter at
each site is proportional to the species abundance. Also, since the
object spa contains only two variables x and vy, the formula has been
simplified by replacing the two first arguments for horizontal and ver-
tical axes by the name of the data frame.
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Brown trout

150 200

Q

y coordinate (km)
100
|

50

T T T T T
0 50 100

x coordinate (km)

Barbel

150 200 250

150 200
I
Q

y coordinate (km)
100
|

50

T T T T T
0 50 100

x coordinate (km)

150 200 250

y coordinate (km)

y coordinate (km)

150 200

100

150 200

100

2 Exploratory Data Analysis

Grayling
Q °
° Q@
T T T T T
0 50 100 150 200 250

x coordinate (km)

Common bream

DQQO

&

S

0 50

Fig. 2.3 Bubble maps of the abundance of four fish species

T T T T
100 150 200 250

x coordinate (km)

At how many sites does each species occur? Calculate the relative frequencies
of species (proportion of the number of sites) and plot histograms (Fig. 2.4):

f Cempare species: nunber

TS

Comuate the rumber of
To sar oy columns,
MEREZTN, 1s set To 2
pe.pres <- zpp_vy(spe » 0,

o =

e

of occurrences
whkwmwhkF Ik whkw kb hkmwwk bk bk dwhw kb ko owdkw ko oh

2, sum}

Sort “he resu_ts 1n Zncressing order

sites waere each species 13 present
the second argument of spp v {},
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scrT {spe.cres)

¥ Compute percentace Tregquencies

spe.relf <- _00*spe.pres/nrow(spe}

round(scrt (spe.zrelf), 1) 4 Rounc the sorted output To 1 cigit

f Plot ~he histograms
par{nfrow=c(l,2}) # Divide the wirdow horizontally

Fist{spe.ores, main="Species Occurrences", right=-A75E, las=1,
ner of occurrences™, ylab="Number of svecies”,
C,30,0y=0), col="bisgue™)

Fist(spe.re’ f, main="Species Relative -requencies”, right=EFEALSE,
las=1, =zlab="Frecuency of ocourrances (%}", vlap="Humber oI
species”, breaxs=sec{0, 10C, by=10), col="b sque"™)

Hint Examine the use of the apply () function, applied here to the
columns of the data frame spe. Note that the first part of the function
call (spe > 0) evaluates the values in the data frame to TRUE /
FALSE, and the number of TRUE cases per column is counted by

summing.
Species Occurrences Species Relative Frequencies
12 - 7 —
10 - 6 T
]
(<} ? 5 - —
S 8 3
(o [0
2 e
> 6 5
(0] = - —
£ g°
S 4
=z é’ 2 -
2 1 4
0 - 0 -
T T T T T T 1 T T T T T 1
0O 5 10 15 20 25 30 0 20 40 60 80 100
Number of occurrences Frequency of occurrences (%)

Fig. 2.4 Frequency histograms: species occurrences and relative frequencies in the 30 sites
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Now that we have seen at how many sites each species is present, we may want

to know how many species are present at each site (species richness, Fig. 2.5):

f
i

i
i
£
)

i

P

&
&
P

f
P

1

Cconpare sites: specles richness
ok or e vk oo e ac etk o ow ge e ok bk ok or sl ok se ok oo ek o

Comuate the number of species at ezch site
T gam Dy rows, The seconc argument of zpply(), MARCTKR,
is sel to L
it.pres <- zpp_y(sps > 0, I, sum)
Socrt the resu_ts in Increasing order
or-{siz.oras)
ar{nfrow=c(l,Z)) ¥ Divide the wirdow horizontal_y
Plot specles richness vs., positleon of the sizes a_ong the
river
loc{sit.onres, type="s", las=1, col="gray",mcln="Species

zickness vs. \n Jpstrean-Downstrearn Gradient™, x_zb="Zcsitions
of sites along the river", vlao="Svecles richness™)
exT({gii.ores, row.names(spe), cex=.8, col="red")

Tse gecgrapalc coordinates to p_ot 2 bucble map
lo={spa, azp=1, main="Map ot Species Richness", pch=27,
col—-"wnize", bg—"brown", cex—I¥sit.pres/maxi{sit.szres},
xlab-"% cocrairate (kr}™, yvlab-"v ccordinate {xrm) ™)
ines (spa, col="light blue")

# Can you identify richness hot spots along the river?

Hint Observe the use of the type=""s" argument of the plot () function
to draw steps between values.
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Species Richness vs.

Upstream-Downstream Gradient Map of Species Richness

29 e
254 ° ;
17%%6% 2828 5 § e Py %’
a 20 g — s
) X o »
c 16 = o o
S 151 % - .
(] = O ]
2104 e 1* € o1 .
Q 4 245 8 (
n 54 . 7 91(]1123 > 8 | é
2 & $
1 A
0 8
T T T T T T © T T T T
0 5 10 15 20 25 30 0 50 100 150 200 250
Positions of sites along the river x coordinate (km)

Fig. 2.5 Species richness along the river

Finally, one can easily compute classical diversity indices from the data. Let us
do it with the function diversity () of the vegan package.

£ Comoute diversity irdices
# B R o O T T

¥ Toad The required package vegan
linrary{vegan)y # I[L acl. already lozdeca
£ Get nelo on The diversizy() function
Tdiversily

N0 <— rowSuns (spe > 0} # Epeclies rilchress

Z <- aciverslty{soe) # Sharnen eatropy

N1l <- exp(H) # Snarncn dlversity numcexr

N2 <- diversity(spc, "inv™) # Bimpscn diversity namober

J <- H/leg{Nd} # Pielou everness

21 <= N1/X0 4 Bharnen cvenncesas (Hill's ratio)
T2 o<— NZ/X0 # Simpson evenress (il 's ratio)
div <- data.framc (NG, H, N1, X2, E., EZ, O}

diwv

Hint Note the special use of function rowSums () for the computation of
species richness NO. Normally, rowSums (array) computes the
sums of the rows in that array. Here, argument spe > 0 calls for the
sum of the cases where the value is greater than 0.
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Hill’s numbers (N), which are all expressed in the same units, and ratios (E)
derived from these numbers, can be used to compute diversity indices instead of
popular formulae for Shannon entropy (H) and Pielou evenness (/). Note that there
are other ways of estimating diversity while taking into account unobserved species
(e.g. Chao and Shen 2003).

2.2.4 Species Data Transformation

There are instances where one needs to transform the data prior to analysis. The
main reasons are given below with examples of transformations:

* Make descriptors that have been measured in different units comparable (ranging,
standardization to z-scores, i.e. centring and reduction, also called scaling)

* Make the variables normal and stabilize their variances (e.g. square root, fourth
root, log transformations)

e Make the relationships among variables linear (e.g. log transformation of
response variable if the relationship is exponential)

* Modify the weights of the variables or objects (e.g. give the same length
(or norm) to all object vectors)

e Code categorical variables into dummy binary variables or Helmert contrasts

Species abundances are dimensionally homogenous (expressed in the same
physical units), quantitative (count, density, cover, biovolume, biomass, frequency,
etc.) or semi-quantitative (classes) variables and restricted to positive or null values
(zero meaning absence). For these, simple transformations may be used to reduce
the importance of observations with very high values: sgrt () (square root),
sqrt (sqgrt () ) (fourth root), or loglp () (natural logarithm of abundance+ 1
to keep absence as zero) are commonly applied R functions. In extreme cases, to
give the same weight to all positive abundances irrespective of their values, the data
can be transformed to binary 1-0 form (presence—absence).

The decostand () function of the vegan package provides many options
for common standardization of ecological data. In this function, standardization,
as contrasted with simple transformation (such as square root, log or
presence—absence), means that the values are not transformed individually but
relative to other values in the data table. Standardization can be done relative to
sites (site profiles), species (species profiles), or both (double profiles), depend-
ing on the focus of the analysis. Here are some examples illustrated by boxplots
(Fig. 2.6):



2.2 Data Exploration

£ Date —rensformeticn and standardlization
FHRAF 4 E 433 Ao RS P Rt A

£ Get n2lo on the decestard() Zunction
?decaostana

f Sinple transformaticns
1% A m Ak k kA mhm kkhm ook ok ko R

f Partial vwiew of —he raw data {abundance codes)
spel[lih,2:4

¥ Translorm zbhuncasces Lo preseace-sbsence (1-0)
spe.pe <- decostand{spe, methoc="pa")
spe.pe[l:5,2:1]

¥ Species profiles: 2 netheoas;
f oresence-aksence oz acundance data
R I e e e e I R e e e

£ Zcale apuncarces by dividirg them by the mexinam valuc Zor
¥ each speclies

¥ Note; MARGIN=2 (default wvalue) Zor thls methoo

spe.scal <- dezostandi{sce, "max"}

spe.scal [l:5,2:47

¥ Disvlay the maximum by oclunn

apoly (spc.scel, 2, max)

# Did the scaling work properly? It is good to keep an eye on
# yvour results by a plot or by the use of summary statistics.

B

Scale apuncarces by dividing them by the sveciez zota_s
(relative zsbuncance per speclies)

Xote: MRRGIN=2 for this mezhod

spe.relsp <- decos:-and(spe, "tota_", MARGIN=Z)

spe.relsp 1:5,2:4]

f Disclay the sum by coluamn

apocly (spe.relsp, 2, sum)

1

£ Site profiles: 3 methods; presence-absence or abhurdarce data
# E e o i U e R O A i T

¥ Scale abundances by dividing them by —he size ftozals

¥ (relazive sbundarces, or re stive “requencies, per site)
£ Note: MARGTN=1 (default wvalue) Tor this methoo

spe.rel <- deccstandc(spe, "tctal™) # default MARCIN = 1
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spe.rel[1:5,2:4°

¥ Disvlay the sum of row wvectors to determine if the scaling
¥ worked oroperly

apcly (spe.rel, 1, sum)

¥ Give a Zength of 1 o each row vecztor (Euclidezn norm)
spe.norm - ascostandi{ste, "nmorma_Zlze™)
spe.norxm[l:5, 214

¥ Verify the ncrm of row veciors

~orm <- Zuncticn(x) sqrib(x%*%x)

apcly (spe.norm, I, norr)

# The scaling above is called the ‘'chord transformation’: the
# Euclidean distance function applied to chord-transformed

# data produces a chord distance matrix (Chapter 3). Useful

# before PCA and RDA (Chapters 5 and 6) and k-means

# partitioning (Chapter 4).

£ Conouze relative Zrequercles by rows (site profiles),
£ then sgquare root

spe.hel <- deccstardispe, "he lirgex")

spe.hel [Trh, 204

¥ Check Lhe norm ol cow veclors

apoly(spe.nal, 1, norm)

# This is called the Hellinger transformation. The Euclidean
# distance function applied to Hellinger-transformed data

# produces a Hellinger distance matrix (Chapter 3). Useful

# before PCA and RDA (Chapters 5 and 6) and k-means

# partitioning (Chapter 4).

# Note: the Hellinger transformation can also be obtained by
# applying the chord transformation to square-root-

# transformed species data.

f 8Tandardization of both scecies and zites (double profiles)
# mAmhk kb bk m ke h At w kb kb b ok kr A b m ok kb r w bk e hkh kb A w bkt m ok kot kb ko kb
;

¥ Ckl-sgquere Lranslo-malion

spe.chi <- deccstandispe, "cki.zquare™}

spe.chi[l:5,2:1°

# Creck what hapoered to site B where no gpecias was Tourd
spe.chi[7:9,]

# The Euclidean distance function applied to chi-sguare-
# transformed data produces a chi-square distance matrix
# (Chapter 3).
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¥ Wiscornsin standarcization: aburndance
¥ species maxima ana then by site tr
spe.wis <- wisconsin{spe)

spe.wis[l:5,2:4°7

are Zirast ranged by

¥ Boxolots of Transfiormed acundarces of a common species
¥ (ston= loach)
e R e R A ]

par{nfrow=c(Z,2))

boxp ot {s0e5LCC, sgrti{susesilLiC), loglp(spesLOl}),
las=1, mair="Himrcle transformation”,
~ames=c{"raw data™, "sgrt", "log"), col="zizgus")

hoxp ol {sce.sca 5L0C, sce.relsp3lOC,
las=1, ma’‘r="8tandardizaticn by species”,
manas=c {("max™, "Lolal"}, col="_ichlgreer™)

boxp ot (sce. hel$ 00, spe.re 300, spe. ormiLOC,
las=1, mair="Szandardizstion by sites™,
canaes=c ("Hel_i~ger™, "LolLal™, "nern"), co’="lichlblue™)

boxp ot (sce.chis 00, spe.wissi OC,
las—1, ma‘r—"Dounle standardizsticn”,

cames=c ("Chi-square”™, "Wiscornsin"), col="orange")

# Compare the effect of these transformations and standardiza-

# tions on the range and distribution of the scaled abundances.

Hint Take a look at the line: norm <- function (x) sqrt (x%*%x).[tis
an example of a small function built on the fly to fill a gap in the stan-
dard R packages: this function computes the norm (length) of a vector
using a matrix algebraic form of Pythagora’s theorem. For more matrix
algebra, visit the Code It Yourself corners.
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Simple transformation

5_

2 Exploratory Data Analysis

Standardization by species
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Fig. 2.6 Boxplots of transformed abundances of a common species, Nemacheilus barbatulus

(stone loach)

Another way to compare the effects of transformations on species profiles is to
plot them along the river course:

par(mfrcew=c (2, Z))
plot (envidas, spesT

coce")
lines {env$das,
lines (envS$das,
lines(envSdas,
Tines (ervidas,

RU,

type="_
xlab="Distance Zrom the scurce

col=3)

"
I

col=<,
[k "

col="orarge")

col=2)
col=T1,

- iles & gt o Sam-gowWnsT zdienz
¥ Plot profiles zlong the usstream WwnsTream gradien
# FEAEFETF AT TR F R AR FEr b b ndddhrsdrdbdbhdddnrddnrrrddnrrdaddy

1-y="dotZea")

rneir="Raw data”,
, vlao="Raw zbundance
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—_no

ploT {envidas, =pe.scalsTiU, —ype="1", col=4, ma‘n="Species
protiles (max)",xlap="Iistance from the souzce “kml",
vlab="5tandardized zhunda-ce")

lines (arvsdas, _EOMB, ool=32)

lines {ervédas, a2~ 53AR, col="orange")

lines (arvsdas, a_53C0, anl=2)

lines {envédas, 22 5L0C, col=1, lty="dozted™)

ploz{envidas, spe.helsSIRU, tyoe="1", col=4, main="3%1te procliiles
(Hellinger}", xlabh="Dislance Zrom Lhe source [xzm ",
vlabh="Standardi zed abundanoe™)

lines(envsdas, sce.hel$CMB, col=3)

lines (envidas, sve.hal5BAR, col="orange")

lines(ervsSdas, sce.hel$BCO, col-2)
lines (ervSdas, sce.hel$lOC, col-1, liy-"cotzed™)

plot(cavScas, spe.chiSTRU, tyoe-"_", col-4, main-"Doublc
profi’es (Chi-squaze)", xlab—"Distarce from tae source [kr]™,
ylab="3tandardizcd ebrncancc™)

lines (envSdas, sue.chisCME, col-3)

linecs (cnv$das, .CchiSBAR, col="orangc')

lines (envSdas, .ch1SBCO, col=Z2)

lines (ervidas, LCchlST0C, col=1, loy="dotzed")

legenc ("topzicht™, c{"Brown -roul", "Grayling", "3arbe_",
"Comron bream™, "Stone oach"), wol=c(4d,3,"orarge",2,1),
loy=clrep(l,4),3))

ol ¥ i V]
oo g g
oo G

# Compare the profiles and explain the differences.

The Code It Yourself corner #1

Write a function to compute the Shannon—Weaver entropy for a site vector
containing species abundances. The formula is:

H'==Y"[p,xlog(p,)]

where p.=n. /N and n.=abundance of species i and N =total abundance of all
species.

After that, display the code of wvegan’s function diversity () fo see
how it has been coded among other indices by Jari Oksanen and Bob O’Hara.
Nice and compact, isn't it?
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2.2.5 Environmental Data

Now that we are acquainted with the species data, let us turn to the environmental

data (object env).

First, go back to Sect. 2.2.2 and apply the basic functions presented there to
env. While examining the summary (), note how the variables differ from the

species data in values and spatial distributions.

Draw maps of some of the environmental variables, first in the form of bubble

maps (Fig. 2.7):

£ Bubcle maps ¢ some envirormenzal variables
# R o o O o o T R o O

par{nl-ocw—c(2,2))

vlot (spa, asp-1, maian-"Altitude", pch-21, co’l-"white"™, bog-"rea",
cex=irenvialt/max (envialt), xlab="x", ylab="y"}
lines{spa, col-"_ight blue™)

plo-{spa, asp—l, maia—-"Discharge", pch—2_, col-"white",
bg="b_uac", cox=3=caviden/max (cnvideb), xlsb="x", ylab="y")
lines({spa, col—-"_ight blue™)

plot (spa, asp=1, malan="Cxvygen", pch=21, col="white",
bg="green3", cex=hrenvioxy/max{e~vicxy}), xlab="x", vylab="v"]
Tines{spa, col=""1ght blaa")

ploi {(spa, asp-1, mala-"Xiirzie", pch-21, col-"while™,
bg="brown", cex=S*envin’t/max{envinit), = ab="x", yvlab="y")
lines (spa, col-"_icght klua™)

# Which ones of these maps display an upstream-downstream
# gradient? How could you explain the spatial patterns of the
# other variables?

Hint See how the cex argument is used to make the size of the bubbles
comparable among plots. Play with these values to see the changes in
the graphical output.
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Fig. 2.7 Bubble maps of environmental variables

Now, examine the variation of some descriptors along the stream (Fig. 2.8):

¥ Z_ine plots

# FrEmkEkkhwkom

par{nfrow=c(2,2)]
T {cavidas, onvsalt, type="_", x ab="Dlstancce from the sourcc
<y, vlab—"Altitude (m)", co’—"red”, man—"Eltitude")
{cavidas, onvsdeb, type="_", x ab="D stancce from the sourcc
(ki) ", ylab="Discharge (n3/3)", col="blue", main="Ilischarga")
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rloz{envsSaas, snvSoxy, type="_", =zlab="Distance from the sourcse
(k) "™, y.ab="Oxygen (ng/L]", col="gresr3", main="Oxvgen"}
plo-{env3cas, envérnit, tvpe="_", xlabk="Distance fzom the souzcs
(kir}™, y_ab="Nitrate (mg/L)", ccl="brown", main="NZtrate")
Altitude Discharge
e
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Fig. 2.8 Line plots of environmental variables

Distance from the scurce (km)

To explore graphically the bivariate relationships among the environmental
variables, we can use the powerful pairs () graphical function, which draws a

matrix of scatter plots (Fig. 2.9).
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Moreover, we can add a LOWESS smoother to each bivariate plot and draw
histograms in the diagonal plots, showing the frequency distribution of each vari-
able, using external functions of the panelutils.R script.

¥ Scatter plots for all pairs of envirormentel wvariables
# R R R R R R R R R o T

¥ Zcad additioral funcotiorns from an X script
source ("panelati’s.R"} # parce_a-ils.R must be In The worxing
¥ directory

¥ Bivariate plots witkh histograms on the diagoral and smooth

£ fittad cuzves

op <- par{nirow=c{l,1l), pIty="s")

palrs{ernv, pane’=panel.smooth, diag.pane’=pansl.hist,
mair="Bivariate Flots with Histogramws ard Smooth Curves™)

par{oD)

From the histograms, do many variables seem normally
distributed?

Note that normality is not regquired for explanatory variables
in regression analysis and in canonical crdination.

Do many scatter plots show linear or at least monotonic
relationships?

e I I W A A

Hint Each scatterplot shows the relationship between two variables identi-
fied on the diagonal. The abscissa of the scatterplot is the variable
above or under it, and the ordinate is the variable to its left or right.

Simple transformations, such as the log transformation, can be used to improve
the distributions of some variables (make it closer to the normal distribution).
Furthermore, because environmental variables are dimensionally heterogeneous
(expressed in different units and scales), many statistical analyses require their
standardization to zero mean and unit variance. These centred and scaled variables
are called z-scores. We can now illustrate transformations and standardization with
our example data (Fig. 2.10).
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Bivariate Plots with Histograms and Smooth Curves
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Fig. 2.9 Scatter plots between all pairs of environmental variables with LOWESS smoothers
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f Sinmole transtormaticn of ar environmental variable
ﬁ B i R T P R e i

range (srnvspan)

¥ _og-transformation ¢ the wvariable 'slooe' (y — 1n(x))

# Compare alstograms anc bexp_ots of raw and transformed values
par{nfroew=c(2,2})
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Eistz {env3gen, col="bisque", riga-=F)

Fisc(log¢g{cnvSpen), ¢ol="light grcen', zight=FARLSE,

mair="Jistogram of laf{enviper)™)

bexp_ot{envsSper, col="bisque", mazn="Boxplo: of eavipen",
vlab="e~vipen"™)

boxplot (logf{enviaen), col="_ight green", main="Boxploz of
In{envipent™, vlab="lcg(evipean) ™}

f{ Standarcizetion oI all enviroamental wvariables
# LR R I I R I R R R R

£ Center end sca_e = standardize varisbhles (z-scores)
env.z <- cecos-and({env, "stardardize")

apclylerv.z, 2, Ti=an) ¥ means = 0

apcly(ernv.z, 2, sd} ¥ standard deviaticns = _

f Sane standardlizacion using the scale() Zunction {(which retuarns
¥ oa nmatrix)
any.zs <- zs.qata.lrame(scalef{env))

Hint Normality of a vector can be tested by using the Shapiro—Wilk test,
available through function shapiro.test ().

Histogram of env$pen Histogram of In(env$pen)
8 _
o
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- = -
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env$pen log(env$pen)
Boxplot of env$pen Boxplot of In(env$pen)
Q) < A [9)
g T “
c ] o
28 - g~ |
2 5~ '
c Q 1 o
) D o
=3 ° 2
T T 1
o 4 1

Fig. 2.10 Histograms and boxplots of the untransformed (leff) and log-transformed pen variable
(slope)



30 2 Exploratory Data Analysis

2.3 Conclusion

The tools presented in this chapter allow researchers to obtain a general impression
of their data. Although you see much more elaborate analyses in the next chapters,
keep in mind that a first exploratory look at the data can tell much about them.
Information about simple parameters and distributions of variables is important to
consider in order to choose more advanced analyses correctly. Graphical represen-
tations like bubble maps are useful to reveal how the variables are spatially orga-
nized; they may help generate hypotheses about the processes acting behind the
scene. Boxplots and simple statistics may be necessary to reveal unusual or aberrant
values.

EDA is often neglected by people who are eager to jump to more sophisticated
analyses. We hope to have convinced you that it should have an important place in
the toolbox of ecologists.



Chapter 3
Association Measures and Matrices

3.1 Objectives

Most methods of multivariate analysis, in particular ordination and clustering
techniques, are explicitly or implicitly! based on the comparison of all possible pairs
of objects or descriptors. The comparisons take the form of association measures
(often called coefficients or indices), which are assembled in a square and symmetrical
association matrix, of dimensions nxn when objects are compared, or pxp when
variables are compared. Since the subsequent analyses are done on the association
matrix, the choice of an appropriate measure is crucial. In this chapter, you will:

* Quickly revise the main categories of association coefficients

e Learn how to compute, examine and visually compare dissimilarity matrices
(Q mode) and dependence matrices (R mode)

* Apply these techniques to a classical dataset

e Learn or revise some basics of programming functions with the R language

3.2 The Main Categories of Association Measures
(Short Overview)

It is beyond the scope of this book to explain the various methods in detail, but it is
useful to provide a wrap-up of the main categories of measures. This facilitates the
choice of an appropriate index in many situations, and improves the understanding
of the applications proposed below. Note that we use the expressions “measure”,

'The association measure among objects may be implicit. It is the Euclidean distance in principal
component analysis (PCA, Chap. 5) and k-means partitioning (Chap. 4), for example, and the
chi-square distance in correspondence analysis (CA, Chap. 5).

D. Borcard et al., Numerical Ecology with R, Use R, 31
DOI 10.1007/978-1-4419-7976-6_3, © Springer Science+Business Media, LLC 2011
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“index” and “coefficient” as synonyms to refer to the quantities used to compare
pairs of objects or variables.’

3.2.1 Q Mode and R Mode

When pairs of objects are compared, the analysis is said to be in the Q mode. When
pairs of descriptors are compared, the analysis is said to be in the R mode. This
distinction is important because the association measures in Q- and R-mode
analyses are not the same.

In Q mode, the association measure is the distance (dissimilarity) or the similar-
ity between pairs of objects, e.g. Euclidean distance, Jaccard similarity. In R mode,
one uses a measure of dependence among variables, such as the covariance or
correlation coefficient.

3.2.2 Symmetrical or Asymmetrical Coefficients in Q Mode:
The Double-Zero Problem

Virtually, all distance or similarity measures used in ecology are symmetric in one
sense: the value of the coefficient between objects n, and n, is the same as the value
of the coefficient between objects n, and n,. The same holds for dependence measures
in the R mode. The problem addressed here is different. It concerns the treatment
of double-zeros in the comparison of pairs of objects.

In certain cases, the zero value has the same meaning as any other value along
the scale of a descriptor. For instance, the absence (0 mg/L) of dissolved oxygen in
the deep layers of a lake is an ecologically meaningful information: the concentra-
tion is below the measurement threshold and this poses severe constraints on aerobic
life forms, whatever the reason for this condition.

On the contrary, the zero value in a matrix of species abundances (or presence—
absence) is much more tricky to interpret. The presence of a species at two sites
generally implies that these sites provide a similar set of minimal conditions
allowing the species to survive; these conditions are the dimensions of its ecological
niche. The absence of a species from a relevé or site, however, may be due to a
variety of causes: the species’ niche may be occupied by a replacement species, or
it may not have reached that site even though the conditions are favourable, or the

2 Although the term “coefficient” is sometimes narrowly defined as a multiplicative factor of a
variable in a mathematical expression, it has been applied for decades to the broader sense used
in this book.
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absence of the species is due to different non-optimal conditions on any of the
important dimensions of its ecological niche, or the species is present but has not
been observed or captured by the researcher, or the species does not show a regular
distribution among the sites under study. The key points here are that (1) in most
situations, the absence of a given species from two sites cannot readily be counted
as an indication of resemblance between these sites because this double absence
may be due to completely different reasons, and (2) the number of uninterpretable
double zeros in a species matrix depends on the number of species and thus
increases strongly with the number of rare species detected.

The information “presence” thus has a clearer interpretation than the informa-
tion “absence”. One can distinguish two classes of association measures based on
this problem: the coefficients that consider the double zeros (sometimes also called
“negative matches”) as indications of resemblance (like any other value) are said to
be symmetrical, the others, asymmetrical.’ In most cases, it is preferable to use
asymmetrical coefficients when analysing species data, unless one has compelling
reasons to consider each double absence in a matrix as being due to the same cause.
Possible examples of such exceptions are controlled experiments with known com-
munity compositions or ecologically homogeneous areas with disturbed zones.

3.2.3 Association Measures for Qualitative or Quantitative Data

Some variables are qualitative (nominal or categorical, either binary or multiclass),
others are semi-quantitative (ordinal) or quantitative (discrete or continuous).
Association coefficients exist for all types of variables, but most of them fall into two
classes: coefficients for binary variables (hereunder called binary coefficients for short,
although it is the variables that are binary, not the values of the association measures)
and coefficients for quantitative variables (called quantitative coefficients hereafter).

3.2.4 To Summarize...

Keep track on what kind of association measure you need. Before any analysis, ask
the following questions:

* Are you comparing objects (Q-mode) or variables (R-mode analysis)?
* Are you dealing with species data (usually asymmetrical coefficients) or other
types of variables (symmetrical coefficients)?

3The use of the words symmetrical/asymmetrical for this distinction, as opposed to symmetric/
asymmetric (same value of the coefficient between n, and n, as between n, and n,), follows
Legendre and Legendre (1998).
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* Are your data binary (binary coefficients), quantitative (quantitative coefficients)
or mixed or of other types (e.g. ordinal; special coefficients)?

In the following sections, you will explore various possibilities. In most cases,
more than one association measure is available to study a given problem.

3.3 Q Mode: Computing Distance Matrices Among Objects

In the Q mode, we use four packages: stats (included in the standard installation
of R), vegan, ade4, cluster and FD. Note that this list of packages is by far
not exhaustive, but it should satisfy the needs of most ecologists.

Although the literature provides similarity as well as distance measures, in R all
similarity measures are converted to distances to compute a square matrix of class
"dist" in which the diagonal (distance between each object and itself) is 0 and can
be ignored. The conversion formula varies with the package used, and this may not
be without consequences:

¢ In stats, FD and vegan, the conversion from similarities S to dissimilarities
Dis D=1-S.

e In ade4, it is computed as D =+/1-S5 . This allows some indices to become
Euclidean, a geometrical property that is useful in some analyses, e.g., principal
coordinate analysis (see Chap. 5). We come to it when it becomes relevant.
Distance matrices computed by other packages that are not Euclidean can often
be made Euclidean by computing D2 <- sqgrt (D).

¢ In cluster, all available measures are distances, so no conversion has to be
made.

Therefore, although we stick to the conventional names of the most classical
coefficients, as they can be found in textbooks, it is implicit from now on that all
these measures have been converted to distances when computed by R functions.
For instance, the Jaccard (1901) community index is basically a similarity, but the
output of the computation of that coefficient in stats, vegan and ade4 is a
distance matrix.

3.3.1 Q Mode: Quantitative Species Data

Let us use the fish species dataset spe again. We consider the data as quantitative
although, strictly speaking, the values do not represent raw fish numbers.
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Quantitative species data generally require asymmetric distance measures. In
this category, frequently used coefficients are the Bray—Curtis dissimilarity D, ,*
(also known as the reciprocal of the Steinhaus similarity index, §,,), the chord dis-
tance D,, the chi-square distance D,, and the Hellinger distance D .. Let us compute
dissimilarity matrices using some of these indices. In the process, we use the package
gclus for visualization purposes.

Bray—Curtis dissimilarity matrices can be computed directly from raw data,
although true abundances are often log-transformed because D, gives the same
importance to absolute differences in abundance irrespective of the order of magni-
tude of the abundances. In this coefficient, a difference of five individuals has the
same weight when the abundances are three and eight as when the abundances are
6203 and 6208.

The chord distance is a Euclidean distance computed on site vectors normalized
to length 1; this normalization is called the chord transformation. The normaliza-
tion is done by vegan’s function decostand (), argument normalize.’

The Hellinger distance is a Euclidean distance on site vectors, where the abun-
dance values are first divided by the site total abundance, and the result is square-
root transformed; this is called the Hellinger transformation. Another description of
this transformation is to apply a chord transformation on square-root-transformed
data. Conversely, chord-transformed abundance data are obtained by a Hellinger
transformation of squared abundance data. This relationship shows the relatedness
of the chord and Hellinger distances and emphasizes the effect of the Hellinger
transformation to reduce the importance of large abundances. The Hellinger trans-
formation is obtained in one step by decostand() with the argument
hellinger.

¥ _cac regulred packages

linrary{adesd)

licrary{vegan) £ should e loaded after aded teo aveold
# some conflicts

linrary{gclus)

lisrary{(c_azter}

liorary (FD}

“In this book, symbols and numbering of similarity and distance measures are taken from
Legendre and Legendre (1998).

>This way of presenting several distance measures (as pre-transformations followed by computa-
tion of a Euclidean distance) was described by Legendre and Gallagher (2001). More about this
topic in Sect. 3.5 at the end of this chapter.
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¥ Zmport the date from Csv files

spe <- read.csv{"Doubs avy", row.,namaes=1)
anv <- read.ocsv{"DoubsEnv , row,names=1)
spa <- rezad.csv("DoubsSca.csv", row.nzmes=1)
£ Rerove empty site &

ape <- spe[-8,
env <—- env|-
spa <- spal-

]
8, ]
8,1
f Dissimilarity end distance measurss for (semi-)guantitative
£ cdate

# mAmhk kbt m Ak kAt mw kA v Ak b m ok kd Atk md m kb b r m Ak Ak kA A b bk kb ow ok w ok k b ow kA
0

¥ Bray-Curtis d_ssimilarliiy malsix oa caw specles dala

spe.dn <- wvegdist (spe) # Bray-Curtiz dissinilarity (defaulit)

Fead(spe.ab)

£ Bray-Curtis dissimilarifiy matzix on leg-transformes aburdsaccs

spe.dolr <- wvegdist{lcg_ p(scel)

reoad(spo.cbn)

f Chord distaznce matzix

spe.norr <- decostand{sce, "raor")

spe.do <- disti{sve.nornm)

reoad (spo.ac)

$ Hellinger distansne matzix

spe.hel <- deccstancispe, "hel™)

spe.dh <- dist(sce.hel)

Lead{spes.dn)
# Examine the help files of decostand{) and vegdist() and find
# how to compute a matrix of chi-square distances, which would
# also be an appropriate choice for these data.

Hint Type ?10glp to see what you have done to the data prior to building
the second Bray—Curtis dissimilarity matrix. Why use loglp ()
rather than Log () ?

3.3.2 Q Mode: Binary (Presence-Absence) Species Data

When the only data available are binary, or when the abundances are irrelevant, or,
sometimes, when the data table contains quantitative values of uncertain or unequal
quality, the analyses are done on presence—absence (1-0) data.

The Doubs fish dataset is quantitative, but for the sake of the example we recode
it to binary form (using the appropriate arguments when needed): all values larger
than O are given a value equal to 1. The exercise consists in computing several dis-
similarity matrices based on appropriate similarity coefficients: the Jaccard (S.) and
Sgrensen (S,) similarities. For each pair of sites, the Jaccard similarity is the ratio
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between the number of double 1s and the number of species, excluding the species
represented by double zeros in the pair of objects considered. Therefore, a Jaccard
similarity of 0.25 means that 25% of the total number of species observed at two
sites were present in both sites and 75% in one site only. The Jaccard distance
computed in R is either (1-0.25) or /1—-0.25 depending on the package used. The
Sgrensen similarity (S,) gives more weight to the number of double 1s and its recip-
rocal (complement to 1) is equivalent to the Bray—Curtis distance computed on
species presence—absence data.

A further interesting relationship is that the Ochiai similarity (S,,), which is also
appropriate for species presence—absence data, is related to the chord and Hellinger
distances. Computing either one of these distances on presence—absence data, fol-
lowed by division by 2 , produces \/ 1—Ochiai similarity . This reasoning shows
that the chord and Hellinger transformations are meaningful for species presence—
absence data. This is also the case for the chi-square transformation: the Euclidean
distance computed on data transformed in that way produces the chi-square dis-
tance, which is appropriate for both quantitative and presence—absence data.

¥ Dissimilarity measzures for binary data

# EE R R R R o R R o

Note: a binary transformation of the data{decostand(.., "pa"))
is noet necessary, since all binary distance functions make
the data binary before computing the coefficients.
dist.binary() does that automatically

whereas vegdist() requires an argument binary=TRUE

ECIE S S S

f Jacecard dissimilarity matrix using Zunction wvegdist()
spe.dj <— vegdist (spe, "Jjac”, birary=TRUE)

Lead{spe.d]j]

head{sqrt (spe.d )}

f Jaccard dissimilaricy matriz using Zunction dist()
spe.dj? <- dist(spe, "binary")

Fead(spa.c|2)

f Jaccard dissimilarizy matrix using functicon dist.binary()
spe.djd <- disi.oirary (spe, melaod=1)

Fead{spe.di3)

¥ Sgrensen diss‘milarity rmatrix using furction dist.nina-v ()
spe.ds <- dist.binarvi{sze, method=H})

hread(spe.as)

¥ Sgrensen dizs’nilarity matr’xz using furction wvegdisz ()
spe.da? <- veod? st (ape, bingry=TRUR)

tead({spe.as?) ; heac (sqrt(soce.cs))

# Ochiai cissim’ larity mazrix

spe.och <- dist.vnizazy(sps, method=7)
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Fead{spe=.och)
# The display of several values of the alternate versions of
# the Jaccard and Serensen distance matrices show differences.
# Go back to the introduction of section 3.3 to understand the
# differences.

Hint Explore the arguments of the functions vegdist (), dist.
binary () and dist () fo see which coefficients are available. Some
of them are available in more than one function. In dist (), argument
binary produces (1 —Jaccard). In the help file of dist .binary (),
be careful: the numbering of the coefficients does not follow Legendre
and Legendre (1998), but Gower and Legendre (1986).

Association matrices are generally intermediate entities, which are rarely examined
directly. However, when there are not too many objects involved, it may be useful to
display them in a way that emphasizes their main features. We suggest that you plot
several dissimilarity matrices using the additional function coldiss (). A reordering
feature is included in the function coldiss (), which uses the function order.
single() of the gelus package to reorder each dissimilarity matrix so that
similar sites are displayed close together along the diagonal. Therefore, you can
compare the results obtained before and after reordering each matrix.

The package gclus is called within the coldiss () function so that it must
have been installed prior to running the following code. Figure 3.1 shows an
example.

¥ Gravhicel diszplay of esscciaticn matrices
# REmkFF AT dd b nmddrbdnrrbhrsdb bbb nddwrdrmdd

¥ The golus package is requirea and may pe called now, althouga
# 27 i1s cel_ed Znterna_ly by coldiss()
lisrary{gclus}

¥ Scurce the colaiss () furnction
scurce{"cocldiss.R™) f If necessary, add the path Zo the Zile

£ Co_ouar nlots (clsc called heat meps, or trelllis dizgreams in
ff the date analysis literature) using the ccldiss() Zurncticn
# R e I R o e o e e I

Colour plots of a dissimilarity matrix, without and with
ordering of distances. Screen output colours:

Magenta = dissimilarity close to { (maximum similarity)
Cyan = dissimilarity close to 1 (minimum similarity)
Usage:

coldiss {(D=dist.object,nc=4,byrank=TRUE, diag=FALSE)

H e e A W
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# D should be a dissimilarity matrix

# If D is a distance matrix with max(D) > 1, then D is divided
# by max (D)

# ne is the number of colours

# byrank = TRUE equal-sized categories

# byrank = FALSE equal-length intervals

# If diag = TRUE, then site labels are displayed on the

# diagonal

# Bray-Curtis dissimilarity matrix (cn rzaw data)
¥ & coleurs with sgqual-_ength Znterva_s {useful Zor conparisons)
co_dlss{sce.cb, oyran<=FALZE, ciag=T=xU3I)

f 2arme but on log-transiormed data
co_dlssi{soe.cbln, byrank="AZ3E, d_zg=TRUE)

Dissimilarity Matrix Ordered Dissimilarity Matrix
1 1 1 1
2 2 23 23
3 3 25 25
4 4 24 24
5 5 5 5
8 B a0 30|
7 T 27 27
9 ] 28 28
10 10 26 28|
11 11 22 22
12 121 21 21
13 13 20 20
14 14 26 26
15 15 19 19
16 16, 18 18]
17 7l 17 17
18 18 16 16
19 19| 10 10
20 20 15 15
21 21 -1 6
22 22 4 4
23 23 3 3
24 24 7 7
25 25 2 2
26 26 12 12
27 27 13 13
28 28 14 14
28 29 1
30 30 8

Fig. 3.1 Heat maps of a Bray—Curtis dissimilarity matrix computed on the raw fish data

Compare the two Bray—Curtis plots (raw and log-transformed data; the latter is
not presented here). The differences are due to the log transformation. In the
untransformed distance matrix, small differences in abundant species have the same

importance as small differences in species with few individuals.
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¥ Chord distance mat-ix
co_d ss(sce.ac, oyran<-FALSE, ciag-T3U3)

f Hellirnger distance matrix
co_diss{sce.qn, oyranz=FMAL3E, clag=T=xU=)

Compare the four colour plots. They all represent distance or dissimilarity
matrices built upon quantitative abundance data. Are they similar?

¥ Jaccard distance matrix
co_diss{spe.c], ovyran<=FARLEE, ciag=TRUZ)

# Compare the Jaccard plot with the previous ones. The Jaccard
# plot is based on binary data. Does this influence the result?
# Is the difference larger than between the various plots

# based on guantitative coefficients?

Although these examples deal with species data, the Doubs transect is character-
ized by strong ecological gradients (e.g. oxygen, nitrate content; see Chap. 2).
In such a well-defined context, it may be interesting to assume for discussion that
species are absent for similar reasons from a given section of the stream, and
compute an association matrix based on a symmetrical coefficient for comparison
purposes. Here is an example using the simple matching coefficient S, (developed
in Sect. 3.3.4).

¥ Simple matching dissimilarity

£ (called the Sckal ang Michener Zndex in aded}
spe.s_ <- dist.binaryi{spe, method=2)
co_diss{spe.sl"2, byrank=7ZA"5E, disg=TXRUE}

# Compare this symmetrical dissimilarity matrix with the
# Jaccard matrix, Which dissimilarities are the most affected
# by taking, or not, double zeros into account?

The Code It Yourself corner #2

Write several lines of code to compute Jaccard’s “coefficient of community”
(S.) between sites 15 and 16 of the spe data frame. Sites 15 and 16 now have
row numbers 14 and 15, respectively, because we deleted row 8 which is
devoid of species.
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Jaccard’s similarity index has the following formula for two objects x,
and x,;
2

S

) = al(a+b+c)

where a is the number of double 1s, and b and c are the numbers of 0-1
and 1-0 combinations, respectively.

After the computation, convert the similarity value to a dissimilarity using
the formulas used in vegan and ade4 (not the same formula).

For the aficionados: display the code used in the ade4 function dist.
binary () (just type dist.binary). Look how the quantities a, b, ¢ and
d are computed in just four lines for whole data frames. A fine example of
programming elegance by Daniel Chessel and Stéphane Dray.

3.3.3 Q Mode: Quantitative Data (Excluding Species
Abundances)

For quantitative variables with a clear interpretation of double zeros, the queen of
the symmetric distance measures is the Fuclidean distance D,. “It is computed
using Pythagora’s formula, from site-points positioned in a p-dimensional space
called a metric or Euclidean space” (Legendre and Legendre 1998, p. 277).

The Euclidean distance has no upper limit, and its value is strongly influenced
by the scale of each descriptor. For instance, changing the scale of a set of measure-
ments from g/L to mg/L will multiply the Euclidean distance by 1000. Therefore,
the use of the Euclidean distance on raw data is restricted to datasets that are dimen-
sionally homogeneous, like geographic coordinates. Otherwise, D, is computed on
standardized variables (z-scores). This also applies to situations, where one wishes
to give the same weight to all variables in a set of dimensionally homogeneous
descriptors.

Here, you could compute a matrix of Euclidean distances on the (standardized)
environmental variables of our env dataset. We remove one variable, das (dis-
tance from the source), since it is a spatial rather than an environmental descriptor.
The results are displayed using coldiss () (Fig. 3.2).

¥ Remove the 'das' wariable from the env dataset
env? <—- env[,-_]

# BEuclidean distance matrix cof the standardized =nv2 dzta frame
env.de <- dist({scale{env2)}
coldigs{env.de, <¢iag=TRJE)




42 3 Association Measures and Matrices

Hint See how the environmental variables have been standardized “on the
fly” using the function scale().

Dissimilarity Matrix Ordered Dissimilarity Matrix
T 11 1 |1
2 2 a3 3
3 3 2 2
4 4 -] &
5 5 4 4
-] -] T T
7 T 5 5
2] 9 a k2]
10 10 10 10
1 1 24 24
12 12 26 26
13 3 27 271
14 14, 28 28
15 15 14 14
16 16! 13 13
7 17| 1 11
18 18| 18 16
19 19 19 19
20 20/ 18 18|
21 21 17 171
22 22 20 20
23 23 21 21
24 24 22 22!
25 25 12 12
26 26 15 15
27 271 a0 30
28 28 29 29
acl 29 23 23
30 30 25 25

Fig. 3.2 Heat maps of a matrix of Euclidean distances on the standardized environmental
variables

These plots of distance matrices can be used for a quick comparison. For
instance, you could plot the Hellinger species-based distance matrix and the envi-
ronmental distance matrix, both using equal-sized categories (byrank=TRUE, the
default), in order to compare them visually:

£ He lirger aistaence matrix of the species data (squal-sized
f caloegorics)
oco_dlss{sce.ocn, alag-TRUI)

# Compare the left-hand plots of this and the previous pair of
# heat maps, since they present the sites in the same order.
# Do you observe common features?

The Euclidean distance is of course appropriate to compute matrices of
geographical distances based on variables giving the coordinates of the sites in any
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units on a 1- or 2-dimensional orthogonal (Cartesian) system (such as cm, m, km
or UTM coordinates). Coordinates in a spherical system (e.g. latitude—longitude)
must be transformed prior to the computation of a Euclidean distance matrix. This
transformation can be done by function geoXY () of the package SoDA. Note that
x—y coordinates should not be standardized (only centred if necessary), since this
would alter the ratio between the two dimensions.

In the following code lines, you will also compute a matrix of Euclidean dis-
tance on a single variable: das, the distance from the source of the river. This
matrix thus represents the distances among sites along the river, while the matrix
based on x—y coordinates represents the distance among points on a geographical
map (as the crow flies, so to say).

£ Euclidean cistance matrix on spatial coordinates (2D)
spa.de <- dist(soca)

co_dizs(sva.ae, aiag=TRIZ)

£ Euclidean <istence matrzix on distance Zrom the scurce (1D)
das.df <- as.datz.framre(ervidas, row.names=rowramnes (erv))
riv.de <- distidas.cf)

co_dliss{riv.de, dliag=TR_Z}

# Why are the x-y plot and the Euclidean distance from the
# source plot so different?

3.3.4 Q Mode: Binary Data (Excluding Species
Presence—Absence Data)

The simplest symmetrical similarity measure for binary data is the “simple match-
ing coefficient” §,. For each pair of sites, it is the ratio between the number of
double 1s plus double Os and the total number of variables.

The fish environment dataset is exclusively made of quantitative variables, so we
create fictitious data to demonstrate the computation of §,. We resort to this method
from time to time, just to show how it is convenient to create datasets of known
characteristics in R, for instance, for simulation purposes.

¥ Corpace five binary veriacles with 37 cojects each. Each

¥ variable has a predeZined rumber oZ 0 and 1

£ Variable 1: 1C x 1 and 2C x J; thes order 1s randcmized

varl <- semple{c(zep{l, 0}, rep{0,20]))

¥ Variable 2; 13 x 0 and 13 = 7, ong bleck eschk

var? «<- clrep(U,_5), ren(l,.5))

£ Variable 32: alternation of 2 x 1 and 3 = 0 up to 30 cbjscts
vard <- rep(c(l,2,1,0,0,0),%)
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# Variable 4: alternation of 3 x 1 and 10 x 0 un to 3C oblects
vard <- rep(cl{rews{l,5), zep (0, 0}},2)]

¥ VariabZc 5: 10 cohiccts with rardomized distrioation of 7 x L
# ard % x 0, followed by 4 x 0 ard 10 x _

varb.l <- samplc (c{rcp(l,7}), rcp{C,%]}))

varb.2 <- cl{rep{d,4), rep(l,1C)}
varh <- c{varb.l,varb.2)

# Variables 7 To 5 are put irto a daza Zrame
dat <- date.framel{varl,varZ,var3,vard,varz)
dim{dat}

# Comoutation ¢f & matrix of simple matching coefficiants
i (called Sokal and Micherer Index in aded)

dat.s? <- dist.hlinarv{dat, method=2)

co_dlss{dat.sl, diag=TRUx)

3.3.5 Q Mode: Mixed Types, Including Categorical
(Qualitative Multiclass) Variables

Among the association measures that can handle nominal data correctly, one is
readily available in R: Gower’s similarity S .. This coefficient has been devised to
handle data containing variables of various mathematical types, each variable
receiving a treatment corresponding to its category. The final (dis)similarity
between two objects is obtained by averaging the partial (dis)similarities computed
for all variables separately. We use Gower’s similarity as a symmetrical index;
when a variable is declared as a factor in a data frame, the simple matching rule is
applied, i.e. for each pair of objects the similarity is 1 for that variable if the factor
has the same level in the two objects and 0 if the level is different. Gower’s dissimi-
larity is computed using the function daisy () of package cluster. Avoid the
use of vegdist () (method=“gower”), which is appropriate for quantitative and
presence—absence, but not for multiclass variables.

daisy () can handle data frames made of mixed-type variables, provided that
each one is properly defined. Optionally, the user can provide an argument (in the
form of a list) specifying the types of some or all variables in the dataset.

gowdis () of package FD is the most complete function to compute Gower’s
coefficient. It computes the distance for mixed variables, including asymmetrical
binary variables. Variable weights can be specified. gowdis () implements
Podani’s (1999) extension to ordinal variables.

Let us again create an artificial dataset containing four variables: two random
quantitative variables and two factors:
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¥ Fictiziocus datz for Gower (5.5} Index

# Random normal deviaZes with zero mean and unit standerd
deviaticn

var.g_ <- raorm({30,0C,1)

¥ Ranoon un tform deviates “rem 0 to &

var.gd <— ryunif{30,C,5)

# Factor with 3 _evels (10 obZecis each)

var.gd <- gl(3,10)

{ Factor with 2 _evels, orthecgeonal to var.gs

var.gs <- gli{2,3,30

# Together, var.g3 and var.g4 represent a 2-way crossed
# balanced design.

dat?2 <- data.frane(var.gl,var.g2,var.g3,vaz.gd)
sunmary (dat2)

Hints Function gl () is quite handy to generate factors, but unfortunately
it uses numerals for the levels. Potential confusion would be avoided
if alphanumerics were used instead of numbers.

Note the use of data . £rame () to assemble the four variables.
Unlike cbind (), data . frame () preserves the classes of the
variables. Variables 3 and 4 thus retain their class " factor".

Let us first compute and view the complete S|, matrix. Then, repeat the computa-

tion using the two factors (var.g3 and var.g4) only:

¥ Compuacation o a matrix of Gower dissimilaricy asing fancticn
dalsy ()

¥ Comolete data matrix (4 wvarizables)
datz.315 <- gaisv(datZ, "cower™)
range (datZ.3.5)

coldiss{dat2. 21z, diag=TRUE)

£ Date matrix with the twe orthogonal factors conly
datlZpartial . 510 <- daisy(dat?z ,3:47, T"gower"
co_diss{detZpartial.s1z, disg=TRUE)

£ Wrat are the dissimi_zzity welues in the datZpartial.Z1l5
f matrix?
Teve g (factor (datlparzial . 575])
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# The values correspond to pairs of objects that share the same
# levels for 2, 1 or no factor. Pairs with the highest
# dissimilarity values share no common levels.

£ Compuatation o & mewrix of Gower dissimilaricy asing gowdis(

 of vackage FD
lisrary{FD) ¥ IZI ncot already _ocadead
?gowdis

datZ.315.2 <- gowdis(dat2)
range (dat2,5.5,2)
co_diss{det2.3813.2, diag=TRIL)

¥ Date matrix with the twe orthogonal factors conly
datZperciel,315.2 <- gowdis(dat2[,3:47)
co_dliss{datlpartial.S13.2, <lag=TRIZ)

£ What are the dissimilaricy wvalues In The detZper-izl.315.2
¥ oratrix?
leve_s(laclor(dalZpar 21 .,325.2))

3.4 R Mode: Computing Dependence Matrices
Among Variables

Correlation-type coefficients must be used to compare variables in the R mode.
These include the Pearson as well as the non-parametric correlation coefficients
(Spearman, Kendall) for quantitative or semi-quantitative data, and contingency
statistics for the comparison of qualitative variables (chi-square statistic and derived
forms). For presence—absence data, binary coefficients such as the Jaccard,
Sgrensen and Ochiai coefficients can be used in the R mode to compare species.

3.4.1 R Mode: Species Abundance Data

Covariances as well as parametric and non-parametric correlation coefficients are
often used to compare species distributions through space or time. Note that double-
zeros as well as the joint variations in abundance contribute to increase the
correlations. In the search for species associations, Legendre (2005) applied
the transformations described in Sect. 3.5 in order to remove the effect of the total
abundance per site prior to the calculation of parametric and non-parametric cor-
relations. Some concepts of species association use only the positive covariances or
correlations to recognize associations of co-varying species.
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Besides correlations, the chi-square distance, which was used in the Q mode, can
also be computed on transposed matrices (R mode) because it was originally devel-
oped to study contingency tables, which are transposable by definition.

The example below shows how to compute and display an R-mode chi-square
dissimilarity matrix of the 27 fish species:

¥ R-ricde cdissimiiarity matrix
# LR R RS AR EEEEE R EEERESS EESEES]

¥ Transpcse matrix of sgecies zbundances
spe.t <- t({spe)

¥ Chi-square pre-transformation fo_lowed oy Euc_idesan distance
spe.t.chi <- decostand(spe.t, "chl.sgquare™)

spe.t.0l6 <- dist(spe.t.chi)

co_diss{=ne.t.Dl&, ciag=TRUE)}

# Can you identify groups of species on the right-kand display?

3.4.2 R Mode: Species Presence—Absence Data

For binary species data, the Jaccard (S.), Sgrensen (S,) and Ochiai (S, ,) coefficients
can also be used in the R mode. Apply S, to the fish presence-absence data after
transposition of the matrix (object spe. t):

¥ Jaccard index on Jish presence-aosencs
spe.t.57 <- vegdlisTt{spe.t, "jaccar:s", binzry=TRJIE)
co_digs{sve.t.97, diag=TRUE)

# Compare the right-hand display with the one obtained with the
# chi-square distance. Are the species groups consistent?

3.4.3 R Mode: Quantitative and Ordinal Data
(Other than Species Abundances)

To compare dimensionally homogeneous quantitative variables, one can use either
the covariance or Pearson’s r correlation coefficient. Note, however, that these
measures are /inear so that they may perform poorly to detect monotonic but non-
linear relationships among variables. If the variables are not dimensionally homo-
geneous, Pearson’s  must be preferred to the covariance, since r is actually the
covariance computed on standardized variables.
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Comparison among ordinal variables, or among quantitative variables that may
be monotonically but not linearly related, can be achieved using rank correlation
coefficients like Spearman’s p (tho) or Kendall’s 7 (tau).

Here are some examples based on the fish environmental data env. The function
cor () (stats package) requires the untransposed matrix, i.e. the original matrix,
where the variables are in columns. First example: Pearson’s r (Fig. 3.3):

# Pearscn r linear correlation arong envirormertzl wvarizbhles
SOV.pPedrson <- Cor{env) # defauli methoed = "pearson”
rourd {erv.pesrson, ?)

¥ Rezorder the wvariables prior to plotting
env.o <- order._ single{env.pearson)

¥ vairs: a Zunction te plet a matrix of bivariate scatterz

¥ diagrams and correlatior coefficients. Correlaticns are given

¥ ir the upper panel (with significance _evels)

scurce ("panelatils.R"} ¥ I necesssry give paeth

op <- parimirow=c(l,l}, piy="s")

pairsiernv ,env.ol, lower.pans.=panel.smooth,

vpper.panel=parel.cor, caiag.panel=vanel.hisz, main="Pearscn
Correlation Matrix"m)

par {op)

# Identify the variables correlated with variable 'das' (the
# distance from the source). What story does tkat tell?

The same variables are now compared using Kendall’s 7:

¥ Kencall tau rank correlatien among envirormentzl variebles
env, ken <- cor(env, method="<endall"™)

env.o <- order.single (env.ken)

op <- par{mfrow=¢(l,1l}, pry="3s")

pairs(erv_,env.o], lower.pane_=panel.smcoth,

upper.panel=parel.cor, nethod="kerdall", Ziag.panel=vanel.hist,
mair="Kaencall Correlaiion Ma‘irix"™})

par(op)

# Judging by these plots of bivariate relationships,
# would you favour the use of Kendall’s tau or Pearson’s r?
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Fig. 3.3 Multipanel display of pairwise relationships between environmental variables with

Pearson’s r correlations

3.4.4 R Mode: Binary Data (Other than Species
Abundance Data)

The simplest way of comparing pairs of binary variables is to compute a matrix of

Pearson’s r. In that case, Pearson’s r is called the point correlation coefficient or
Pearson’s ¢. That coefficient is closely related to the chi-square statistic for 2x2
tables without correction for continuity: y*=n¢?, where n is the number of

objects.
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3.5 Pre-transformations for Species Data

In Sect. 3.2.2, we explained why species abundance data should be treated in a
special way, avoiding the use of double zeros as indications of resemblance among
sites; linear methods, which explicitly or implicitly use the Euclidean distance
among sites or the covariance or correlation among variables, are therefore not
appropriate for such data. Unfortunately, many of the most powerful statistical tools
available to ecologists, like ANOVA, k-means partitioning (see Chap. 4), principal
component analysis (PCA, see Chap. 5) and redundancy analysis (RDA, see
Chap. 6) are linear. Consequently, these methods were more or less “forbidden” to
species data until Legendre and Gallagher (2001) showed than several asymmetri-
cal association measures (i.e. measures that are appropriate to species data) can be
obtained by two computational steps: a transformation of the raw data followed by
the calculation of the Euclidean distance. These two steps preserve the asymmetri-
cal distance among sites, therefore allowing the use of all linear methods of analysis
with species data.

As is seen in the following chapters, in many cases one simply has to apply the
pre-transformation to the species data, and then feed these to the linear methods of
data analysis: PCA, RDA and so on.

Legendre and Gallagher proposed five pre-transformations of the species data.
Four of them are available in vegan as arguments of the function decostand ():
profiles of relative abundances by site (“total”), site normalization also called
chord transformation (“normalize”), Hellinger transformation (“hellinger”)
and chi-square double standardization (“chi.square”). See Sects. 2.2.4 and
3.3.1 for examples. All these transformations express the data as relative abundances
per sites (site profiles) in some way; this removes from the data the total abundance
per site, which is the response of the species to the total productivity of the sites. In
the Hellinger transformation, the relative abundance values are square-rooted, which
reduces more strongly the highest abundance values.

3.6 Conclusion

Although association matrices are in most cases intermediate entities, this chapter
has shown that their computation deserves close attention. Many choices are
available, and crucial decisions must be made at this step of the analytical
procedure. The graphical tools presented in this chapter are precious helps to make
these decisions, but great care must be taken to remain on solid theoretical ground.
The success of the analytical steps following the computation of an association
matrix depends on the choice of an appropriate association measure. Commonly-
used distance functions in the Q mode, available in R packages, are presented in
Table 3.1.
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Table 3.1 Commonly-used distance and dissimilarity functions in Q mode available in R packages.
The symbol = means that applying the function designed for quantitative data to presence—
absence data produces the same result as computing the corresponding function designed for

presence—absence data

Quantitative data

Presence—absence data

Community composition data

Ruzicka dissimilarity
vegdist (., “jac”)

Hellinger distance

decostand (., “hel”)

followed by vegdist (., “euc”)
Chord distance

decostand (., “norm”)
followed by vegdist (., “euc”)
Bray—Curtis dissimilarity

vegdist (., “bray”)

Chi-square distance

decostand (., “chi.square”)

Jaccard dissimilarity
vegdist (.,”jac”,
binary=TRUE)

dist.binary(.,method=1)

Ochiai dissimilarity

dist.binary(.,method=7)

Ochiai dissimilarity

dist.binary(.,method=7)

Sgrensen dissimilarity

dist.binary(.,method=5)

Chi-square distance
(idem)

Canberra distance

vegdist (., “canberra”)

Other variables, mixed physical units

Standardized variables: Standardized variables:
Euclidean distance Simple matching coefficient
vegdist (., “euc”) dist.binary(.,method=2)
Non-standardized variables:

Gower distance

daisy (., “gower”)

The similarity coefficients for presence—absence data and the Gower similarity
should be transformed into distances using +/1—S to avoid the production of nega-
tive eigenvalues and imaginary eigenvectors in principal coordinate analysis. This
transformation is made automatically by ade4, but not by vegan. In the table,
functions decostand () and vegdist () belong to package vegan; function
dist.binary () belongs to package ade4; function daisy () belongs to pack-
age cluster. Other R functions may be used for some distance coefficients. Some are
mentioned in the course of the chapter. The Euclidean distance may be computed
either by vegdist (., “euc”) as shown in the table, or by dist (.).






Chapter 4
Cluster Analysis

4.1 Objectives

In most cases, data exploration (Chap.2) and the computation of association
matrices (Chap.3) are preliminary steps towards deeper analyses. In this chapter,
you will go further by experimenting one of the large groups of analytical methods
used in ecology: clustering. Practically, you will:

e Learn how to choose among various clustering methods and compute them

* Apply these techniques to the Doubs river data to identify groups of sites and
fish species

e Explore a method of constrained clustering, a powerful modelling approach,
where the clustering process is constrained by an external data set

4.2 Clustering Overview

The objective of clustering is to recognize discontinuous subsets in an environment
which is sometimes discrete (as in taxonomy), and most often perceived as continuous
in ecology. This requires some degree of abstraction, but ecologists want to get a
simplified, structured view of their data; generating a typology is one way to
achieve that goal. In some instances, typologies are compared to independent
classifications (based on theory or on other typologies obtained from other, inde-
pendent data). What we present here is a collection of methods used to decide
whether objects are similar enough to be allocated to a group, and identify the
distinctions or separations between groups.

Clustering consists in partitioning the collection of objects (or descriptors in
R-mode) under study. A hard partition is a division of a set (collection) into subsets,
such that each object or descriptor belongs to one and only one subset for that partition
(Legendre and Rogers 1972). For instance, a species cannot be simultaneously the
member of two genera: membership is binary (0 or 1). Some methods, less commonly
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used, consider fuzzy partitions, in which membership is continuous (between 0 and 1).
Depending on the clustering model, the result can be a single partition or a series of
hierarchically nested partitions. Clustering is not a typical statistical method in that it
does not test any hypothesis. Clustering helps bring out some features hidden in the
data; it is the user who decides if these structures are interesting and worth interpreting
in ecological terms.

Note that most clustering methods are computed from association matrices,
which stresses the importance of the choice of an appropriate association
coefficient.

One can recognize the following families of clustering methods (Legendre and
Legendre 1998):

1. Sequential or simultaneous algorithms. Most clustering algorithms (i.e. effec-
tive methods for solving a problem using a finite sequence of instructions) are
sequential and consist in the repetition of a given procedure until all objects
have found their place. The less frequent simultaneous algorithms find the
solution in a single step.

2. Agglomerative or divisive. Among the sequential algorithms, agglomerative
procedures begin with the discontinuous collection of objects, which are succes-
sively grouped into larger and larger clusters until a single, all-encompassing
cluster is obtained. Divisive methods, on the contrary, start with the collection of
objects considered as one single group, and divide it into subgroups, and so on
until the objects are completely separated. In either case, it is left to the user to
decide which of the intermediate partitions is to be retained, given the problem
under study.

3. Monothetic versus polythetic. Divisive methods may be monothetic or poly-
thetic. Monothetic methods use a single descriptor (the one that is considered the
best for that level) at each step for partitioning, whereas polythetic methods use
all descriptors; in most cases, the descriptors are combined into an association
matrix.

4. Hierarchical versus non-hierarchical methods. In hierarchical methods, the
members of inferior-ranking clusters become members of larger, higher-ranking
clusters. Most of the time, hierarchical methods produce non-overlapping
clusters. Non-hierarchical methods produce a single partition, without any
hierarchy among the groups.

5. Probabilistic versus non-probabilistic methods. Probabilistic methods define
groups in such a way that the within-group association matrices have a given
probability of being homogeneous. Probabilistic methods are sometimes used to
define species associations.
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These categories are not represented equally in the ecologist’s toolbox. Most
methods presented below are sequential, agglomerative and hierarchical, but others,
like k-means partitioning, are divisive and non-hierarchical. Two methods are of
special interest: Ward’s hierarchical clustering and k-means partitioning are both
least-squares methods. That characteristic relates them to the linear model.

Hierarchical clustering results are generally represented as dendrograms or
similar tree-like graphs. Non-hierarchical procedures produce groups of objects
(or variables), which may either be used in further analyses, presented as
end-results (for instance, species associations) or, when the project has a spatial
component, mapped on the area under study.

We also discuss a recent method, multivariate regression tree (MRT) analysis, a
technique of constrained divisive partitioning involving two matrices: the one being
clustered, and a second one containing a set of explanatory variables which
provides a constraint (or guidance) as to where to divide the data of the first matrix.

Finally, a brief section is devoted to an example of fuzzy clustering, a non-
hierarchical method that considers partial memberships of objects to clusters.

Before entering the subject, let us prepare our R session by loading the neces-
sary packages and preparing the data tables.

# Load required packages

library{aded)

library ({vegan)

Tibrary {gclusg)

libraryi{cluster)

library{RColorBrowar)

library (laocdsw)

library (mvoart)

1ibrary (MVPARTwWrag) # FPackages MYVPRETwrap and rda”est must be
# ‘nstal_cd Zfrom zio filcs

# Import the cdata fromw C8V files

spe < ,ead.CSV "DoubSS )e.C‘.Si" rcw.nzamwes l
s

ey < ,ead.cs"f "DOI;bSEHV .CSV“ rOW.ﬂ;I‘EeS—l
7

spa < ,ead.cs\'v "DOCbSS G.CSV“ ]wa.ﬂ;rTES—l
7

t Remcve enpty site 8
apa <- spa.-8,]
aav <—- erv_-8,]
spa <- spa . -8,]
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4.3 Hierarchical Clustering Based on Links

4.3.1 Single Linkage Agglomerative Clustering

Also called nearest neighbour sorting, this method agglomerates objects on the
basis of their shortest pairwise distances (or greatest similarities): the fusion of an
object (or a group) with a group at a given similarity (or distance) level only
requires that one object of each of the two groups about to agglomerate be linked
to one another at that level. Two groups agglomerate at the distance separating the
closest pair of their members. This makes agglomeration easy. Consequently, the
dendrogram resulting of a single linkage clustering often shows chaining of objects:
a pair is linked to a third object, which in turn is linked with another one, and so
on. The result may therefore be difficult to interpret in terms of partitions, but
gradients are revealed quite clearly. The list of the first connections making an
object member of a cluster, or allowing two clusters to fuse, is called the chain of
primary connections; it is also called minimum spanning tree. This entity will be
presented here and used in later analyses.

Common hierarchical clustering methods are available through the function
hclust () of the stats package. You will now compute and illustrate (Fig. 4.1)
your first cluster analysis on the basis of an association matrix computed in Chap.3
and recomputed here for convenience:

# Soecies abundance cata: compute matrix of chcrd distance among
# sites followed by single linzage agglomerative clustering

$ Frkkhmrbbakkdharkbhabd b akdhr bt n bbb akkh arr bkt ha btk a bbb kbbb h
spe.norn <- ascostanci{soce, "normalize')

spe.ch <- vegdist(zoe.rorm, "euo™)

spe.cn.single <—- ac_ust (spe.ca, me-hod-"sirgle")

# P oz a dendrogram using the dafzult coticns
plot{spe.ch.sing_e)

# Based on this first result, how would you describe the data

# set? Do you see a single simple gradient or distinguishable
# groups of sites? Can you identify some chaining of the sites?
# What about sites 1, 5 and 97
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Fig. 4.1 Single linkage agglomerative clustering of a matrix of chord distance among sites

(species data)

4.3.2 Complete Linkage Agglomerative Clustering

Contrary to single linkage clustering, complete linkage clustering (also called
furthest neighbour sorting) allows an object (or a group) to agglomerate with
another group only at the distance corresponding to that of the most distant pair of
objects; thus, a fortiori, all members of both groups are linked (Fig. 4.2):

¥ Compute complete-_inzage agglomerative clustering

plet (spe.ch.conplete)

sites in the same groups?

3 M R e Y

A SRR R R R A R A S R R R ERE L LR R

spe.ca.complete <- holust(sue.ch, methcd="compleata")

Given that these are sites aleong a river (with the numbers
following the stream}, does this result place closely similar

How can two perfectly valid clustering methods produce such
different results when applied to the same data?
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Cluster Dendrogram
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spe.ch
hclust (*, "complete")

Fig. 4.2 Complete linkage agglomerative clustering of a matrix of chord distance among sites
(species data)

The comparison between the two dendrograms shows the difference in the
philosophy and the results of the two methods: single linkage allows an object to
agglomerate easily to a group, since a link to a single object of the group suffices
to induce fusion. This is a “closest friend” procedure, so to say. The resulting
dendrogram does not always show clearly separated groups, but can be used to
identify gradients in the data. At the opposite, complete linkage clustering is much
more contrasting. A group admits a new member only at a distance corresponding
to the furthest object of the group: one could say that the admission requires
unanimity of the members of the group. It follows that, the larger a group is, the
more difficult it is to agglomerate with it. Complete linkage, therefore, tends to
produce many small separate groups, which tend to be rather spherical in multivariate
space and agglomerate at large distances. Therefore, this method is interesting to
search for and identify discontinuities in data.



4.4 Average Agglomerative Clustering 59

4.4 Average Agglomerative Clustering

This family comprises four methods that are based on average dissimilarities
among objects or on centroids of clusters. The differences among them are in the
way of computing the positions of the groups (arithmetic average versus centroids)
and in the weighting or non-weighting of the groups according to the number of
objects they contain when computing fusion distances. Table 4.1 summarizes their
names and properties.

The best-known method of this family, UPGMA, allows an object to join a group
at the mean of the distances between this object and all members of the group. When
two groups join, they do it at the mean of the distances between all members of one
group and all members of the other. Let us apply it to our data (Fig. 4.3):

# Corpute TIPCMA agglomerative clustering

B e e

spe.ehl UZEMA <- holuat {ape.ch, method="average")
plot {(spe.ch.UPGMA)

# The result looks scmewhat intermediate between a single-
# and a complete linkage clustering. This is often the case.

Table 4.1 The four methods of average clustering. The names in quotes are the corresponding
arguments of function helust ()

Arithmetic average Centroid clustering
Equal weights Unweighted Pair-Group Method using ~ Unweighted Pair-Group Method
arithmetic Averages (UPGMA) using Centroids (UPGMC)
“average” “centroid”
Unequal weights ~ Weighted Pair-Group Method using Weighted Pair-Group Method
arithmetic Averages (WPGMA) using Centroids (WPGMC)

“mcquitty” “median”
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Cluster Dendrogram
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Fig. 4.3 UPGMA clustering of a matrix of chord distance among sites (species data)

Note that UPGMC and WPGMC can sometimes lead to reversals in the dendro-
grams. The result no longer forms a series of nested partitions and may be difficult
to interpret. An example is obtained as follows (Fig. 4.4):

4 Compute centrcid clustering of the fish data
# O AFEARAAAR A A A AR AT AFA A AN AN AN AR KA AN TR E A A mkd o k%

spe.ch.centroid <- heclust(zve.ch, method="centroid™)
plot{spe.ch.centroid)

# The resulting dendrogram is an ecologist’s nightmare.

# Legendre and Legendre (1998, p. 341) explain how reversals
# are produced and suggest to interpret them as polychotomies
¥ rather than dichotomies.
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Fig. 44 UPGMC clustering of a matrix of chord distance among sites (species data)

4.5 Ward’s Minimum Variance Clustering

This method is based on the linear model criterion of least squares. The objective
is to define groups in such a way that the within-group sum of squares (i.e. the
squared error of ANOVA) is minimized. The within-cluster sum of squared errors
can be computed as the sum of the squared distances among cluster members
divided by the number of objects. Note also that although the computation of
within-group sums of squares (SS) is based on a Euclidean model, the Ward method
produces meaningful results from distances that are Euclidean or not.

In helust (), Ward’s minimum variance clustering is obtained by using the
argument method="ward" (Fig. 4.5):

F Jemopute Ward's minimum variance clustering
# A m okkAh ok Kk w khk A kA Rk ko Kk ok wh w k kA ok w ok ke ke ke
spe.ch.oward <— hoelest {(sve.ch, method="wara™)
ploc{spe.ca.ward)
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The distended look of the dendrogram is due to the use of
squared distances as the ordinate scale by the plotting
algorithm.

To make the dendrogram more comparable to the others without
affecting its topology), one should plot the sguare roots of
the fusion levels instead (Fig. 4.5):

M e W H

spe.ch.wardsheight <- sgri({spe.ch.wardikeight)
ploc{spe.ca.ward)

Hint Below you will see more options of the plot () function which pro-
duces dendrograms of objects of class hclust. Another path is to
change the class of such an object using function as.dendro-
gram (), which opens yet more possibilities. Type ?dendrogram
for details.

Cluster Dendrogram
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hclust (*, "ward")

Fig. 4.5 Ward clustering of a matrix of chord distance among sites (species data)
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4.6 Flexible Clustering

Lance and Williams (1966, 1967) proposed a model encompassing all the clustering
methods seen above, which are obtained by changing the values of four parameters.
See Legendre and Legendre (1998, p. 333). hclust () is implemented using the
Lance and Williams algorithm. As an alternative to the examples above, flexible
clustering is available in the R package cluster, function agnes (), using argu-
ments method and par.method. See the help file of agnes () for more details.

4.7 Interpreting and Comparing Hierarchical
Clustering Results

4.7.1 Introduction

Remember that clustering is a heuristic procedure, not a statistical test. The choices of
an association coefficient and a clustering method influence the result. This stresses the
importance of choosing a method that is consistent with the aims of the analysis. The
objects produced by heclust () contain the information necessary to fully describe
the clustering results and draw the dendrogram. To display the list of items available in
the output object, type summary (name_of clustering object).

This information can also be used to help interpret and compare clustering
results. We now explore several possibilities offered by R for this purpose.

4.7.2 Cophenetic Correlation

The cophenetic distance between two objects in a dendrogram is the distance where
the two objects become members of the same group. Locate any two objects, start
from one, and “climb up the tree” to the first node leading down to the second
object: the level of that node along the distance scale is the cophenetic distance
between the two objects. A cophenetic matrix is a matrix representing the cophe-
netic distances among all pairs of objects. A Pearson’s r correlation, called the
cophenetic correlation in this context, can be computed between the original
dissimilarity matrix and the cophenetic matrix. The method with the highest cophe-
netic correlation may be seen as the one that produced the best clustering model for
the distance matrix.

Of course, the cophenetic correlation cannot be tested for significance, since the
cophenetic matrix is derived from the original dissimilarity matrix. The two sets of
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distances are not independent. Furthermore, the cophenetic correlation depends
strongly on the clustering method used, independently of the data.

As an example, let us compute the cophenetic matrix and correlation of two
clustering results presented above, by means of the function cophenetic () of
package stats.

¥ Ccpheretic ccrrelation
# whuw kb ok xw Aok hwwkkhk ok wd

£ 3ingle inkage clustering

spe.ch.sing_e.conn <- cophenecic(spe.ca.single)
cor{sps.ch, spe.cn.singls,coph)

¥ Corplete _inxage clustering

spe.,ch.comp. coph <= cophenetic(spe.cr.conolete)
cor{ss=.ch, spe.cnh.comrp.ccph}

¥ Average o ustering

spe.ch.UPSMA . coph <- covheretic(spe.ch.UPSMA)
cor{saes.ch, spes.cnh.UPEMA. couh)

f Ward clustering

spe.ch.ward.coph <- cophenetic{spe.ch.ward)
cor{sce.ch, spe.ch.ward.ccph}

# Which dendrogram retains the closest relationship to the

# chord distance matrix?

# Cophenetic correlations can also be computed using Spearman
# or Kendall correlations

cor{sve.ch, spe.ch.ward.coeph, method="spearman")

To illustrate the relationship between a distance matrix and a set of cophenetic
matrices obtained from various methods, one can draw Shepard-like diagrams
(Legendre and Legendre 1998, p. 377) by plotting the original distances against the
cophenetic distances (Fig. 4.6):

f 3Skevard-1‘ke dagrams
# R AR E R R SR EE A EEE ST S
‘

par{mfrcw=c{Z,2))
plot(spe.cn, spe.ch.single.cooh, xlab="Chord distarce",
vian="Cophenetlc aistance”, asp=1, =xlim=c{C,sgrt{”)},
yv1im—c (0, sqrt(2}),
na‘n-c{"sSingle linkaqe",paste("Coprocnctic
reund (cor {spe.ca, spe.ch.single.coph),3))
abline (0,2)

correlation ",
)

}
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lines(lowess(spe.ck, spe.ch.single.copa), ccl="red")
ploz{spe.ch, spe.ch.,ccno,coonk, xlab="Chcrd distance™,
vlcb="Cophenetic distancs", asc=1l, xlim=c{d,sgrt(2)),
ylin=c (0, sq=t(2)},
nain=c{"Complets lirksge", paste("Cophenetic corre_ation ",
reund (cor (spe.ch, spe.ch.coenp.zooh), 31)))
abline (0,2}
lines (lowess (spe.ch, spe,zh,zomp.coph), col="rex')
plot{spe.cn, spe.ch.U2G¥MA.coph, x_sb="Chord cistance™,
vilab="Copheretic aistarce™, asc=1l, xlim=c{d,zcrt(2)),
v1im=c (0, sqrt (2]},
na‘n=c {"UZEMA", paste!"Covohenstic correlazior ',
round (cor {(spe.ch, spe.ch.l2GMA.cop=),3))1))
abline (0,2}
lines{lowess (spe.ck, spe.ch.UPGMA.coph), col="rea")
ploz{spe.cn, spe.ch.ward.cook, xlao="Chord distance",
v1lzb="Corhenetic distance", aso=1, xlm=c{l, sort(2)},
yviim=c{l,mex{sve.cn.wardiheighz)},
main=c{"Ward c_ustering”, paste("Copaenetic corre_aZion ",
rocund (cor{spe.cnh, spe.ch.ward.cown),3})))
abline {0, 1)
lines{lowess tspe.ch, spe.ch.ward.coph), col="red"}

Another possible statistic for the comparison of clustering results is the Gower
(1983) distance, computed as the sum of squared differences between the original and
cophenetic distances. The clustering method that produces the smallest Gower
distance may be seen as the one that provides the best clustering model of the distance
matrix. The cophenetic correlation and Gower distance criteria do not always desig-
nate the same clustering result as the best.

F Gower {(1983) diszance

isi.slagle <- sum{(spe.ch-spe.ca.single.coph)™2)
conp <- sum{{sce.ch-spe.ch.comp.coph)™2)
gow.dist . TPEMA <- sum{ (spa.ch-spe.cn.UPEMA. copk) ~2)
gow.diat.wargd <— sum({(soe.ch-swe.ch.ward.coph? ~2)
gow.dizz.single
gow.disT.comp
TTGMA
gow.dls-.wasd

4.7.3 Looking for Interpretable Clusters

To interpret and compare clustering results, users generally look for interpretable
clusters. This means that a decision must be made: at what level should the
dendrogram be cut? Although it is not mandatory to select a single cutting level for
a whole dendrogram (some parts of the dendrogram may be interpretable at finer
levels than others), it is often practical to find one or a few levels where interpreta-
tions are made. These levels can be defined subjectively by visual examination of
the dendrogram, or they can be chosen to fulfil some criteria, like a predetermined
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Fig. 4.6 Shepard-like diagrams comparing chord distances (species data) to four cophenetic
distances. A LOWESS smoother shows the trend in each plot

number of groups for instance. In any case, adding information on the dendrograms
or plotting additional information about the clustering results can be very useful.

4.7.3.1 Graph of the Fusion Level Values

The fusion level values of a dendrogram are the dissimilarity values where a fusion
between two branches of a dendrogram occurs. Plotting the fusion level values may
help define cutting levels. Let us plot the fusion level values for some of the

dendrograms produced above (Fig. 4.7).
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# Cravhs cof Zfusion level wvalues
;& e i o R

par{mirow=ci{Z,2))
L Plect the fusicn level walues of the single linxage clustering
gurmary {(spe.ch.single) = Tist of availanle resulos

plot{spe.ch.sing_23beight, nrow{spe):2, type="3",

main="Fagion lewvals - Choro - Sing.e", v.zb="< (nunher of
clustcers) ", xlabh="-2 (rcoo holght)”, col="graoy™)

text {(spe.ch.s’ng_e3kheight, nrow(soce):2, nrow(spe):2, col="red",
cex—0.8)

From right to left, this first graph shows clear jumps after each fusion between 2
and 6 groups. Go back to the dendrogram and cut it at the corresponding dis-
tances. Do the groups obtained always make sense? Do you obtain enough groups
containing a substantial number of sites?

¥ FPlot the Zusion level wvalues of the comzlete inkage
¥ clustering

ploz{spe.cn.corp atefheight, nrow{spe):?, typs="g",
mair—"T:s’cn levels — Chord - Compleze”, vlac—"%x (nunbher of
clusters) ™, =xlab="h (rode height)", col="grey™)

—exT{spe.ch.conmpletesteight, nrowi{spe) i, nrow{sps):?,
col="read", cex=0.8)

# Here the suggested numbers of groups may be different. Again,
# try them on the dendrogram. Do these solutions make sense?

£ Plot thc Zusion level wvalues of the U2GMA clustering

plot(spe.cnh.UBCMASkeight, nrow(spe):2, Tyge="g",
mair="Fusicon levels - Chord - JPGMAY, vylao="k (runber oI
clasters) ", xzlab="h (rocs height)", cocl="grey"}

Tex: (spe.cna.UPCMASLheight, nrow(spe):2, nrowi{spe):2, ccoc_="red",
cex=0.8)

f Plot the ZIusion level wvalues of the Warc clustering

ploz{spe.cn.wardtneight, nrowl{spe):12, typs="5",
mair="rus’cn levels - Chord - Wa>d", vlab="k (nurmber of
clusters)”, xlak="h (rode height) ", col="grev™)

—exT {spe.ch.wardsheighkt, rrow{spe):2, nraowi{spe):2, col="red",
cex=0_8)

# Again the graphs look different from those above. Remember
# that there is no single "truth" among these solutions. Each
# one may provide some insight into the data.

Hint Observe how the function text () is used to print the number of
groups (clusters) directly on the graph.
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As it is obvious from the dendrograms and the graphs of the fusion levels, the
four analyses tell different stories.

Now, if you want to set a common number of groups and compare the group
contents among dendrograms, you can use the cutree () function and compute
contingency tables:

¥ Cut the trees to cobhTain k groups and compare the group
¥ conterts csing centingercy tables

# mhw kkkmm kv ok kb kk bk b kb wk bk A w okt r Ak R kR m Ak Ak wk ok ow Ak ow ko
;

f Choose z common rumber ¢f groups

£ 4= £ # Xuamzer of groums waere at least a small jump s
# oresent ir zl1l four grapks oI fusicn levels

f Cut the dendrograns

spebc.single.g <- cutree{spe.ch.single, k)

spebe.conulete.g <- cuzree{spe.ch.comvlete, <)

speba UPGMALg <- cuzree (spe.ch. UPGMA, k)

spebo.warc.g <- cualree(spe.ch.ward, k)

¥ Conpare c_ass_fications by constructirg contingercy tables
¥ 8ingle vs comnlete linkage
caule(spenc.single,y, spebo.complete.g)

£ Single “inkage ws U2GMA
Tavle (spebo.zingle.g, socebo UPOMA.g)

£ 2inglc _inkage ws Warc

canle(spebhc.sirgle.y, sovsboe,ward.qg)

¥ Cenolete Linkages vs UBGMA
cavle(spesc.conp_efe.q, speoc.UPGMA.Jg)

¥ Cengolete inkags vs Ward
Taple (specc.comrp_ete.g, spesc.ward.g)

f TFGMA vs Ward
canle (spenc UPCGMA. ¢, spebo.ward, o)

# If two classifications had provided the same group contents,
# one of the contingency tables would have shown only one non-
# zero fregquency value in each row and each column. This was

# never the case here. For instance, the 26 sites of the second
# group of the single linkage clustering are distributed over

# the four groups of the Ward clustering.

After the graphs of fusion levels, let us examine two other methods to help iden-
tify an appropriate number of groups: silhouette widths and Mantel comparison.

4.7.3.2 Graphs of Silhouette Widths

The silhouette width is a measure of the degree of membership of an object to its
cluster, based on the average distance between this object and all objects of the
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cluster to which is belongs, compared to the same measure computed for the next
closest cluster (see Sect. 4.7.3.4). Silhouette widths range from —1 to 1 and can be

averaged over all objects of a partition.
We shall use the function silhouette () of the package cluster. The help

file of this function provides a formal definition of a silhouette width. In short, the
greater the value is, the better the object is clustered. Negative values mean that the

corresponding objects have probably been placed in the wrong cluster.

¥ Optimal number of clusters accocrding —o silhoustte wlidths
¥ (Rousseeuw quality indsx)
t— ok k ok Ak ki kb ok ok ko ke ko kb ck kA kR bk kA sk ok ke ok ok ok ke ok b Ak ok ok ok kb ke ke ok

f Plot average 2llhouette wodths (using Wazd clustering) for all
¥ partizicns except for the —rivial paztlition irn a sing_e group
Folx=l).

£ First, crezte an empty vector in which the asw values
¥ wi_l be writzen
asw <— runcric(nrow (spc))

¥ Zecond, retrieve aad write the asw wvalues ‘2o the vector
for (k in 2: (nrow(spe}-2))

sil <- si_kouette(cutree (spe.ch.ward, k=k), spe.ca}

aswlk «<- sunmary(sil}Savg.widtna

4

£ Best {lerges-) silacuet-e w ath
<.oest <- which.maz (asw)

$ Trhe plol ls produced oy Zurclicn plol.silhcielle {clusler!

plo-{l:inrow(spe), asw, type="h", mein="S lhcuezte-cptimal rumker
of clusters, Wara™, xlac="x (number of groups}", vlab="Average
silkocuet—-e widzZh™)

axlsi{l, k.best, waste{"opzimun",x.hest,sep="\n"), coc_="red",
font=2, col.axlis="xed"}

polnts(x.nest, nmexlasw), pch=16, col="zed", cex=1.5)

cat{"", "3ilhovette-optimal number oI clusters k =", X.best,

"A\n", "with ogn avsrace silhovette width o™, max(asw), "\n'")
# The message printed is:

£ 81 houvette-optimal rumber of clusters k = 2
¥ with an average silkoueite width 2 0.265H319

# As it often happens, this criterion has selected 2 groups as
# the optimal number. However, a partition into 4 groups seems
# more interesting in ecological terms.

Hint  Observe how the repeated computation of the average silhouette widths
is done by a £ox () loop.
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Silhouette-optimal number of clusters, Ward
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Fig. 4.8 Bar plot showing the average silhouette widths for k=2-29 groups. The best partition by
this criterion is the one with the largest average silhouette width

At each fusion level, compute silhouette widths measuring the intensity of the link of
the objects to their groups, and choose the level where the within-group mean intensity
is highest, that is, the largest average silhouette width. A bar plot is drawn (Fig. 4.8).

4.7.3.3 Comparison Between the Distance Matrix and Binary Matrices
Representing Partitions

This technique compares the original distance matrix to binary matrices computed
from the dendrogram cut at various levels (and representing group allocations); it
then chooses the level where the matrix (Mantel) correlation between the two is the
highest. Here the Mantel correlation is meant in its simplest sense, i.e. the equivalent
of a Pearson r correlation between the values in the distance matrices. Tests are
impossible here since the matrices are not independent of one another (the matrices
corresponding to the partitions are derived from the same original distance matrix).

To compute the binary dissimilarity matrices representing group membership,
we use a small function to compute a binary distance matrix from a vector-defining
group. The results are shown in Fig. 4.9.
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£ Optimal number of clusters according o Mantel statistic
¥ (Pearson)
# E e o e T S L e LI L T S L S S L e S

¥ Function to compute a binary distance matrix “rom groups
grodist <- Tunctiorn ()

require (c_uszer)

gr <- as.dzta.frame(as.factor (X))
distgr <- daisy(gr, "gower")
cistgr

£ Run based on the Ward clustering
kt «— data.Irame(k=l:rrow{sve], r=07)

for (1 in Z2: (nrow{spe)-_}}
gr <- cutree{spe.ch.wara, i)
distgr <- gredist{gr)
mt <— cor(spe.ch, distgr, meithod="cearson™)
k-[i,2] <- mt
}

kt
k.oest <— which.max (kT$r)

¥ The plot is produced by Zunction plot.silkhouette cluster}
ploz (kt$k, kts$r, type="n", main="Manzesl-optimal nurber of

clasters - Werd", xlab="k (numce>r of grouws)™, vlab="Zez»saon's
carre ation™)

ax’s(., k.best, saste("opzimun", k.best, sep="\n"), cc ="rea",
fanz=", col.axis="red")

poirts(<.cest, max(ktir), wch—1&, co’—"red”, cex—1.3)

Hint Since the Mantel correlation coefficient is algebraically equivalent to
the Pearson correlation coefficient and no tests can be done here,
the matrix correlation can be computed using the function cox ().
Mantel functions are also available in the vegan, ade4 and ape
packages.



4.7 Interpreting and Comparing Hierarchical Clustering Results 73

Mantel-optimal number of clusters - Ward
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Fig. 4.9 Bar plot showing the correlations between the original distance matrix and binary matrices
computed from the dendrogram cut at various levels

4.7.3.4 Silhouette Plot of the Final Partition

In our example, a number of groups that seems to be a good compromise between
too few and too many is k=4. Let us select this number for our final group diagnos-
tics. We can select the Ward clustering as our final choice, since this method
produced four reasonably well-balanced (not equal-sized, but without outliers) and
well-delimited groups.

We can now proceed to examine if the group memberships are appropriate (i.e. no
or few objects apparently misclassified). A silhouette plot is useful here (Fig. 4.10).

Silhovette plot of the fina_ partitiorn
B i I i i O A I

Choose the numozr of clusters

<= ¢

~

¥ Z3i_houvette plot

cutg <- cutrce{scpc.ca.ward, 1=k}

si_ <- silnouette(outo, spe.ch)

51 c <= sorzSilhoustte({s=il)

rowrames (si’o) <- row.namnes (spe) [attr(silc, "i0rd™)]

plot{silo, nmair="3i"houette p_ot - Chord - Ward",
cex.Lanes=0.8, col=catg+l, nmax.lab=100}

# Groups 1 and 3 are the most coherent, while group 2
# contains misclassified objects.




74 4 Cluster Analysis

Silhouette plot - Chord - Ward
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Fig. 4.10 Silhouette plot of the final, four-group partition from the Ward clustering

4.7.3.5 Final Dendrogram with Graphical Options

Now it is time to produce the final dendrogram, where we can represent the four
groups and improve the overall appearance with several graphical options (Fig. 4.11).
Try the code, compare the results with it, and use the help files to understand the
arguments used. Note also the use of a homemade function, hcoplot ().
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¥ Finel dendrogram with the selected grcuss
# EE R ERE S EESES AR ERE SRS RS LR EEEEFEEEEESEEES

# Rcorder dendrogram from helust(). zeorzder.helust({) zcorders
¥ obkZects s0 that their order in the cissimilarity nmatrix is
¥ resgected z2s muchk as cossible. This dces rot affect the

¥ topology of the dendrogramn.

spe.chwo <- recraer.ac_ust (spe.ch.warcs, soe.cn)
f Plot reordered dendrogram with group labels

plet {spe.chwo, hang=-1, xlao="< croups", suab="", vlao="Height",

mair="Chord - Wara (recrasred)", labe_zs=cutree(sce.cawo, k=k)
rec-.hclust{spe.caowo, k=k}

£ Plot the Iina. dendrogram witnh group colors (RG3CMY...)
£ Fast method using the addizional acopleot() furctiocon:

source ("hcoploZ.R"} & hcoplot.R must be in the working directory
Loop_ol (sce.ca.wesd, spe.ch, k=4)

Hints When using rect .hclust () fo draw boxes around clusters, as in
the hcoplot () function used here, one can specify a fusion level
(argument h=) instead of a number of groups (argument k=).

Another function called identify.hclust () allows the interac-
tive cut of a tree at any position where one left-clicks with the mouse. It
makes it possible to extract a list of objects from any given subgroup.

The argument hang = -1 specifies that the branches of the dendrogram
will all reach the value 0 and the labels will hang below that value.
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Reordered dendrogram from
hclust(d = spe.ch, method = "ward")

o Group 1
2.5 o Group 2
o Group 3
Group 4
2.0
S 1.5
©
T
1.0+
0.5
0.0~
OO ONOANTO|ILLTNM OLOODOMNOWLIICOTMNOANTO~AN
OANNNNNNN| AN - || -
29 sites
4 groups

Fig. 4.11 Final dendrogram with boxes around the four selected groups. Species data

Let us conclude with several other representations of the clustering results
obtained above. The usefulness of these representations depends on the context.

4.7.3.6 Spatial Plot of the Clustering Result

The code below allows one to plot the clusters on a map representing the river. This
is a very useful way of representing results for spatially explicit data (Fig. 4.12).

¥ Flot oI the 4 Warc clusters on a map < the Doubs river
# I i e e e R e S i e e L e e e e

# Map of the Douss river (see Chapter 2}

ploz{spa, asp=1, typs="n", main="Four Wara groups",
wlab="x coocrairate (km}", vlahk="yv ccordinate (xm)")

lines(spa, col="light blaa")

tex- (50, _0, "Upstreamn", cex—1.2, co_—"red")
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—ex- {25, _15, "DJownstresm", cex=1.2, col="recd")
 Add the four groups

Crw <- spebc.warc.g

< <= lerngtn{leve_s(Zactor{grw)))

fer (i in 1:k)

pointsispalgrw==2,1], scalgrw==1,2_, wch=1+20, cex=2,
col=i-1, pg=+1}
}
—ex-{spa, row.ranes{spa), cex—0.8, col-"whize", fort—-2)
legend ("bottomr gn.", paste("Group",l:k), pzh=(l:k} 720,
col-2:(k+2), pt.ng-2:{k-1}, pt.caex-2, biy-"2")

# Go back to the maps of four fish species (Chapter 2).
# Compare these to the map just created above.

Four Ward groups

g 6}
200 %m m
oo’ o O
—~ @@ ®
E 1oy & o
g |® ®
% Downstream o
S 100 o]
[$]
>
504 Bg ® Group 1
m Group 2
G 3
cpsean P * Qo
0_
T T T T T T
0 50 100 150 200 250

x coordinate (km)

Fig. 4.12 The four Ward clusters on a map of the Doubs river

4.7.3.7 Heat Map and Ordered Community Table

See how to represent the dendrogram in a square matrix of coloured pixels, where

the colour intensity represents the similarity among the sites (Fig. 4.13):
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f Heat maso
# LR

¥ Heat map of “he distance matrix ordered with the derndrogran
dend <- as.dendrogram{sce.chwa)
heatnep (as.natrix (spe.ch), Rowv=dend, symn=TRUE, margin=c{2,3))

# Observe how, thanks to the ordering, most "hot" (dark, or

# red on the computer output) values representing high

# similarities are located close to the diagenal (the diagonal
# itself is trivial).

Hint Note that the hclust object has been converted to an object of class
dendrogram. This allows many advanced graphical manipulations
of tree-like structures. See the documentation of the as.dendro-
gram () function, where examples are found.
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Fig. 4.13 Heat map of the distance matrix reordered according to the dendrogram
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Finally, it may be useful to explore the clusters’ species contents directly, i.e. to
reorder the original data table according to the group memberships. In order to
avoid large values to clog the picture, Jari Oksanen proposes vegemite(), a
function of vegan that can use external information to reorder and display a site-
by-species data table where abundance values can be recoded in different ways. If
no specific order is provided for the species, these are ordered by their weighted
averages on the site scores. This way of ordering species can also be used in a heat
map with colour intensities proportional to the species abundances (Fig. 4.14):

¥ Ordered comm:inity tahle
¥ Specics are ordered by their weighted averaces or site scozes
or <- wvegenitel(sve, s=pe.chwo)

f Heat mac of The doubly crdered community table, with
¥ cenarogran

Leatnap (t (spelrev (créspecies) ), Rowv=NA, Cclv=dend,
col=c{"white", brewer.pel(z,"Greens")), sca_e="ncocne",
margin=ci{d4,4}), y_ab="3pecies (weigh:ted averages of sites)",

x1labh="51:1a8")

4.8 Non-hierarchical Clustering

Partitioning is looking for a single partition of a set of objects. The problem can be
stated as follows: given n objects in a p-dimensional space, determine a partition of
the objects into k groups, or clusters, such that the objects within each cluster are
more similar to one another than to objects in the other clusters. The user deter-
mines the number of groups, k. The partitioning algorithms require an initial con-
figuration, i.e. an initial attribution of the objects to the k groups, which will be
optimized in a recursive process. The initial configuration may be provided by
theory, but it is often random. In that case, the analysis is run a large number of
times with different initial configurations to find the best solution.

Here we shall present two related methods, k-means partitioning and partitioning
around medoids (PAM). An important note is that if the variables in the data table
are not dimensionally homogeneous, they must be standardised prior to partitioning.
Otherwise, the total variance of the data has a dimension equal to the sum of the
squared dimensions of the individual variables, which is meaningless.
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Fig. 4.14 Heat map of the doubly ordered community table, with dendrogram

4.8.1 k-Means Partitioning

The k-means method uses the local structure of the data to delineate clusters: groups
are formed by identifying high-density regions in the data. To achieve this, the
method iteratively minimizes an objective function called the total error sum of
squares ( E* or TESS or SSE), which is the sum of the within-groups sums-of-
squares. This quantity is the sum, over the k groups, of the sums of the squared
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distances among the objects in the groups, each divided by the number of objects in
the group. This is the same criterion as used in Ward’s agglomerative clustering.

If one has a pre-determined number of groups in mind, the recommended func-
tion to use is kmeans () of the stats package. The analysis can be automatically
repeated a large number of times (argument nstart) using different random
initial configurations. The function finds the best solution (smallest SSE value)
after repeating the analysis “nstart” times.

k-Means is a linear method, i.e. it is not appropriate for raw species abundance
data with lots of zeros (see Sect. 3.2.2). A solution is to pre-transform the species
data. To remain coherent with the previous sections, we can use our “normalized”
species data. When applied in combination with the Euclidean distance implicit in
k-means, the analysis preserves the chord distance among sites. To compare with the
results of Ward’s clustering computed above, let us ask for k=4 groups and compare
the outcome with the four groups derived from the Ward hierarchical clustering.

¥ k-rears partitioning of the pre-transformec species data
# LR R RS R ER SRS SRR RS R FEARESREEEFEEEEEEEEEEREREREEERESEEES]

spe. kmzans <- kmeans (spe.norm, centers=4, nstart=100)

# Note: running the function again may produce slightly
# different results as each of the ‘nstart’ zuns starts with =&
# different random configuration

: Comwarison with The d-group classificatior derived from Wa>d
zlustering:
Tacle(spe.krmearsscluster, soebc.ward.g)

# Are the two results fairly similar? Whick cbject(s) is
# (or are) classified differently?

To compute k-means partitioning from distance indices that cannot be obtained
by a transformation of the raw data followed by calculation of the Euclidean dis-
tance, for example the Bray—Curtis dissimilarity, one has to compute first a rectan-
gular data table with n rows by principal coordinate analysis (PCoA, Chap. 5) of the
distance matrix, then use that rectangular table as input to k-means partitioning. For
the Bray—Curtis dissimilarity, one has to compute the PCoA on the square root of
the Bray—Curtis dissimilarities to obtain a fully Euclidean solution, or use a PCoA
function that provides a correction for negative eigenvalues. These points are dis-
cussed in Chap.5.

A partitioning yields a single partition with a predefined number of groups. If
you want to try several solutions with different k values, you must rerun the analy-
sis. But which is the best solution in terms of number of clusters? To answer this
question, one has to state what “best” means. Many criteria exist; some of them are
available in the function clustIndex () of the package cclust. Milligan and
Cooper (1985) recommend maximizing the Calinski—Harabasz index (F-statistic
comparing the among-group to the within-group sum of squares of the partition),
although its value tends to be lower for unequal-sized partitions. The maximum of
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“ssi” (“Simple Structure Index”, see the help file of clustIndex () for details)
is another good indicator of the best partition in the least-squares sense.

Fortunately, one can avoid running kmeans () many times by hand. vegan’s
function cascadeKM () is a wrapper for the kmeans () function, that is, a func-
tion that uses a basic function, adding new properties to it. It creates several partitions
forming a cascade from small (argument inf.gr) to large values of k (argument
sup.gr). Let us apply this function to our data set, asking for two to ten groups and
the simple structure index criterion for clustering quality, followed by a plot of the
results (Fig. 4.15).

¥ k-rears partitioning, 2 te 13 groups
# Ak mAFEE Ak bt kb Ak h r kA kA kA m o o &

spe, KM, cascads <- cascaasEM(spe.ncrm, inZ.gr=2, sup,gr=_10,
izer=_00, criterion="ssz’"}
ploz (spe.KM.cascade, sortg=TRIE)

# The plot shows the group attributed to each object for each
# partition (rows of the graph). The groups are represented by
# different colours; there are two colours for k = 2, three

# colours for k = 3, and so on. Ancother graph shows the values
# of the chosen stopping criterion for the different values of
# k. How many groups does this cascade propose as the "best”

# solution? If one prefers a larger number of groups, what

# would be the next best solution?

Hint In the plot, sortg=TRUE reorders the objects in such a way as to put
together, insofar as possible, the objects pertaining to each group.

The function cascadeKM() provides numeric results as well. Among them,
the element “result” gives the TESS statistic and the value of the criterion
(calinski or ssi) for each value of k. The element “partition” contains a table
showing the group attributed to each object. If the geographic coordinates of the
objects are available, they can be used to plot a map of the objects, with symbols
or colours representing the groups specified by one of the columns of this table.
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Fig. 4.15 k-means cascade plot showing the group attributed to each object for each partition

surrary (sce.KM.cascade)
spe.KM.cascadedrasults

# The minimum of SSE is the criterion used by the algorithm
# to find the optimal grouping of the objects

# for a given value of k, while calinski and ssi are good

# criteria to find the optimal value of k.

spe.KM.cascade$partition

# Remember that the different partitions in k = {2,3,..,10}

# groups are computed independently of one another. Examining
# the plot

# from bottom to top is NOT equivalent to examining a

# dendrogram becanse groups of successive partitions are not
# necessarily nested.

After defining site clusters, it is time to examine their contents. The simplest way
is to define subgroups of sites on the basis of the typology retained and compute
basic statistics. Here is an example based upon the k-means four-group partition.

¥ Reorder the sites accovding to the k-means result
spelorder (spe.xmearsiciuster), ]

# Reorder sites znd species using function vegenite()
cre, KM <- wvegeritea(spe, spe.xnearsic_uster)
spelord.KMSsiles, ord,kKMSspec’es]
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4.8.2 Partitioning Around Medoids

Partitioning around medoids (Chapter 2 in Kaufman and Rousseeuw 1990)
“searches for k representative objects or medoids among the observations of the
dataset. These observations should represent the structure of the data. After finding
a set of k medoids, k clusters are constructed by assigning each observation to the
nearest medoid. The goal is to find k representative objects which minimize the sum
of the dissimilarities of the observations to their closest representative object”
(excerpt from the pam help file). By comparison, k-means minimizes the sum of the
squared Euclidean distances within the groups. k-means is thus a traditional least-
squares method, while PAM is not. As implemented in R, pam () (package clus-
ter) accepts raw data or dissimilarity matrices (an advantage over kmeans ()
since it broadens the choice of association measures) and allows the choice of an
optimal number of groups using the silhouette criterion. The code below ends with
a double silhouette plot comparing the k-means and PAM results (Fig. 4.16).

¥ Partitioning around nedcics (PAM)
£ Cenoputed on the chord distance matzix
# mhkwckdkdwk wk bk h ok ko kw kA ko ko ke wwkw kk

£ Choice of tae number of c_usters
asw <- rurerici{nrow(spe))

£ Zcoop To compute averags sllhouette width for 2 to 28 groups.

f asw means "average sllacuecte wigth”

for (k in 2: (arow(spe)-1))
aswl[x <= pan({spe.ch, x, diss=TRUk}SsilinfoSzvg.widtn

TL.oast < whick.max (asw)

cat{"", "Si_houette-optimal cumber oI clusters k =", x.best,
"\n", "with an average silhouvette width ¢f', max(asw), "\a")

ploc(l:nrow{spe), asw, type="h", ncia="Cholce of the number oI
clusters™, =x_ab="k (aunrner of grouos)", y_ab="Average
silhouet-e wid-h™)

ax‘s(., k.besl, oasle{"opllinun", <.2esl,se0="\n"}, co ="red",
font=2, col.axis="rad")

polirle (z.oesl, nex{asw), pch=16, col="red™, cex=1.05

# The not very interesting result k=2 is the best PAM solution
# with asw=0.3841. Our previous choice of k=4 ends up with

# a poor performance in terms of silkouette width (asw=0.2736)
# Nevertheless, let us compute a PAM for 4 groups:

£ PAM fcr k = 4 groups

spe.ch.pan <- pam(spe.ch, k-1, diss-TRIE)
sumrary (sze.cn.pam}

spe.ch.pam.qg <- spe.ch.cardclustering
spe.ch.pamSsilinfod$widths

f Corpare witna classificatiorn frem Ward clustering and from k-
mears

—aple(spe.ch.pamn.g, specc.ward.g)

“aplc(spc.ch.pan.g, spc.kmcearsScluster)
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# The PAM result differs markedly from those of the Ward and
# k-means clusterings.

£ 31 hovette profile for < = < groups, <-mzans and PAN

par{nfrocw=ci{_,2))

ploz (=1 Thouettea (spe. kmeansScoluster, spe.ch), main="5%7lhouezte
ploz - k-means", cex.rames— 0.8, col—- spe.knesnsicluster+l)

ploz{silhouetta{spe.ck.oar), mair="31"cuetze p ot - FBMY",

cox.nanes—0.8, col-spo.ch.panrssilinfoswidthat+1}

# On the basis on this plot, you should be able to tell which
# solution (PAM or k-means} has a better silhouette.

# You could also compare this result with the silhouette

# profile of the Ward clustering produced earlier.

Hint The PAM method is presented as “robust” because it minimizes a sum
of dissimilarities instead of a sum of squared euclidean distances. It is
also robust in that it tends to converge to the same solution with a wide
array of starting medoids for a given k value; this does not guarantee,
however, that the solution is the most appropriate for a given research
purpose.

This example shows that even two methods that are devoted to the same goal and
belong to the same general class (here non-hierarchical clustering) may provide
diverging results. It is up to the user to choose the one that yields classifications that
are bringing out more pertinent information or are more closely interpretable using

environmental variables (next section).
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As a final bonus, you could create a map of the four k-means clusters similar to
that created for the Ward clustering. The code is the same, except for the fact that
the object containing the clustering information is now spe. kmeans$cluster
for results obtained from kmeans (), or in object spe .KM.cascadeS$parti-
tion for calculations done with cascadeRM():

£ Flot c¢Z the 4 k-mears clusters on a map of the Douss river
# L S

ploz{spa, asp=T, typse="n", main="Four k-mezng aroups',
xleb—"x cocrdirate (km)", ylab—"vy ccorcirate (km)™)
lines (spa, col-"_ight khlue™)

—ex- (50, 13, "Upstream", cex=1.2

1.2, col="rea™)
Toxi (25, 15, "Downstrcazm", cox-1.2,

col-""rcd"™)

¢crKM <- soe.kmecansicluster
£ <= lergth{leve’_s/( ctox {grEM) Y

for (1 in 1:k)
points (spalgrki==1i,_], spal¢rEM==i,Z], pch=i-20, cex=3,
col=i-2, ng=i+l}

}

—exT{spa, raow.rans3{spal, cex=0.8, col="whize", fornt=2)
legend ("bottomrignaz", paste("Group™,l:k), pch=(_:k} <20,
cal=2: (k+2), pi.ng=2:(k-1), pl.cax=2, hiy="2"}

4.9 Comparison with Environmental Data

All the methods above have been presented with examples on species abundance
data. They can be applied to any other type of data as well, particularly environ-
mental data tables. Of course, care must be taken with respect to the choice of the
proper coding and transformation for each variable (Chap.2) and of the association
measure (Chap. 3).
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4.9.1 Comparing a Typology with External Data
(ANOVA Approach)

We have seen that internal criteria, such as silhouette or other clustering quality
indices, which rely on the species data only, were not always sufficient to select the
“best” partition of the sites. The final choice of a typology should be based on the
ecological interpretability of the groups. It could be seen as an external validation
of the site typology.

Confronting clustering results (considered as response data) with external, inde-
pendent explanatory data could be done by discriminant analysis (Sect. 6.5). From
a reversed point of view, the clusters obtained from the species data can be consid-
ered as a factor, or classification criterion, in the ANOVA sense. Here is a simplified
example, showing how to perform quick assessments of the ANOVA assumptions
(normality of residuals and homogeneity of variances) on several environmental
variable separately, followed either by a classical ANOVA or by a non-parametric
Kruskal-Wallis test. Boxplots of the environmental variables (after some simple
transformations to improve normality) for the four k-means groups are also pro-
vided (Fig. 4.17).

¥ Re_zticnships sen fish clusters arnd 4 envircnmental
£ variables based on the <-nmeans clustering results (4 grouves)
# e e R L o o T e o o I i i L e o R i o ST S S S

attach (env)

¥ Bexoleots of quantitative envircnmental varisbles:
f hltitude, Z2lcpe, Oxygen, end Armonium

par {nfrow=c{2,2])

boxplot{scrtialt) ~ spe.kmeansicluster, mairn="Altizude™, las=_,
vliag="scrt{alt}", co =2:3, varw dth=TRUR}

boxplot{log{pen) ~ spe.kneansscluster, main="Slops", las=1,
vlag="log{per}", col=2:5, varwidth=TRUE)

bhoxplol (aoxy ~ spe.xmsansdclusles, ma n="0xygen", las=1,
ylas="oxy", <o =F:ib, varw dth=TRI%]

boxpiol(sorl larm) ~ spe.kresrsSclusler, mair="Amnor ™, las=",
vian="scrti{amrm) ™, cc =213, varw ath=TRUR)

£ Test o ANOVA assumptiorns

¥ Normality of resicuaals

shap’ro.test(resd{Im{
ag.factor(spe. smeans

silalty
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shapiro.testiras?
as.factor (spe. <weansiclustes))))

shapiro.testires d(Im{oxy ~ as.factor{spe.krearsicluszer}}))

shapiro.test irasid{Imizgrz {arm) -~
asz.factor{spe.xwes1sscluster} ) y)

# Residuals of sgrt({alt), log{pen}, oxy and sgrt(amm}) are
# normal, if the power of the test is adeguate.

# Try to find good normalizing transformations for

# the other variables.

¥ Horogeneity oI wvariances
bar-_et-.test(sgrtial<), as.Zactcr{spe.zmeansic_uscer))

(
bart_ett.test{log{pen), as.factor{spe.kmezasScluster)}
bart_ett.tsst(exy, as.Zzcoor({spe.kmeansScluster))
bart_etT.test{sgrt{amr), as.factcr(spe.x<mearsic_usIer})

# Variable sgrt{alt) has heterogeneous variances. It is not
# appropriate for parametric ANOVA.

£ BNOVA cof the testable wvarianles

sunmary (aov{log(scn)y ~ 2s.Zector(scoe.kmeans$cluster) )}
sumrary (aov {oxy ~ as.facter (spe.xmeanssc_uszex)))
sumrary (aov{sqrt (amm) ~ as.factor{spe.kmeznsScluster)})

# Are slope, dissolved oxygen and dissolved ammonium
# significantly different among species clusters?

¥ Kruskal-Wallis test of variable alz
“rusksl.testtialt ~ as.fzctor{spe.kmneansscluster))

# Does altitude differ among clusters?

detach (env}

Hints Note the use of attach () and detach () to avoid the repetition of
the name of the object in all analyses.

The null hypothesis for the Shapiro test is that the variable is nor-
mally distributed; in the Bartlett test, H, states that the variances are
equal among the groups. Therefore, for each of these tests, the p-value
should be larger than the significance level, i.e. P>0.05, for the
ANOVA assumptions to be fulfilled.
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Fig. 4.17 Boxplots of four environmental variables grouped according to the four species-based

k-means groups

Of course, the reverse procedure could be applied as well. One could cluster the
environmental variables (to obtain a set of habitat types) and test if the species
respond to these habitat types significantly through indicator species analysis
(Sect. 4.10.4). In this approach, the species are tested one by one against the habitat
types. Consider the question of multiple testing if several species are tested inde-
pendently. As an alternative, ordination-based multivariate approaches are proposed
in Chap. 6 to directly describe and test the species—habitat relationships.
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4.9.2 Comparing Two Typologies (Contingency Table Approach)

If you simply want to compare a typology generated from the species data to one
independently obtained from the environmental variables, you can generate a table
crossing the two typologies and test the relationship using a chi-square test:

¥ Centirngency <acle of two tywologles
£ onkmr kA m ko kk ko khh Ak Ak Ak Ak ko

£ Ernvircnneat-bascd typolegy (sco Chapter 2)

envy <—- enwv_,—-1_
env.de <- wvegdist(scale(ervZ}, "euc")
anv. kmeans <- «neans (env.de, centers=4, nstart=100}

anv.KM.4 <- eav.kmeanssicluster

¥ Tabkle crossirg the t-means and envirorment 4-group tywologies
Tanle(as.factor (spe.kreznsdcluster),
az.facter{env.xmeansiciuster})

# Are the two typologies telling the same story?

f lest the zelatlonsailp uasing =
chisqg. test (as, factor (spe, kreans?
as.factor (env.xmezasscluster}))
f Change the testing procedure te & permutation test
chisg.test(as.factor (spe.xmeansiciuster),

as.factor (env. <reansScluster),
simulale.o.velue=T3T3)

chi-sguare tesc
cluster),

Such tables could also be generated using categorical explanatory variables,
which can be directly compared with the species typology.

4.10 Species Assemblages
Many approaches exist to the problem of identifying species associations in a data
set. Here are some examples.

4.10.1 Simple Statistics on Group Contents

The preceding sections immediately suggest a way to define crude assemblages:
compute simple statistics (for instance mean abundances) from typologies obtained
through a clustering method and look for species that are more present, abundant
or specific in each cluster of sites.
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£ Mean abundences con x-means s te clusters
# mEmAF ok wm Ak kb Ak r r kA kA m kA E m o ek ko

groups <- as,factor (spe.kmearsscluster)
spe.rneans <- matrix{(J, ncel{sve), agth (levels (groups) )}
row.names (spe.mezns) <— colnares (soe)
for{l ir Z:acol {zpel)
spe.means _i,] <- tapply({sce ,1], spe.xmearsic_usier, mean)

£ Mean specles aguncarces cf the Zour croups

groupl - round{scrt(spe.means(,l], decreasing="RUE}, 2)
croupZ <- round(sort({spe.mezns([,Z_ , decrezsing="RUE}, 2)
grovpd - round{scrt(spe.means(, 3 , decressing=TRUE}, 2)
croipf <- round(sort(spe.meens([,4_, decrezsing="RUE}, 2)
f Species witn anuncarces greater than group mean species
# abundancs

grotpl.domia <- walch{group’>riear (groupl))

=) [\1

[shafolbh w2
grocpl . .domin
¥... sare [or olhaer croups

4.10.2 Kendall’s W Coefficient of Concordance

Legendre (2005) proposed to use Kendall’s W coefficient of concordance, together
with permutation tests, to identify species assemblages in abundance data (this
method cannot be applied to presence—absence data): “An overall test of indepen-
dence of all species is first carried out. If the null hypothesis is rejected, one looks for
groups of correlated species and, within each group, tests the contribution of each
species to the overall statistic, using a permutation test.” In this method, the search
for species associations is done without any reference to a typology of the sites known
a priori or computed from other data, for example, environmental. The method aims
at finding the most encompassing assemblages, i.e. the smallest number of groups
containing the largest number of positively and significantly associated species.

The package kendall .W has been written to make these computations. Its func-
tions are now part of vegan. The simulation results accompanying the Legendre
(2005) paper show that “when the number of judges [= species] is small, which is
the case in most real-life applications of Kendall’s test of concordance, the classical
X test is overly conservative, whereas the permutation test has correct Type I error;
power of the permutation test is thus also higher.” The kendall.global/()
function also includes a parametric F-test which does not suffer from the problems
of the ) test and has correct Type I error (Legendre 2010).
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As a simple example, let us extract the most abundant species of the fish data
set, classify them into several groups using k-means partitioning (Fig. 4.18), and
run a global test (kendall.global ()) to know if all groups of species (called
“judges” in the original paper) are globally significantly associated. If it is the case,
we shall run a posteriori tests (kendall.post ()) on the species of each group
to verify if all species within a group are concordant.

£ Kencall's W coefficient of concordance
# S R R A RS SRR AR R R RS SRR EEESER NS

£ Extraction of the most aburdan: species

sp.sum <- apply{sps, 2, sum)

spe.sor-ed <- spel,crder{sp.sumn, decreas_ng=T"XRUE) ]
spe.small <- spe.scrted[,1:20_

ff Transformaticn of species data and transpcsition
spe.small.nel <- decostand{sps.sma’l, "hkellinger™)
spe.small.atd <— decostandispe.sra’l.hel, "siandardize™)
spe.small. L <- Li{spe.snall.s.d)

¥ k-mears parlil oniag of soacies

spe.t.kmezns,casc <- cascadeKM(spe.swall.t, int.gr=?, sup.gr=8g,
i7er=100, criterion="calinski")

plot({spc.t.kmecans.casc, scrbig-TRUE)

# This result indicates that 2 groups may be a good choice.
# Avoid scolutions with groups containing a single species.

¥ The partitiorn iInzTo 2 greouovs is Zound in column 2 o the object
Spartiticon

clusters <- agpe.t.«<meang. cazoSpartition[, 1]

clusters

# Now that we have two groups of species, let us rum a globkal
# Kendall W test on these groups.
spe.kenda’l.glebkal <- xendall.global(gpe.small . hel, clusters)
spe.kenda’l.glchsl

Look at the corrected permutational p-values. If all values are equal to or smaller
than 0.05, you can consider that all groups are globally significant, i.e. on the
whole, they contain species that are concordant; this does not mean that all species
in a globally significant group are concordant, only that at least some species are.
If the corrected p-values for some groups are not significant, it indicates that these
groups have to be subdivided into smaller groups.
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Now let us run a posteriori tests to identify the significantly concordant species
within each group:

spe. kenda_ L. post <= kenaall.post(sve.smal_.bel, clusters,
~perrn=9935%)
spe.kenda_l.post

Look at the mean Spearman correlation coefficients. Within each group, concor-
dant species must be positively associated with the others at a significant corrected
p-value. Is it the case for all species? A species with a negative mean of its
Spearman correlations with the other members of its cluster is incorrectly classi-
fied, suggesting that it should be left out of the group. If several species have nega-
tive mean Spearman correlations, the corresponding group should be split since not
all members are belonging to the same association. Species whose corrected p-
values are not significant are not contributing to the overall concordance of their
group and should be left out.

calinski
K-means partitions comparison criterion

L
oL
\c
\

Number of groups in each partition

4 - [}
. \,\
2 o
T T 17T 17T
5 10 15 20 8.0 9.0 10.0 11.0
Objects Values

Fig. 4.18 k-means cascade plot showing the R-mode partitioning of the 20 most abundant fish
species. The Calinski-Harabasz criterion points to an optimum of two groups
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Ecological theory predicts nested structures in ecological relationships. Within
communities, subgroups of species can be more or less loosely or densely associ-
ated. One can explore such avenues by investigating smaller species groups within
the large species associations revealed by the Kendall W test results.

The groups of species defined here may be further interpreted ecologically by
different means. For instance, mapping their abundances along the river and com-
puting summary statistics on the sites occupied by the species assemblages can help
in assessing their ecological roles. Another avenue towards interpretation is to com-
pute an RDA (Sect. 6.3) of the significantly associated species with respect to a set
of explanatory environmental variables.

In this example, we ran the Kendall W analysis on the basis of the two groups
suggested by the k-means partitioning of the species. A two-group partition is the
most parsimonious model in this example, but that is not always the case. If the
result had shown several misclassified species, we would have had either to recon-
sider the species typology (for instance, by trying other clustering methods), or
rerun the analysis for three groups or more.

4.10.3 Species Assemblages in Presence—-Absence Data

For presence—absence data, a new method is under development (Clua et al. 2010).
The method consists in computing the a component of Jaccard’s S, coefficient (as
a measure of co-occurrences among species) in R-mode and assessing its probabil-
ity by means of a permutation test in the spirit of the Raup and Crick (1979) coef-
ficient. The p-values act as distances: they have very small values for highly
co-occurring species. We provide an R function called test.a () to compute this
new coefficient. Readers are invited to apply it to the Doubs fish data transformed
to presence—absences. A critical point is to specify enough permutations for the
probabilities to survive a correction for multiple testing (see Sect. 7.2.6). In the
Doubs data, there are 27 species, and thus 27 x26/2=351 tests are run. A Bonferroni
correction requires a p-value of 0.05/351=0.0001425 to remain significant at the
0.05 level. This requires 99999 permutations, since the smallest p-value would be
1/(99999 +1)=0.00001. Beware: this can be long on some computers.

£ Species assenb_ages on presence-absence values
ﬁ EE e e i R e i S R R

source ("test,a.R™) # Fuarction must be in Zhe working directory
spe.pe <- decostand{spe, "pa’} # Trarsform —he data to

# presence-absence
res <- —est.zl(spe.pa, noperm=999%99)
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summary (res)

# In the output object, res$p.a.dist contains a matrix of p-
# values with class=dist. The next step is to compute a Holm
# correction (see Section 7.2.6) on the matrix of p-values

# unfolded as a vector.

res.oc.vec <- &8.vector{resSp.a.dist)

adjust.res <- p.adijust{res.o.vec,rethod="holm"}

# Among the corrected Holm p-values, find 0.05 or the closest

# value smaller than 0.05. Identify the corresponding value in
# the vector of uncorrected p-values.

# In this case, it is 0.04878. There are arocund 83 p-values

# smaller than 0.05 in the corrected Holm matrix (this number

# could vary slightly among computer runs). The corresponding

# uncorrected p-value is 0.00018.
#

#

#

The significant values thus have a probability of (0.00018 or
less. Replace all larger values in the dissimilarity matrix
by 1:

res.we.d’st <- ressp.a.dist
res.va.dist res.pa.cist»0.CJ3018] <- 1

AV

# The dissimilarity matrix made of the p-values can be
# displayed as a heat map (see Chapter 3}:

source ("coldiss.R™Y  # pbunction must e In the
coldissires.pa.dist, ~c=10, byrazn<=T30E, diag=TR:

<ing directory
}

# One can also run a fuzzy non-hierarchical clustering {Section
# 4.12). Try several k values to look for an optimal number of
# clusters:

res.na.fuz <- fanny(res.pa.cist, =5, meno.exp=1.5)
surnrary (res.pa. Tuw)

plot{silhouette{res.pa.uz), mair="81lhcuete p ot - Zuzzy
cluslesing™, cex.nanes=0.8, col=res.pa.lurss linfoSwidlas+ )
res.oa.fueszilinfo 4 Sillouette *nformaticr

# The silhouette information consists in the most likely
# membership to a "hard cluster” ("cluster"), the closest
# neighbour cluster ("neighbor"),

# and the silhouette width s(i) ("sil width").
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4.10.4 IndVal: Species Indicator Values

Dufréne and Legendre (1997) proposed an original way to compute indicator values
of species within clusters of sites. Their IndVal index combines a species mean
abundances and its frequencies of occurrence in the groups. A high indicator value
is obtained by a combination of large mean abundance within a group compared to
the other groups (specificity) and presence in most sites of that group (fidelity).
Dave Roberts, the author of the package labdsv used below, summarized the
concept as follows (pers. comm.): “The indval approach looks for species that are
both necessary and sufficient, i.e. if you find that species you should be in that type,
and if you are in that type you should find that species.”

The groups of sites can be defined in various ways. A simple, albeit a little cir-
cular way is to use the result of a cluster analysis based on the species data. The
indicator species are then simply the most prominent members of these groups.
Another approach, which is conceptually and statistically better, consists in cluster-
ing the sites on the basis of independent data (environmental variables, for instance).
The indicator species can then be considered indicator in the true sense of the word,
i.e. species closely related to the ecological conditions of their group. The a poste-
riori statistical significance of the indicator values (i.e. the probability of obtaining
by chance as high an indicator value as observed) is assessed by means of a permu-
tation test.

The Dufréne and Legendre index is available in function indval () of package
labdsv. Let us apply it to our fish data. As an example of a search of indicator
species related to one explanatory variable, we could for instance ask ourselves if
the variable das (distance from the source), acting as a surrogate of the overall
river gradient, could be divided into groups upon which indicator species could be
looked for.

¥ Species indicator walues (Dufrene and “egendre)
# EE R EE RS EES S S AEE SRR AR S AR EEREEEEEESEEEEEEEEE T RS

£ Divide tne sites into 4 greups depending on The distance to

£ the scurce of the river

das, D7 < disti{deta,frans{das=cnv 1], row,rames=-ownanas {env) )}
dasDl.kmeans <- kmeans{das.Dl, centsrs=4, nstart=100)
dasDl.kreans$cluster

¥ “rdicator species for this typology of the sites
(iva <- indvzl (svc, dasDl.kncans$c’_uster))

# The resulting object contains the following tables:
# - relfrg = relative fregquency of the species in each group
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# - relabu = relative abundance of the species across groups
# - indval = indicator value of each species

# The two next items are extracted from the indval table

# (group with the highest indval and indval value), and the
# last contains the results of the permutation tests.

¥ Table of the sigrificaent Iirdicator species
gr <- ivaSmaxcls ivaSpval<=3,05]
iv <= iva$indcls ivadpvel<=3.05]

pv <— ivaSpval[ivadSpva <=0.05]
fr <— apply{spe>d, 2, sunm) [ivasSpva_<=).03]
ficg <- deta.frame{grcur=¢r, ndva_= v, pvalue=pv, ZIreg=fr)

(“:dg <- fidglorder (fidgdgroun, -ficgSindvaly,])

f ExporT the resuls to & C8V “ile (to bs opened in a
f spreadsheet)

write,csv(fiag, "IncVal-oas.csv™)

# On this basis, what do you think of the result? How does if
# relate to the four ecological zones presented in Chapter 17

In Sect. 4.11 you will find another application in relationship with the MRT
method. Some detailed results are presented.

The search for indicator species has known some recent developments. De Céceres
and Legendre (2009) describe a series of 12 indices that can be used to identify
indicator species. They belong to two groups: correlation indices, which should be
used to determine the ecological preference of a given species among a set of alter-
native site groups, and indicator value indices, which are more useful for assessing
the species predictive values, e.g. for field determination of community types or for
ecological monitoring (De Céceres and Legendre 2009, p. 3573). A new package
indicspecies' computes different indicator species indices, including IndVal
(or, actually, the square root of IndVal).

Two especially interesting features of this package are the computation of boot-
strapped confidence intervals around indicator values (argument nboot of func-
tion strassoc () ), and the (computer-intensive) possibility of pooling all groups
of a typology in turn to look for species that may be indicators of pooled groups
(function multipatt ()).

! Available on http://www.bio.umontreal.ca/legendre/indexEn.html and http:/sites.google.com/
site/miqueldecaceres/software.
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4.11 Multivariate Regression Trees: Constrained Clustering

4.11.1 Introduction

Multivariate regression trees (MRT; De’ath 2002) are an extension of univariate
regression trees, a method allowing the recursive partitioning of a quantitative vari-
able under the control of a set of quantitative or categorical explanatory variables
(Breiman et al. 1984). Such a procedure is sometimes called constrained or super-
vised clustering. The result is a tree whose “leaves” (terminal groups of sites) are
composed of subsets of sites chosen to minimize the within-group sums of squares
(as in a k-means clustering), but where each successive partition is defined by a
threshold value or a state of one of the explanatory variables. Among the numerous
potential solutions in terms of group composition and number of leaves, one usually
retains the one that has the best predictive power. This stresses the fact that, con-
trary to most constrained ordination methods described in Chap. 6, where the selec-
tion of explanatory variables is made on the basis of explanatory power, MRT
rather focuses on prediction, making it a very interesting tool for practical applica-
tions, as in environmental management. The focus on prediction is imbedded in the
method, as becomes clear below.

MRT is a powerful and robust method that can handle a wide variety of situa-
tions, even those where some values are missing, and where the relationships
between the response and explanatory variables are non-linear or high-order inter-
actions among explanatory variables are present.

4.11.2 Computation (Principle)

The computation of an MRT consists in two procedures running together: (1) con-
strained partitioning of the data and (2) cross-validation of the results. Let us first
briefly explain the two procedures. After that, we see how they are applied together
to produce a model that has the form of a decision tree.

4.11.2.1 Constrained Partitioning of the Data

* For each explanatory variable, produce all possible partitions of the sites into
two groups. For a quantitative variable, this is done by sorting the sites
according to the ordered values of the variable, and repeatedly splitting the
series after the first, second... (n—1)th object. For a categorical variable,
allocate the objects to two groups, screening all possible combinations of
levels. In all cases, compute the resulting sum of within-group sum of squared
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distances to the group mean (within-group SS) for the response data. Retain
the solution minimizing this quantity, along with the identity and value of the
explanatory variable or the level of the categorical variable producing the
partition retained.

* Repeat the same procedure within each of the two subgroups retained above; in
each group, retain the best partition along with the corresponding explanatory
variable and its threshold value.

» Continue within all partitions until all objects form their own group. When that
point is reached, select the tree with size (number of groups) appropriate to the
aims of the study. For studies with a predictive objective, cross-validation, which
is a procedure to identify the best predictive tree, is developed below.

e Apart from the number and composition of the leaves, an important characteris-
tic of a tree is its relative error (RE), i.e. the sum of the within-group SS over all
leaves divided by the overall SS of the data. In other words, this is the fraction
of variance not explained by the tree. Without cross-validation, among the suc-
cessive partitioning levels, one would retain the solution minimizing the RE; this
would be equivalent to retain the solution maximizing the R?. However, this
would be an explanatory rather than predictive approach, De’ath (2002) states
that “RE gives an over-optimistic estimate of how accurately a tree will predict
for new data, and predictive accuracy is better estimated from the cross-
validated relative error (CVRE).”

4.11.2.2 Cross-Validation of the Partitions and Pruning of the Tree

At which level should we prune a tree, i.e. cut each of its branches so as to retain
the most sensible partition? To answer this question in a prediction-oriented man-
ner, one uses a subset of the objects (training set) to construct the tree, and the
remaining objects (test set) to validate the result by allocating them to the
constructed groups. A good predictive tree assigns the objects of the test set
correctly, i.e. the true response variables of the objects newly assigned (on the basis
of their explanatory variables) are close to the centroids of the response variables of
the group where they are assigned (i.e. the predicted values). The performance
of such a tree is assessed by its predictive error.
The measure of predictive error is CVRE. The function is:
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where Vi is one observation of the test set k, ﬁj(,{)is the predicted value of one
observation in one leaf (centroid of the sites of that leaf), and the denominator
represents the overall dispersion (sum of squares) of the response data.

The CVRE can thus be defined as the ratio between the dispersion unexplained
by the tree (summed over the k test sets) divided by the overall dispersion of the
response data. Of course, the numerator changes after every partitioning event.
CVRE is 0 for perfect predictors and close to 1 for a poor set of predictors.

4.11.2.3 MRT Procedure

Now that we have both components of the methods, let us put them together to
explain the sequence of events of a cross-validated MRT run:

* Randomly split the data into k (by default k=10) groups.

* Leave one of the k groups out, and build a tree by constrained partitioning, the
decisions being made on the basis of the minimal within-group SS.

* Rerun the step above k—1 times, leaving out each of the test groups in turn.

* In each of the k solutions above, and for each possible partition size (number of
groups) within these solutions, reallocate the test set. Compute the CVRE for all
partition sizes of the k solutions (one CVRE value per size). Formula (4.1)
encompasses the computation for one level of partitioning and all k solutions.

* Pruning of the tree: retain the partition size for which the CVRE is smallest. An
alternative is to retain a smallest size for which the CVRE value is the minimal
CVRE value plus one standard error of the CVRE values. This is called the 1 SE
rule.

* To obtain an estimate of the error of this process, run it a large number of times
(100 or 500 times) with other random assignations of the objects into k groups.

e The final tree retained is the one showing most of the smallest CVRE values
over all permutations, or the one respecting most often the 1 SE rule.

In MRT analysis, the computations of sums-of-squares are done in Euclidean
space. To account for special characteristics of the data, they can be pre-transformed
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prior to being submitted to the procedure. Pre-transformations for species data prior
to their analysis by Euclidean-based methods are presented in Sect. 2.2.4.

4.11.3 Application Using Packages mvpart and MVPARTwrap

Package mvpart has been written to compute MRT, using univariate regression
trees computed by a function called rpart (). Its use requires that the response
data belong to class “matrix” and the explanatory variables to class “data frame”.
The relationship is written as a formula of the same type as those used in regression
functions (see ?1m). The example below shows the simplest implementation,
where one uses all the variables contained in the explanatory data frame.

Let us build a multivariate regression tree of the Doubs fish data constrained by
the environmental variables. We use the fish species data with site vectors normal-
ized to length 1 (chord transformation in Sect. 2.2.4) so that the distance actually
preserved is the chord distance. Among the arguments, we use xval= 29 cross-
validation groups (i.e. as many groups as rows in the data, instead of the usual 10,
owing to the small number of observations), 100 iterations, and we allow ourselves
to interactively pick a solution on a graph provided by mvpart () (Fig. 4.19). The
graph displays the relative error , which is steadily decreasing when the number of
groups increases, and CVRE, which usually drops first sharply and then goes to a
minimum before increasing again. Prediction is optimal for a given number of
clusters, but its quality decreases when the data are exaggeratedly fragmented into
many small groups.

The best solution is not always obvious, however. Sometimes, it is the simple
two-group solution which shows the smallest CVRE. The graph provides error bars
representing one standard error for the CVRE, and an orange horizontal line located
one standard error above the minimal CVRE solution (large red spot). According
to De’ath (2002), one may select that tree as the best predictive tree or, following
the rule proposed by Breiman et al. (1984) for univariate regression trees, one may
select the smallest tree within one standard error of the best tree; this is the tree with
k=2 in our example, identified by “Min+1 SE”. That tree is more parsimonious
and only slightly worse than the best predictive tree.

¥ Multivariate regression trees
# FhRAFF R A AR A AR A F Ak A F R Ak kS m ko

spe,ch.mvpart <- mwpart (data.matrix(spe.nozm) ~ ., env,
margin=0.C8, cp=C_, xv="o0lck", =xval=rnrowi{sos), xvmalt=1CJ,
which=4)

¥ Here, _ick on the degirec number of groups {(Zor exanple 4)

o1
surmary (soes.co.mvpart}
privctep(spe.ch,mvpart)
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Hint Argument xv="pick" allows the interactive pick of a tree among
those proposed. If one prefers that the tree with the minimum CVRE be
automatically chosen, then xv="min".

Size of tree
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Fig. 4.19 Graph of the (steadily decreasing) relative error RE and the cross-validated relative
error CVRE. The solution with the smallest CVRE is indicated (red point), as well as CVRE error
bars. The green bars indicate the number of times that the solution was selected as the best during
the cross-validation iterations

If argument xv="pick" has been used, which we recommend, one left-clicks
on the point representing the desired number of groups. A tree is then drawn. Here,
we decided to pick the four-group solution. While not the absolute best, it still ranks
among the good ones and avoids producing too many small groups (Fig. 4.20).
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alt>=340 | alt< 340

amm< 0.11 | amm>=0.11 amm>=0.45 | amm< 0.45

|
b il sed s

3.08 : n=13 0.95:n=3 0.356 : n=3 1.27 : n=10
Error: 0.37 CV Error: 0.701 SE: 0.102

Fig. 4.20 Multivariate regression tree of the Doubs fish species explained by their environmental
variables. Interpretation: see text

The tree produced by this analysis is rich in information. Apart from the general
statistics appearing at the bottom of the plot (residual error, i.e. the reciprocal of the
R? of the model; cross-validated error; standard error), the following features are
important:

* Each node is characterized by a threshold value of an explanatory variable. For
instance, the first node splits the data into two groups of 16 and 13 sites on the
basis of altitude. The critical value (here 340 m) is often not found among the
data; it is the mean of the two values delimiting the split. If two or more
explanatory variables lead to equal results, an arbitrary choice is made among
them. In this example, for instance, variable das with value 204.8 km would
yield the same split.
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Each leaf (terminal group) is characterized by its number of sites and its RE as
well as by a small bar plot representing the abundances of the species (in the
same order as is the response data matrix). Although difficult to read if there are
many species, these plots show that the different groups are indeed characterized
by different species. A more statistical approach is to search for characteristic or
indicator species using indval () (Sect. 4.9). See below for an example.

The tree can be used to allocate a new observation to one of the groups on the
basis of the values of the relevant environmental variables. “Relevant” means
here that the variables needed to allocate an object may differ depending on the
branch of the tree. Observe that a given variable may be used several times along
the course of the successive binary partitions.

As proposed in the code below, apart from the residuals, one can retrieve the

objects of each node and examine the node’s characteristics at will:

¥ Residva’s of MRT

par{mnfrow=c({l,2})

hist(resicuaals{sgc.ca.nvpart), co_="grey')

ploz{oredictispe.chomvpart), residua_g (spe.ch.mvpart),
main="Res.duzls vs Fredicted"}

abkline (=0, lty=3, col="grey"

£ Group composition
spe.ch.rveaztiwhere

f GSroup identity
(grouos.mrl <- _evels{as.lac.or(spe.ch.mveoarl3where)))

¥ Fish conmposii_on of Zizsl lez(l
spe.nozi [walca{see.ca.nvpartiwhere==groups.mr-[_]1), _

f Ernvirzcnmental wvariab_es cof Zizst leaf
env[which (spe.ch.nvpartswhere——croups.mrt[1]1),]

£ Takle and pie charts of fish congposition of leaves
leaf.sam <- ma-rixi{C, _engthi{groups.mrt}, ncol{spe})
co_rames {_caf.sum) <- colrancs (spc)
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for{Z in Z:_ength(groups.mrt)) |

leaf.surn[2, | <-

apoly (spe.norm[which (spe.ch.mvpartéwhere==groups.mrt[i.),], Z,
s

I

leal.sam

par{mfrow=c({Z,2})

for{l ir Z:_encthigroups.mrt}){
pie{which(leaf.sun_i,]>3), radius=_, main=c{™l=af §",
groups.mrt[il)}

}

Unfortunately, extracting other numerical results from an mvpart () object is
no easy task. This is why Marie-Hélene Ouellette wrote a wrapper doing just that
and providing a wealth of additional, useful information. The package is called
MVPARTwrap and the function is MRT (). Its output comprises two graphs and a
lot of numerical results. Let us apply it to our previous result.

¥ Extracting MRT resultz from an nvpart object

f Packages MVPERTwrap and rdaTest muast khave besen lcaded
spe.ch.mvegart . wrap <- MRT (sue.ch.nvpart, uvercert=10,
species=colnames (spe))

surmrary (sove.ca.nvpart.wrap)

Hint Argument percent indicates the smallest percentage of variance
explained by a species at a node that one considers interesting. No test
is made here, it is an arbitrarily chosen value.

The function displays some results on-screen during execution. These are pre-
sented in a form close to canonical ordination results (see Chap.6) because the
function indeed runs a redundancy analysis on the species data, explained by the
variables retained by the MRT analysis, and recoded following the threshold values
of the tree nodes. Among the results, let us mention the R?, which is the reciprocal of
the tree RE. In our example, Fig. 4.20 gives an error of 0.37 for the tree, therefore
the R? is equal to 0.63.

The summary of the result object provides information about the contribution of
each node to the explained variance (“Complexity”). The sum of these values gives
the overall R%. Furthermore, it identifies “discriminant” species at each node, selecting
the species that contribute most to the explained variance (down to a minimum
arbitrarily set by the user with the argument percent). The mean (transformed)
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abundances are given for both branches of the nodes, so one can see the branch for
which the species are discriminant. For instance, our example analysis shows TRU,
VAT and LOC for the left branch (higher altitude), and ABL for the right one. The
summary lists the sites present in each leaf. The result object itself contains the
complete results from which the summary is drawn.

4.11.4 Combining MRT and IndVal

As suggested in the previous section, one could submit the MRT partition to a
search for indicator species (IndVal, Sect. 4.10.4). This is better than visual exami-
nation of the results for the identification of “discriminant” species: one can test the
significance of the indicator values.

¥ rdicator specises sesarch orn the MRT resulzD
spe.ch.MRT.ndva” <- inaval (scc.rorm, spoe.ch.mvos:
spe,ch. MRT. indvalSpval ¥ Probability

Swhore)

£ For =sach sigrificant specles, fiInd the leaZ with the nighest
¥ rndvVal
spe.ch.VRT . indva. fmaxc.s[whichi{spe.ch.MRT.irdvalSpva <=0.05)]

£ “rdval wva“us ‘n the best “eaf for each significart srecies
spe.ch.MRT..ndva_$indc_s[which({spe.ch.MRT.indva_spva_<=0.05)]

Among other results, one finds here the permutation test results showing which
species are significant indicators of the leaves. The following list gives the leaf
number for the significant indicator species, followed by the list of the indicator
values:

> gpe.ch . MRT.irdval$maxcls[whick (spe.ch . MRT. lndval$pval<=0.05)]
TRED VAT LOC 20T BAR S22 Z0 BOU PEO CAR TAN BCD PCI GRE BROD ARL ANG
- - - 4 4 4 4 4 4 4 il il 4 4 4 a 4

>

> gpe.ch.MRT.indvalS$indels[whichk (spe.ch.MRT.indvalspval<=0.05})]
TRU VAT Lo HOGT BER SPI o

0.7899792 0.5£22453 0.4506428 0.3775629 0.6547659 £.5£2£497 £.4384538
BCU P50 CAR TAN BCO FCH 5RE

0.3742920 0.8368224 0,7264677 0.3304323 0.9000000 S.7000000 5.5832126
B30 ASL ANG

0.707%8525 0.6700323 0.8460903

One sees that not all groups harbour indicator species, and that most of these are
in the fourth (rightmost) group. Individually, the result for the brown trout (TRU),
for instance, shows a significant indicator value of 0.7900 in the first leaf.
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4.11.5 MRT as a “Chronological” Clustering Method

In cases where the data present themselves in a spatial or temporal sequence, the
contiguity information can be taken into account when looking for groups (and
discontinuities) along the series. Several methods have been proposed for that pur-
pose in the temporal (e.g. Gordon and Birks 1972, 1974; Gordon 1973, Legendre
et al. 1985) and spatial (Legendre et al. 1990) contexts. We suggest that MRT can
be easily applied to such situations. The trick is simple: use a vector describing the
sequence as the only explanatory variable. In our example data, the one-dimension
position variable is das (distance from the source). One proceeds as previously.
When interpreting the result, be aware that in the output object the site groups do
not always follow the true order of the sequence. The result is displayed in
Fig. 4.21.

¥ MRT as & constrained clustering method for spatial and
¥ otenmuwora’ dats ssquences

spe.oh.sec <— mvoart (as.natrixlspe) ~ das, env, op=0, =v="plick",
margin—0.08, =zval—rrow{spe), xvnult—100, waich—4)
¥ Here, click on the desired number of groups

surmrary (soco.ch.acyg)

£ Group composition (lazcls of terminzl nodes)
{gr <- spe.ch.seubwhere)

£ Renumber clusters sequartially
aa <- 1

gr2 <- reuo(l,langth{cr))
for (i in 2:lergta{gx)) {
2f (gr[ili=cr i-1]) az <- aa-1

gr2[i] <- =za
}

£ PlolL ¢f Lhe 2lusiess o0 a map ¢f Lhe Doubs slver
ploz{spa, asp=1, type="n", ma:n="MRT grcums",

xlab="x cocrdizatse (km)", vlab="v coocrdinate (km)™}
lines(apa, col="_1ight blus")
Lex. (50, 10, "Upslream", cex=1.2
—exT (25, 115, "Jownstrean", cex=
<« <= lerglaf{leve_s{laclos{(grz)))
for (1 in T:rk) <

poirls (spalqré2==_,1], svcalqsZ?==1,2_, vch=+21, cex=3,

col=i-1, bg=111)

}

, co_="rea™}
1.2, col="reg”
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~exT({spa, row.ranss(spa), cex=J.8, col="whiZe", Ifont=2)
legend {"bottomrignt", pzs-c{"Group™”,l:ky, pch={l:k}-20,

col=2:(k11}, pt.og=2:(k 1), pt.cex=2, hoy="21")
MRT groups
. $ou 2"
15}
7 (2]
~ 7 ®
Ewsoq W ®
£ v (1]
C
S5 Downstream 10}
g 100+ (5]
[&]
>
_ 8 ® Group 1
50 (=) m Group 2
4 Group 3
# Group 4
o Upstream ¥ Group 5
T T T T T T
0 50 100 150 200 250

x coordinate (km)

Fig. 4.21 Clustering with contiguity constraint using MRT
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4.12 A Very Different Approach: Fuzzy Clustering

At the beginning of this chapter, we defined clusters produced by clustering methods
as non-overlapping entities. This definition is a natural consequence of the focus of
most methods on discontinuities. However, there is another approach to clustering
that recognizes that, sometimes, cluster limits may not be so clear-cut as one would
like them to be. Consequently, a different family of hierarchical and non-hierarchical
methods has been developed, namely, fuzzy clustering. We do not develop this family
in detail, but briefly show one approach that is akin to non-hierarchical k-means
partitioning. Its name is c-means clustering (Kaufman and Rousseeuw 1990).

4.12.1 Fuzzy c-Means Clustering Using cluster’s
Function fanny ()

Instead of a classification where a given object belongs to one and only one cluster,
c-means clustering associates to all objects a series of membership values measuring
the strength of their memberships in the various clusters. An object that is clearly
linked to a given cluster has a strong membership value for that cluster and weak
(or null) values for the other clusters. The membership values add up to 1 for each
object.

Fuzzy c-means clustering is implemented in several packages, e.g. cluster
(function fanny () ) and el1071 (function cmeans () ). The short example below
uses the former.

Function fanny () accepts either site-by-species or distance matrices. In the
former case, the default metric is euclidean. Here, we directly use as input the
chord distance matrix previously computed from the fish species data. An equiva-
lent result would be obtained by running the chord-transformed species data “spe.
norm” with the metric="euclidean" option.

The plot function can return two diagrams: an ordination (see Chap.5) of the
clusters and a silhouette plot. Here, we present the latter (Fig. 4.22) and we replace
the original ordination diagram by a PCoA combined with star plots of the objects
(Fig. 4.23). Each object is associated with a small “star” whose segment radiuses
are proportional to its membership coefficient.

¥ Fuzzy c—means cluastering of the fish species data
# e T R

< <= 4 % Choose tke rumber of clusters
spe.uz <— Zanny(spe.ch, <=k, merb.axp=1.5)
sunmary (sve. fuz)
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spefuz.g <- spe.fuazdclustering

¥ Site menmbership
spe.fuzidrenbershin

Xearest crisp clustering
spe.fuzfo_ustering

£ Si_houvelle plaol

ploZ{silhouette(spe.fuz), mein="3-_noueite plot - Zuzzy
cluslering™, cex.names=5.8, zol=spe.’uzfs l_ nlcSwidlas=1)

£ Ordination of fuzrzy clusters (PCod)

doe.peoa <- cmdscale (spe.ch)

do.scores < zcaoresi{dc.occa, cholces=c{l,2}}

¥ Ordination plat of fuzzy clustering resulz

ploT{scores (do.pooa), asp=1, type="n"
mair="Crdiration of fuzzy clusters (PCoA)Y")

akine(k-0, lty-"detted™)

abline (v=0, lty="dotted™)

for (1 in 1:k) <
g <— dc.scores([spefuz.g==i,]
Fpts <- chull (gg)
kpts <- ci(hpts, hpts[l])
lines (galhpts, ], col=i+l)
}

stars(spe.fuzémenbershlip, _ocatlion=scores(dc.pcoa),
draw, secmerts=TRIE, add=T=2UZ, szcale=FALSE, l_en=(.1,
col.segmencs=2: (k+1})

legena (locator (1), paste{"Cluster", Z:k, sep=" "),
poa=1h, pt.cex=2, col=2:(k+l}, bIy="n")

¥ Tl ck eon Lhe graph .o pesillon _egend

Hints Argument memb . exp is a kind of “fuzziness exponent” with values
ranging from 1 (close to non-fuzzy clustering) to any large value.

In the 1legend () function, argument 1locator (1) allows users to
position the legend on the graph interactively, by clicking on the
desired position.
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Silhouette plot - Fuzzy clustering

n=29 4 clusters C;
jinjlavecgs;

1: 10 | 0.39

2: 8 0.02

—_
oo,

N =
= ©

3: 81060

24 4: 3]034

T I T |
0.2 0.4 0.6 0.8 1.0

Silhouette width s;

0.

o

Average silhouette width : 0.34

Fig. 4.22 Silhouette plot of the c-means fuzzy clustering of the fish data preserving the chord
distance

The silhouette plot (Fig. 4.22) shows, in particular, that cluster 2 is not well
defined. On the ordination diagram (Fig. 4.23), the star plots of the ill-classified
objects (10, 15, 19) also illustrate that their membership is unclear.
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Dim2

Ordination of fuzzy clusters (PCoA)

uster 1
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uster 4

Pp
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0.6

113

Fig. 4.23 c-Means fuzzy clustering of the fish data preserving the chord distance. Principal coor-
dinate ordination associated with star plots showing the memberships of the sites. Cluster shadings

as in Fig. 4.22

The numerical results give the membership coefficients of the objects. The sum of
each row is equal to 1. Objects belonging unambiguously to one cluster, like sites 2,
21 or 23, have a high membership value for that cluster and correspondingly low
values for the other clusters. Conversely, one can easily locate objects that are difficult
to classify: their coefficients have similar values in most if not all clusters. Sites 5, 9
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and 19 are good examples. An additional result is the nearest crisp clustering, i.e. the
cluster to which each object has the highest membership coefficient.

While “hard” clustering may appear somewhat unrealistic in ecology, its appli-
cation is of great help as soon as one needs a typology or a decision-making tool
requiring unambiguous allocation of sites. Fuzzy clustering is a more nuanced, and
therefore more realistic approach in most ecological situations if its purpose is to
describe relationships among sites. Other very powerful methods exist that are
designed to reveal the structure of continuous data. These methods, simple and
constrained ordination, are explored in the following chapters.

4.13 Conclusion

This chapter has not covered all the possibilities offered by the large family of
cluster analyses, but you have explored its main avenues and seen how flexible this
approach can be. Every ecological research project has its own features and
constraints; in many cases, cluster analysis can provide very rich insights into the
data. The clustering techniques themselves are numerous, as are also the ways of
interpreting the results. It is up to you to exploit this lore to optimize the output of
your research.



Chapter 5
Unconstrained Ordination

5.1 Objectives

While cluster analysis looks for discontinuities in a dataset, ordination extracts the
main trends in the form of continuous axes. It is therefore particularly well adapted
to analyse data from natural ecological communities, which are generally struc-
tured in gradients.

Practically, you will:

e Learn how to choose among various ordination techniques (PCA, CA, PCoA
and NMDS), compute them using the correct options, and properly interpret the
ordination diagrams

*  Apply these techniques to the Doubs river data

* Opverlay the result of a cluster analysis on an ordination diagram to improve the
interpretation of the clustering results

e Interpret the structures in the species data using the environmental variables
from a second dataset

e Write your own PCA function

5.2 Ordination Overview

5.2.1 Multidimensional Space

A multivariate data set can be viewed as a collection of sites positioned in a space
where each variable defines one dimension. There are thus as many dimensions as
variables. To reveal the structure of the data, it would be interesting to represent the
main trends in the form of scatterplots of the sites. Since ecological data generally
contain more than two variables, it is tedious and not very informative to draw the
objects in a series of planes defined by all possible pairs of descriptors. For
instance, if the matrix contains ten descriptors, the number of planes to draw would

D. Borcard et al., Numerical Ecology with R, Use R, 115
DOI 10.1007/978-1-4419-7976-6_5, © Springer Science+Business Media, LLC 2011
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be equal to (10x9)/2=45. Such a series of scatterplots would allow neither to bring
out the most important structures of the data, nor to visualize the relationships
among descriptors (which, in general, are not linearly independent of one another).
The aim of ordination methods is to represent the data along a reduced number of
orthogonal axes, constructed in such a way that they represent, in decreasing order,
the main trends of the data. These trends can then be interpreted visually or in
association with other methods such as clustering or regression. Here, we shall
address four basic techniques. All these methods are descriptive: no statistical test
is provided to assess the significance of the structures detected. That is the role of
constrained ordination, a family of methods that are presented in Chap. 6.

5.2.2 Ordination in Reduced Space

Most ordination methods (except NMDS) are based on the extraction of the eigen-
vectors of an association matrix. They can be classified according to the distance
preserved among sites and to the type of variables that they can handle. Legendre
and Legendre (1998, Table 9.1, p. 388) provide a table showing their domains of
application.

The basic principle of ordination in reduced space is the following. Imagine an
nxp data set containing n objects and p variables. The n objects can be represented
as a cluster of points in the p-dimensional space. Now, this cluster is generally not
spheroid: it is elongated in some directions and flattened in others. These directions
are not necessarily aligned with a single dimension (= a single variable) of the
multidimensional space. The direction where the cluster is most elongated corre-
sponds to the direction of largest variance of the cluster. This is the first axis that
an ordination will extract. The next axis to be extracted is the second most impor-
tant in variance, provided that it is orthogonal (linearly independent, uncorrelated)
to the first one. The process continues until all axes have been computed.

When there are a few major structures in the data (gradients or groups) and the
method has been efficient at extracting them, then the few first axes contain most
of the useful information, i.e. they have extracted most of the variance of the data.
In that case, the distances among sites in the projection in reduced space (most
often two-dimensional) are relatively similar to the distances among objects in the
multidimensional space. Note, however, that an ordination can be useful even when
the first axes account for small proportions of the variance. This may happen when
there are some interesting structures in an otherwise noisy data set. The question
arising is then: how many axes should one retain and interpret? In other words, how
many axes represent interpretable structures? The answer depends on the method;
several helping procedures are explained in due course to answer this question.
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The methods that are presented in this chapter are:

* Principal component analysis (PCA): the main eigenvector-based method.
Works on raw, quantitative data. Preserves the Euclidean distance among sites.

* Correspondence analysis (CA): works on data that must be frequencies or
frequency-like, dimensionally homogeneous, and non-negative. Preserves the y*
distance among rows or columns. Mainly used in ecology to analyse species data
tables.

* Principal coordinate analysis (PCoA): devoted to the ordination of distance
matrices, most often in the Q mode, instead of site-by-variables tables. Hence,
great flexibility in the choice of association measures.

* Nonmetric multidimensional scaling (NMDS): unlike the three others, this is
not an eigenvector-based method. NMDS tries to represent the set of objects
along a predetermined number of axes while preserving the ordering relation-
ships among them.

PCoA and NMDS can produce ordinations from any square distance matrix.

5.3 Principal Component Analysis

5.3.1 Overview

Imagine a data set whose variables are normally distributed. This data set is said
to show a multinormal distribution. The first principal axis (or principal-compo-
nent axis) of a PCA of this data set is the line that goes through the greatest dimen-
sion of the concentration ellipsoid describing this multinormal distribution. The
following axes, which are orthogonal to one another and successively shorter, go
through the following greatest dimensions of the ellipsoid (Legendre and Legendre
1998). One can derive a maximum of p principal axes from a data set containing
p variables.

Stated otherwise, PCA carries out a rotation of the original system of axes
defined by the variables, such that the successive new axes (called principal com-
ponents) are orthogonal to one another, and correspond to the successive dimen-
sions of maximum variance of the scatter of points. The principal components give
the positions of the objects in the new system of coordinates. PCA works on a dis-
persion matrix S, i.e. an association matrix among variables containing the vari-
ances and covariances of the variables, or the correlations computed from
dimensionally heterogeneous variables. It is exclusively devoted to the analysis of
quantitative variables. The distance preserved is the Euclidean distance and the
relationships detected are linear. Therefore, it is not generally appropriate to the
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analysis of raw species abundance data. These can, however, be subjected to PCA
after an appropriate pre-transformation (Sects. 2.2.4 and 5.3.3).

In a PCA ordination diagram, following the tradition of scatter diagrams in
Cartesian coordinate systems, objects are represented as points and variables are
displayed as arrows.

Later in this chapter, we show how to program a PCA in R using matrix equa-
tions. But for everyday users, PCA is available in several R packages. A convenient
function for ecologists is rda () in package vegan. The name of the function
refers to redundancy analysis, a method that is presented in Chap. 6. Other possible
functions (not detailed here) are dudi.pca () (package ade4) and prcomp ()
(package stats).

5.3.2 PCA on the Environmental Variables of the Doubs
Data Set Using rda ()

Let us work again on the Doubs data. We have 11 quantitative environmental
variables at our disposal. How are they correlated? What can we learn from the
ordination of the sites?

Since the variables are expressed in different measurement scales, we compute
a PCA on the correlation matrix. Correlations are the covariances of standardized
variables.

5.3.2.1 Preparation of the Data

¥ _cac regualred packages
linrary (adad)
liz rary(vegan)
iz (qolus)
&

ave)

£ mport the datz from I8V files

spe <-— read.csv("DoubsSpe.csv", row.nzames=1}
anv <- read.csv{"DoubsEnv.cav", row.azmes=1)
spa <—- read.csv("Doubs3pa.csy ", row.anzames=1}

¥ Renove empty site 8

spe <— spel[-8,]

env <- env[-8,]

spa <— spal[-8,]

£ A reminder of the contert of the env datases
surmrary (env) # Jescriptive statistics
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5.3.2.2 PCA on a Correlation Matrix

£ PCR orn the fuo 7 dataset {cerrslation matrix: scale—TRUT)
# E R e L R e o P o I S o i e R L U LR T P o i N

env,pca <- zda{env, szale=TRUE) Argunert scale=TRUE calls for
a stendardization of the
# varizbles

4 e

2nv.poa
surrary (env.pca) # Jelaull scallirg 2
surmrary (env.poes, scaling=1)

# Note that the scaling (see below) is called at the step of
# the summary (or, below, for the drawing of biplots) and not
# for the analysis itself.

The “summary” output is presented as follows for scaling 2 (some results have

been deleted):

Call:
»aa (i = erv, scale = TRUE)

Partitionire cof correlatlons:
Inertia Provorticn

Total 1 1

Unconstraired 1 1

Figenva ues, ard their contripution o the correlalions

Importance of componentas:

Pl PC2 203 PlL PC5 2CH
Zigenva_ue 6.028 2,167 1.0376 3.7C4 0.352 0.319%
Proportion Explaines 0.534 5.187 0.0%43 J.064 2.032 0.029
Cunulative Propeorticon 0.524 0.751 0.8457 0.%10 0.942 0.3871

1

ca_ing 2 for species zand site scores

Specles are scaled properticoral to eigenvalues

ZZtes are unscalec: welghted dispersion equa_ cor all
dimensiors

b N 7

Genera’ scaling constant oI scores: £..89264
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Species scores

pcl 2C2 PC3 oCc4 ECS 2Ce
das 1.08432 0.5148 -0.Z257/430 -0.1617Y0 C.21140 -0.08%07
glt -2.04356 -0.5046 0.279804 0.12274 5.12527 0.14024

Site scores (weichted sums of species scores)

FCl1 PC2 FC3 PC4 ECS PCe
1 -1.£1239 -1.47577 -2.74581 -2.95537 <$.2312 0.48150
2 -1.04170 -0.81766 0.34078 0.54374 0.9232 -1.77040

The ordination output uses some vocabulary that requires explanations.

e Inertia: in vegan’s language, this is the general term for “variation” in the
data. This term comes from the world of CA (Sect. 5.4). In PCA, the “inertia” is
either the sum of the variances of the variables (PCA on a covariance matrix) or,
as in this case (PCA on a correlation matrix), the sum of the diagonal values of
the correlation matrix, i.e. the sum of all correlations of the variables with them-
selves, which corresponds to the number of variables (11 in this example).

e Constrained and unconstrained: see Chap. 6 (canonical ordination). In PCA,
the analysis is unconstrained, and so are the results.

e Eigenvalues: symbolized lj, these are measures of the importance (variance) of
the axes. They can be expressed as Proportions Explained, or proportions of
variation accounted for, by dividing them by the total inertia.

e Scaling: not to be confused with the argument scale calling for standardiza-
tion of variables. “Scaling” refers to the way ordination results are projected in
the reduced space for graphical display. There is no single way to optimally
display objects and variables together in a PCA biplot, i.e. a plot showing two
types of results, here the sites and the variables. Two main types of scaling are
generally used. Each of them has properties that must be kept in mind for proper
interpretation of the biplots. Here, we give the essential features of each scaling.
Please refer to Legendre and Legendre (1998, pp. 403—404) for a complete
account.

— Scaling 1=distance biplot: the eigenvectors are scaled to unit length. (1)
Distances among objects in the biplot are approximations of their
Euclidean distances in multidimensional space. (2) The angles among
descriptor vectors are meaningless.
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— Scaling 2=correlation biplot: each eigenvector is scaled to the square root of
its eigenvalue. (1) Distances among objects in the biplot are not approxima-
tions of their Euclidean distances in multidimensional space. (2) The angles
between descriptors in the biplot reflect their correlations.

— In both cases, projecting an object at right angle on a descriptor approximates
the position of the object along that descriptor.

— Bottom line: if the main interest of the analysis is to interpret the relationships
among objects, choose scaling 1. If the main interest focuses on the relation-
ships among descriptors, choose scaling 2.

e Species scores: coordinates of the arrow heads of the variables. For historical
reasons, response variables are always called “species” in vegan, no matter
what they represent.

e Site scores: coordinates of the sites in the ordination diagram. Objects are
always called “Sites” in vegan output files.

5.3.2.3 Extracting, Interpreting and Plotting Results from a vegan
Ordination Output Object

vegan output objects are complex entities, and extraction of their elements does
not follow the basic rules of R. Type ?cca.object in the R console. This calls
for a help file explaining all features of an rda () or cca() output object. The
examples at the end of that help file show how to access some of the ordination
results directly. Here, we access some important results as examples. Further results
are examined later when useful.

Eigenvalues

First, let us examine the eigenvalues. Are the first few clearly larger than the fol-
lowing ones? Here, a question arises: how many ordination axes are meaningful to
display and interpret?

PCA is not a statistical test, but a heuristic procedure: it aims at representing the
major features of the data along a reduced number of axes (hence, the expression
“ordination in reduced space”). Usually, the user examines the eigenvalues, and
decides how many axes are worth representing and displaying on the basis of the
amount of variance explained. The decision can be completely arbitrary (for
instance, interpret the number of axes necessary to represent 75% of the variance
of the data), or assisted by one of several procedures proposed to set a limit
between the axes that represent interesting variation of the data and axes that
merely display the remaining, essentially random variance. One of these procedures
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(called the Kaiser—Guttman criterion) consists in computing the mean of all
eigenvalues and interpreting only the axes whose eigenvalues are larger than that
mean. Another is to compute a broken stick model, which randomly divides a stick
of unit length into the same number of pieces as there are PCA axes. The theoretical
equation for the broken stick model is known. The pieces are then put in order of
decreasing length and compared to the eigenvalues. One interprets only the axes
whose eigenvalues are larger than the length of the corresponding piece of the stick,
or, alternately, one may compare the sum of eigenvalues, from 1 to k, to the sum of
the values from 1 to k predicted by the broken stick model. One can compute these
two procedures by hand as follows (Fig. 5.1)":

¥ Examire anc p.ot partial results from PCA output
f omAmdrtama kb mh bk bk r kb hmhmdk bk amhnrk A nkw bk Fhmah

?cca.cbject # Explains how an crcineticn ckject produced by
F vecgan 1z structurec and how Zo extract s
¥ rest_ts.

f Eigenva_ues
(ev <— env.pcastChSeiqg)

£ Apply Keiser-Guttmanr criterion to select axes
av _av > meanlev) .

¥ Broker sl . ck rodal
<= langhbn{ev}
bar <— data.frame{j=zeqg{l:n), p=0]
benspll] <- _/a
for (1 in Z2:n) <
besmip 1] = bsmip i-1] + (1/(an = 1 - 1))
1
bemdp <- _OC*bsmSp/n

Lam

§ Plot eigenwvalues and % ¢ variance for each axis
par{nfrow=c({2,1))

barp_ot{ev, main="Zicenvalues", cc_="opisque", las=2Z}
ab’ine (k=mean (ev), col="r=d4"} # averzge sigenva ue

legend ("topright™, "Average e gervalue", _wd=1l, col=2, Zty="n")
barp_ot (t(chind(100*aev/sun{ev)  bsnSp n:1 )}, basidae=IRJk,

mais= variznze™, col=c("hisqua”,2), las=2)

"y

'Comparison of a PCA result with the broken stick model can also be done by using function
PCAsignificance() of package BiodiversityR.
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’

pca=1z, col=c{"blsque”,2), boy="2")

legenc ("loprighl™, ("% eigervelue™, "Broker si’lck model™),

# Is the same number of axes retained by the two rules?

Eigenvalues
6 -
5 — Average eigenvalue
4 —
3 —
2 —
1
0 L T
b [aV] [ < [To] [{e] N~ [ee] [o)] o ~—
O O O O O O (&) O O ™~ ~
o o o o o o o o a 8 8
% variation
50 % eigenvalue
40 = Broken stick model
30
20
K i
— [aV] ] < Yol [(e] N~ o] (o] o —
O O O O O O O O (&) ™ b
o o o o o o o o o 8 8

Fig. 5.1 Kaiser—Guttman and broken-stick plots to help assess the number of interpretable axes
in PCA. Application to the Doubs environmental data
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To make things easier, the code above has been framed in a function called
evplot (), which is used as follows:

¥ fane plots using a single funcczion:

¥ Plot eigenwvalues and % of variance for each axis
source {"evp_ot.R™)

avulot (ev)

Biplots of Sites and Variables

To plot PCA results in a proper manner, one has to show objects as points and
variables as arrows. Two plots are produced here, the first in scaling 1 (optimal
display of objects), the second in scaling 2 (optimal display of variables) (Fig. 5.2).
We present two functions: vegan’s biplot.rda() and a function directly
drawing scaling 1 and 2 biplots from vegan results: cleanplot.pca().

¥ Two PCR bliplcts: sca_ing 1 anc scaling 2
# B I R e R R R I N

£ Plots using bizmlot.rds

par{mnfrow=c{l,2})

biclot.rda (env.pca, scaling=l, main="PCA - scaling 1)
biplot.rde{env.pca, main="PCh - scalling 2™) 4 Defau’t scalng 2

ff Plots using clearplot.pca

¥ R rectangular grapaic windew is neeaed for the two plots
source ("c_eanplot.pca.R")

£ With points for sites and arrowheads

cleanplet.pes (env.pca, 0oint=T"RUE)

# With site labels only {vegan's standard)

cleanvlet. fenv.pca)

cleanclct.pcai{env.poa, zsa=2ad=0) ¥ ... and without arrowheads

# What does the circle in the left-hand plot mean? See below...

Hint Check in the cleanplot.pca() function how the plots are pro-
gressively built. First, one extracts two data tables (scaling 1 and 2,
site scores and species scores) from the rda output object by means of
the scores () function. Then an empty plot is produced using a spe-
cial vegan plotting function called plot .cca (). Site points (func-
tion points()) and site labels (function text()) are added
afterwards. Finally, species arrows and their labels are drawn, and a
circle (see below) is added to the scaling 1 biplot.
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PCA - scaling 1 PCA - scaling 2

1.5 : L fiRb : 30
; g 1.0- P

PC2

T T T T T T T
-1.5-1.0-05 00 05 1.0 15 -1 0 1 2
PC1 PC1

Fig. 5.2 PCA biplots of the Doubs environmental data, drawn with function cleanplot.pca ()

Now, it is time to interpret the two biplots. First, the proportion of variance
accounted for by the first two axes is 0.751 or 75.1%. This high value makes us
confident that our interpretation of the first pair of axes extracts most relevant infor-
mation from the data. Here is an example of how such a biplot can be interpreted.

First, the scaling 1 biplot displays a feature that must be explained. The circle is
called a circle of equilibrium contribution. Its radius is equal to \/d / p, where d is
the number of axes represented in the biplot (usually d=2) and p is the number of
dimensions of the PCA space (i.e. usually the number of variables of the data
matrix).? The radius of this circle represents the length of the vector representing a
variable that would contribute equally to all the dimensions of the PCA space.
Therefore, for any given pair of axes, the variables that have vectors longer than this
radius make a higher contribution than average and can be interpreted with
confidence.

The scaling 1 biplot shows a gradient from left to right, starting with a group
formed by sites 1-10 which display the highest values of altitude (a1t) and slope
(pen), and the lowest values in river discharge (deb) and distance from the source
(das); hardness (dur), which increases in the downstream direction, is also correlated

2Note, however, that vegan uses an internal constant to rescale its results, so that the vectors and
the circle represented here are not equal but proportional to their original values. See the code of
the cleanplot.pca () function.
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to these variables. The second group of sites (11-16), has the highest values in oxygen
content (oxy) and the lowest in nitrate concentration (nit). A third group of very
similar sites (17-22) shows intermediate values in almost all the measured variables;
they are not spread out by the variables contributing to axes 1 and 2. Phosphate (pho)
and ammonium (amm) concentrations, as well as biological oxygen demand (dbo)
show their maximum values around sites 23-25; the values decrease afterwards.
Opverall, the progression from oligotrophic, oxygen-rich to eutrophic, oxygen-deprived
water is clear.

The scaling 2 biplot shows that the variables are organized in groups. The lower
left part of the biplot shows that altitude and slope are very highly, positively cor-
related, and that these two variables are very highly, negatively correlated with
another group comprising distance from the source, river discharge and calcium
concentration. Oxygen content is positively correlated with slope (pen) and alti-
tude, but very negatively with phosphate and ammonium concentration and, of
course, with biological oxygen demand. The right part of the diagram shows the
variables associated with the lower section of the river, i.e. the group discharge
(deb) and hardness (dur), highly correlated with the distance from the source, and
the group of variables linked to eutrophication, i.e. phosphate and ammonium con-
centration and biological oxygen demand. Positively correlated with these two
groups is nitrate concentration (nit). Nitrate and pH have nearly orthogonal
arrows, indicating a correlation close to 0. pH displays a shorter arrow, showing its
lesser importance for the ordination of the sites in the ordination plane. A plot of
axes 1 and 3 would emphasize its contribution to axis 3.

This example shows how useful a biplot representation can be in summarizing
the main features of a data set. Clusters and gradients of sites are obvious, as are
the correlations among the variables. The correlation biplot (scaling 2) is far more
informative than the visual examination of a correlation matrix among variables;
the latter can be obtained by typing cor (env).

Technical remark: vegan provides a simple plotting function for ordination
results, called plot.cca (). However, the basic use of this function provides
PCA plots where sites as well as variables are represented by points. This is mis-
leading, since the points representing the variables are actually the apices (tips) of
vectors that must be drawn for the plot to be interpreted correctly.

Supplementary sites and species can be added to a PCA plot through the func-
tion predict.cca (). Explanatory variables can be added through the function
envfit ().
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5.3.24 Combining Clustering and Ordination Results

Comparing a cluster analysis and an ordination can be fruitful to explain or confirm
the differences between groups of sites. Here, you will see two ways of combining
these results. The first differentiates clusters of sites by colours on the ordination
plot, the second overlays a dendrogram on the plot. Both are done on a single PCA
plot here (Fig. 5.3), but they can be drawn separately, of course.

¥ Ceroirning clustering and crdination resulcs
# S R R A E R AR AR EER SRR EEESEEEEREERE AR S AR

£ Clustering the obiects using the environmental data: Euclidean
f sistarce after standardizirng the wvarianles, Zollowed by Wa-a
f clustering

anv,w <- hclust{dist(scalalerv)), "ward™)

£ Zul Lke dendrogram o vield £ groups
vr <- cutree(env.w, k=4)
or’ <- levels({lacler(gr))

¥ 5al Lke s le soores, scal’rg 1
sit.scl <- scores(env.pca, cisplay="wa", scalirg=")
f Plot —he sites with cluster symbols ans co_ours f{sca_ing 1}
r <- wlet(eav.pecse, cdisplay-"wa"™, sca_ing-1, Zype-"n",
mair="PCA zorrelation | cluscars™)
ab’inc(v-0, lty-"detted™)
abline (h=0, lty="dotted™)
for (i in l:lergthdigzl))y |
poirtsi(git.scl[gr—1,], pch—{1<4+1), cex—2, col—- -1}
}

—ex-{siz.=scl, raw.-ameslerv), cex=.7, pos=3)

¥ &dd thke dendrogram

crocicluster(p, env.w, col="dark crey")

lagend (locator (1}, paste("Greup”,c(l:length{gxl))},
peca=1Zi+c(_:lencthi{grl)},
col=l-ci{l:lengzhigr1l}}, pt.cex=2}

Hint See how the coding of the symbols and colours is conditioned on the
number of groups automatically: object gr1 has been set to contain
numbers from I to the number of groups.
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PCA correlation + clusters
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Fig. 5.3 PCA biplot (scaling 1) of the Doubs environmental data with overlaid clustering results

5.3.3 PCA on Transformed Species Data

PCA being a linear method preserving the Euclidean distance among sites, it is not
naturally adapted to the analysis of species abundance data. However, transforming
these after Legendre and Gallagher (2001) alleviates this problem (Sect. 2.2.4).
Here is a quick application with a Hellinger pre-transformation on the fish data
(Fig. 5.4).
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£ PCA on the fish abundence data

# ER R A S S EESEE AT AR EE AR RIS TS

¥ He_lirger pre-transformaticn of the species data
spe.h <- cecosTand{spe, "he_l-Znger™)

spe.h.pca <- rdalspe.h)

spe.h.pca

f Plot eigeavalues and % ¢ variance for each axis

av <- spe.n.pcasfhAleig
evolot (av)

¥ PC2 biplots
cleanclct.pca{spe.h.pca, ahead=0)

# The species do not form clear groups like the environmental
# variables. However, see how the species replace one another
# along the site sequence.
# On the scaling 1 biplot, observe that 8 species contribute
# strongly to axes 1 and 2. Are these species partly of
# completely the same as those identified as indicator of the
# groups in Section 4.10.3?
PCA - scaling 1 PCA - scaling 2
2 ch
<
o
[V = 18U
[S] [S)
o = o
o
g d :
o 0 0
T %
25
=
p
! 24
g e
T T
23
T T T T T
-0.5 0.0 0.5 -0.5 0.0 0.5 1.0
PC1 PC1

Fig. 5.4 PCA biplots of the Hellinger-transformed fish species data
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For comparison, repeat the PCA on the original file spe without transformation.
Which ordination shows better the gradient of species contributions along the course
of the river?

Although PCA has a long history as a method devoted to tables of physical and
chemical variables, the recent introduction of species data pre-transformations has
opened up this powerful technique to the analysis of community data. Although
PCA itself is not modified and remains a linear ordination model, the pre-transfor-
mations ensure that the species data are treated according to their specificity, i.e.
without undue importance being given to double zeros. A scaling 1 PCA biplot thus
reveals the underlying gradients structuring the community; the sites are ordered
along the axes according to their positions along these gradients. The circle of
equilibrium contribution allows the identification of the species contributing most
to the plotted pair of axes. A scaling 2 biplot reveals the relationships among spe-
cies in a correlation-like fashion; since the data have been transformed, the correla-
tions are not completely equivalent to Pearson’s r computed on raw data.

The chi-square transformation can also be applied to species data prior to PCA.
In that case, the PCA solution is very similar, but not identical to a CA of the spe-
cies data. Although the two methods preserve the chi-square distance among the
sites, the calculation of the eigen-decomposition is not done in exactly the same
way and leads to different sets of eigenvalues and eigenvectors.

5.3.4 Domain of Application of PCA

Principal component analysis is a very powerful technique, but it has its limits. The
main application of PCA in ecology is the ordination of sites on the basis of
quantitative environmental variables or, after an appropriate transformation,
of community composition data. PCA has originally been defined for data with
multinormal distributions. In its applications in ecology, however, PCA is not very
sensitive to departure from multinormality, as long as the distributions are not exag-
geratedly skewed. The main computational step of PCA is the eigen-decomposition
of a dispersion matrix (linear covariances or correlations). Covariances must in turn
be computed on quantitative data — but see below for binary data. Here are, in more
detail, the conditions of application of PCA:

* PCA must be computed on a table of dimensionally homogeneous variables. The
reason is that it is the sum of the variances of the variables that is partitioned into
eigenvalues. Variables must be in the same physical units to produce a meaning-
ful sum of variances (the units of a variance is the square of the units of the
variable from which it was computed), or they must be dimensionless, which is
the case for standardized or log-transformed variables.
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* The data matrix must not be transposed since covariances or correlations among
objects are meaningless.

» Covariances and correlations are defined for quantitative variables. However,
PCA is very robust to variations in the precision of data. Since a Pearson correla-
tion coefficient on semi-quantitative data is equivalent to a Spearman’s correla-
tion, a PCA on such variables yields an ordination where the relationship among
variables is estimated using that measure.

* PCA can be applied to binary data. Gower (1966, in Legendre and Legendre
1998) has shown that, with binary descriptors, PCA positions the objects, in the
multidimensional space, at distances that are the square roots of complements of
simple matching coefficients S, (i.e. 4/1—S,) times a constant which is the
square root of the number of binary variables.

* Species presence—absence data can be subjected to a Hellinger or chord
transformation prior to PCA. The justification is that the Hellinger and chord dis-
tances computed on presence—absence data are both equal to
2 \/ 1—Ochiai similarity , so PCA after Hellinger or chord transformation pre-
serves the Ochiai distance among objects in scaling type 1 plots. We also know
that \/ 1—Ochiai similarity is a metric distance (Legendre and Legendre 1998,
Table 7.2) which is appropriate for the analysis of community composition
presence—absence data.

* Avoid the mistake of interpreting the relationships among variables based on the
proximities of the apices (tips) of the vector arrows instead of their angles in
biplots.

5.3.5 PCA Using Function PCA()

For someone who wants a quick assessment of the structure of his or her data, a
quick way is to use functions PCA () and biplot.PCA (). Here is how they work
(example on the Doubs environmental data).

¥ PCA or the ervirenmental dates set usirg PCA and biplot.zCA
# FhREREE A TR RLEFA ST E AT I m b AR mdmbd b bbbt ndbdnb s nd bt nddrsrdsrd

source ("PIAR™}) ¥ Irn the working directory or give path

¥ PCR; scaling 1 is the defau .t for bhiplots
env.PCA.P_1 <- PCA{(env, s-and=T3UE)
bivlot.?CA {env.PCALPT)

akb ine(r—0, lty—3}

abline (v=_10, Ity=3}
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¥ PCA; scaling 2 in the biplct
anv.PCA P2 «<— PCA{cnv, atand=TRUE)
bivlot.?CA (env.PCA.PLZ ,scaling=2)
abline (h=30, 1ltv=3)

ab_ine{v—=0, 1lty—3)

# The graphs may be mirror images of those cbtained with vegan.
# This is unimportant since the choice of the sign of the

# principal components, made within the PCA functions, is

# arbitrary.

5.4 Correspondence Analysis

5.4.1 Introduction

For a long time, CA has been one of the favourite tools for the analysis of species
presence—absence or abundance data. The raw data are first transformed into a
matrix Q of cell-by-cell contributions to the Pearson j? statistic, and the resulting
table is submitted to a singular value decomposition to compute its eigenvalues and
eigenvectors. The result is an ordination, where it is the y* distance (D, ) that is
preserved among sites instead of the Euclidean distance D,. The y* distance is not
influenced by the double zeros. Therefore, CA is a method adapted to the analysis
of species abundance data without pre-transformation. Note that the data submitted
to CA must be frequencies or frequency-like, dimensionally homogeneous and
non-negative; that is the case of species counts or presence—absence data.

For technical reasons not developed here, CA ordination produces one axis
fewer than min[n,p]. As in PCA, the orthogonal axes are ranked in decreasing order
of the variation they represent, but instead of the total variance of the data, the
variation is measured by a quantity called the total inertia (sum of squares of all
values in matrix Q, see Legendre and Legendre 1998, eq. 9.32). Individual eigen-
values are always smaller than 1. To know the amount of variation represented
along an axis, one divides the eigenvalue of this axis by the total inertia of the spe-
cies data matrix.

In CA, both the objects and the species are generally represented as points in the
same joint plot. As in PCA, two scalings of the results are most useful in ecology.
They are explained here for data matrices where objects are rows and species are
columns:

* CA scaling I: rows are at the centroids of columns. This scaling is the most
appropriate if one is primarily interested in the ordination of objects (sites).
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In the multidimensional space, the y* distance is preserved among objects.
Interpretation: (1) the distances among objects in the reduced space approximate
their »* distances. Thus, object points that are close to one another are likely to
be relatively similar in their species relative frequencies. (2) Any object found
near the point representing a species is likely to contain a high contribution of
that species. For presence—absence data, the object is more likely to possess the
state “1” for that species.

* CA scaling 2: columns are at the centroids of rows. This scaling is the most
appropriate if one is primarily interested in the ordination of species. In the
multidimensional space, the y*distance is preserved among species. Interpretation:
(1) the distances among species in the reduced space approximate their y? dis-
tances. Thus, species points that are close to one another are likely to have rela-
tively similar relative frequencies along the objects. (2) Any species that lies
close to the point representing an object is more likely to be found in that object,
or to have a higher frequency there than in objects that are further away in the
joint plot.

The Kaiser—Guttman criterion and the broken stick model, explained in
Sect. 5.3.2.3, can be applied to CA axes for guidance as to the number of axes to
retain. Our application below deals with the raw fish abundance data.

5.4.2 CA Using Function cca () of Package vegan

5.4.2.1 Running the Analysis and Drawing the Biplots

The procedure below closely resembles the one applied for PCA. First, let us run
the analysis and draw the Kaiser—Guttman and broken stick plots (Fig. 5.5):

# CA of the raw species dataset (original species abundances)
# FHRAFRFF AT E R TR AR T LA ET I m AT A sdm b d b drvbbdnmdRdnbrsmdddnddrrdsxdr

¥ Compuatc CA

spe.ca <— ccoalspe)

sSpe.ca

sunmary (soe,.ca} # default scaling 2
surrary(sce.ca, scalirg=1}

# The first axis has a large eigenvaluve. In CA, values over 0.6
# indicate a very strong gradient in the data. What proportion

# of the total inertia does the first axis account for?

# Note that the eigenvalues are the same in both scalings.

# The scaling affects the eigenvectors but not the eigenvalues.
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¥ Plot eigenvalues and % oI wvariance for each axis
{(evZ <- spe.calChSeiq)
avolot (ev2)

# Here the broken stick rule is more conservative than the
# other.

# The first axis is extremely dominant, as can be seen from
# the bar plots as well as the numerical results.

Eigenvalues

0.6 7 [

05 — —— Average eigenvalue
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Fig. 5.5 Kaiser—Guttman and broken-stick plots to help assess the number of interpretable axes
in CA. Application to the Doubs fish raw abundance data

It is time to draw the CA biplots of this analysis. Let us compare the two scalings
(Fig. 5.6).
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£ CA kiplots

# B
par{mfrow—c{_,2}}
f Scalirg 1:

plot(spe.ca, s
scaling 1™)

ites arce cerntrolds of specicos
czalirg=1, main="CA Zish abundances - biplot

£ 3calirg 2 (defsualt): species are centroids of sites
plot{spe.ca, main="CA Zisk abundances - biplot scaling 27)

Hint Here you could also produce a clustering and overlay its result on the

CA plot.
CA fish abundances - biplot scaling 1 CA fish abundances - biplot scaling 2
- ™
o
o
Y] "_ n TOX | o
< <
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o
|
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Fig. 5.6 CA biplots of the Doubs fish abundance data

The first axis opposes the lower section of the stream (sites 19-30) to the upper
portion. This is clearly a strong contrast, which explains why the first eigenvalue is
so high. Many species appear close to sites 19-30, indicating that they are more
abundant downstream. Many of them are actually absent from the upper part of the
river. The second axis contrasts the ten upstream sites to the intermediate ones.
Both groups of sites, which display short gradients on their own, are associated
with characteristic species. The scaling 2 plot shows how small groups of species
are distributed among the sites. One can see that the grayling (OMB), the bullhead
(CHA) and the varione (BLA) are found in the intermediate group of sites (11-18),
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while the brown trout (TRU), the Eurasian minnow (VAI) and the stone loach
(LOC) are found in a longer portion of the stream (approximately sites 1-18).

Observe how scalings 1 and 2 produce different plots. Scaling 1 shows the sites
at the (weighted) centre of mass of the species. This is appropriate to interpret site
proximities and find gradients or groups of sites. The converse is true for the scaling
2 biplot, where one can look for groups or replacement series of species. In both
cases, care should be taken for the interpretation of species close to the origin of the
graph. This proximity could mean either that the species is at its optimum in the
mid-range of the ecological gradients represented by the axes, or that it is present
everywhere along the gradient.

5.4.2.2 Passive (Post Hoc) Explanation of Axes Using
Environmental Variables

Although there are means of incorporating explanatory variables directly in the
ordination process (canonical ordination, see Chap. 6), one may be interested in
interpreting a simple ordination by means of external variables. This can be done
in vegan by means of the function envfit (). According to its author, Jari
Oksanen, “env£fit finds vectors or factor averages of environmental variables.
[...] The projections of points onto vectors have maximum correlation with
corresponding environmental variables, and the factors show the averages of factor
levels™.

The result is an object containing coordinates of factor levels (points) or arrow-
heads (quantitative variables) that can be used to project these variables into the
ordination diagram (Fig. 5.7):

£ A posteriori projection of environmenzal veriables in a CA
¥ The last plot wroouced (CAR scaling 2) must be active

spe.as.eny <— anviit(spe.oa, anv)

rlot{spe.ca.env)

£ This has added the envirconmental variabkles te the last kiplot
drawn

# Does this new information help interpret the biplot?

Hint  This is a post hoc interpretation of ordination axes. Compare with Chap. 6.



5.4 Correspondence Analysis 137

CA fish abundances - biplot scaling 2

1

alt

TRU

CA2

oxy

16 BLA

Fig. 5.7 CA biplot (scaling 2) of the Doubs fish abundance data with a posteriori projection of
environmental variables

envfit () also proposes permutation tests to assess the significance of the r?
of each explanatory variable regressed on the two axes of the biplot. But this is not,
by far, the best way to test the effect of explanatory variables on a table of response
variables. We explore this topic in Chap. 6.
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5.4.2.3 Reordering the Data Table on the Basis of an Ordination Axis

A CA result is sometimes used to reorder the data table according to the first ordi-
nation axis. A compact form of ordered table is provided by the vegan function
vegemite () already used in Chap. 4, which can use the information provided by
an ordination computed in vegan:

¥ Species data tzhle crdered after the CA resuls
# B R R o R I o O o i R

vegerlite (spe, spe.ca)

The left-right and up-down orderings in this ordered
table depends on the (arbitrary} orientation of the
ordination axes.

Cbserve that the ordering is not optimal since it is done
only on the basis of the first axis. Therefore, sites

1 to 10 and 11 to 18 (separated along axis 2) and their
corresponding characteristic species are interspersed.

He W W R W H W

5.4.3 CA Using Function CA()

As in the case of PCA, we propose a simple CA function: CA (). Here is how to
use it on the fish data.

£ CA using CA(} fuzction

# AR Kk ok ok ok w ok kA w o ke ok kb ok

scurce ("CL.32"™) # Func:tion in the woriing directory or giwve path
spe.CA.2L <- CA(spe)
biglot(spe.Ch.?L, cex=1)

f Ordering of The data tabkle Zollowing the first Ch axis
f Thke takle is trarspeszed, &5 i1 vegemize() output
surmrary (sce.Ch.P2)
“i{spelorderi{spe.CA.PLEF[,11) ,,order (spe . CA.PLEV, 211 7))

Hints  The use of matrices F and V to reorder the table relates to the symbol-
ism used by Legendre and Legendre (1998, Section 9.4) to explain the
mathematics of correspondence analysis. Using Vhat instead of F
and Fhat instead of V (i.e. using the scaling 2 projection) would have
produced the same ordered table.

Argument cex of the biplot () function is here to adapt the size
of the symbols and the site and species names to the plot. The default
is cex=2. Smaller values produce smaller symbols and characters.
They may be useful for plots containing many sites and species.
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5.4.4 Arch Effect and Detrended Correspondence Analysis

Long environmental gradients often support a succession of species. Since the spe-
cies that are controlled by environmental factors tend to have unimodal distribu-
tions, a long gradient may encompass sites that, at both ends of the gradient, have
no species in common; thus, their distance reaches a maximum value (or their simi-
larity is 0). But if one looks at either side of the succession, contiguous sites con-
tinue to grow more different from each other. Therefore, instead of a linear trend,
the gradient is represented on a pair of CA axes as an arch. Several detrending
techniques have been proposed to counter this effect and straighten up gradients in
ordination diagrams, leading to detrended correspondence analysis (DCA):

e Detrending by segments combined with nonlinear rescaling: axis I is divided
into an arbitrary number of segments and, within each one, the mean of the
object scores along axis 2 is made equal to zero. The number of segments has a
large influence on the result. The DCA results presented in the literature suggest
that the scores along the second axis are essentially meaningless. The authors of
this book strongly warn against the use of this form of DCA as an ordination
technique; however, it may be used to estimate the “gradient length” of the first
ordination axis, expressed in standard deviation units of species turnover. A gra-
dient length larger than 4 indicates that some species have a unimodal response
along the axis (ter Braak and Smilauer 2002).

e Detrending by polynomials: another line of reasoning about the origin of the
arch effect leads to the observation that when an arch occurs, the second axis can
be seen as quadratically related to the first (i.e. it is the first axis to the power 2).
This explains for the parabolic shape of the scatter of points. Hence, a solution
is to make the second axis not only linearly, but also quadratically independent
from the first. Although intuitively attractive, this method of detrending has to
be applied with caution because it actually imposes a constraining model on the
data.

DCA by segments is available in package vegan (function decoranaf()).
In the output of this function, the gradient length of the axes is called “Axis
lengths”.

Given all its problems (see discussion in Legendre and Legendre 1998,
pp. 465-472), we do not describe this method further here.
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An even more extreme effect of the same kind exists in PCA. It is called the
horseshoe effect because, in the case of strong gradients, the sites of both ends bend
inwards and appear closer than other pairs. This is due to the fact that PCA
considers double zeros as resemblances. Consequently, sites located at opposite
ends of an ecological gradient, having many double zeros, “resemble” each other
on this respect. The Hellinger or chord transformation of the species data partly
alleviates this problem.

5.4.5 Multiple Correspondence Analysis

Multiple correspondence analysis (MCA) is the counterpart of PCA for the ordina-
tion of a table of categorical variables, i.e. a data frame in which all variables are
factors. It is implemented in the function mea () of the package MASS and, with
more options, in the function MCA () of the package FactoMineR.

5.5 Principal Coordinate Analysis

5.5.1 Introduction

PCA as well as CA impose the distance preserved among objects: the Euclidean
distance (and several others with pre-transformations) for PCA and the y* distance
for CA. If one wishes to ordinate objects on the basis of another distance measure,
more appropriate to the problem at hand, then PCoA 1is the method of choice. It pro-
vides a Euclidean representation of a set of objects whose relationships are mea-
sured by any similarity or distance measure chosen by the user. For example, if the
coefficient is Gower’s index S, ;, which can combine descriptors of many mathemat-
ical types into a single measure of resemblance, then the ordination represents the
relationships among the objects based upon these many different variables. This
would not be possible with PCA or CA.

Like PCA and CA, PCoA produces a set of orthogonal axes whose importance
is measured by eigenvalues. Since it is based on an association matrix, it can
directly represent the relationships either among objects (if the association matrix
was in Q mode) or variables (if the association matrix was in R mode). If it is neces-
sary to project variables, e.g. species, on a PCoA ordination of the objects, the
variables can be related a posteriori to the ordination axes using correlations or
weighted averages and drawn on the ordination plot. In the case of Euclidean asso-
ciation measures, PCoA behaves in a Euclidean manner. For instance, computing a
Euclidean distance among sites and running a PCoA yields the same results as
running a PCA on a covariance matrix of the same data and looking at the scaling 1
ordination results. But if the association coefficient used is non-Euclidean, then
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PCoA may react by producing several negative eigenvalues in addition to the
positive ones (and a null eigenvalue in-between). The axes corresponding to nega-
tive eigenvalues cannot be represented on real ordination axes since they are com-
plex. In most applications, this does not affect the representation of the objects on
the several first principal axes, but it can lead to problems if the largest negative
eigenvalues are of the same magnitude in absolute value as the first positive ones.

There are technical solutions to this problem, which consist in adding a constant
to either the squared distances among objects (Lingoes correction) or to the dis-
tances themselves (Cailliez correction) (Gower and Legendre 1986). In the function
cmdscale () presented below, the Cailliez correction is obtained with the argu-
ment add=TRUE.

One can avoid complex axes by keeping the eigenvectors with their original
Euclidean norm (vector length=1) instead of dividing each one by the square root
of its eigenvalue, as is usual in the PCoA procedure. This workaround is used in the
MEM spatial analysis presented in Chap. 7. It should not be used for routine ordina-
tion by PCoA since eigenvectors that have not been rescaled to \/eigenvalue cannot
be used to produce plots that preserve the original distances among the objects.

The ordination axes of a PCoA can be interpreted like those of a PCA or CA:
proximity of objects represents similarity in the sense of the association measure
used.

5.5.2 Application to the Doubs Data Set Using
cmdscale and vegan

As an example, let us compute a matrix of Bray—Curtis dissimilarities among sites,
and subject this matrix to PCoA. In vegan, there is a way to project weighted aver-
ages of species abundances on a PCoA plot, by means of function wascores ()
(Fig. 5.8). Since species are projected as weighted averages of their contributions to
the sites, their interpretation with respect to the sites is done as in CA.

¥ PCoA on a Bray-Curtis dissimilarity matrix of Zish species
# mhmA KA E A wA b AR A b A Ak k bk bk m b m kb mwhwhk kb m kR bRk ok w ok m ok ok w ok ok bk

spe,bray <— vegdisi{spe)

spe.b.pocos <— cmdscale{spe.oray, k=(arcwisp=s)-1), =ig="RU~]
£ Plot of the sites and weighted averazcge vnrolection of species
orciplo-{scores(spe.b.pcoal ,c(l,2)], type-"t",

mair—"PCck with species™)
abline (h=0, lty=3})
abline (v=30, 1lty=3)
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¥ Rdd species
spe.we <— wascores(spe.b.pcoadpoints ,1:2

; 1, =pe)
texT (spe.wa, zcwnames(spe.wa), cex=0.7, co

f
1="red")

Hint Observe the use of two vegan functions, ordiplot () and
scores (), to produce the ordination plot. vegan is a world in itself
and often requires special functions to handle its own results.

PCoA with species
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Fig. 5.8 PCoA biplot of a Bray—Curtis dissimilarity matrix of the raw Doubs fish abundance data.
A posteriori projection of the species as weighted averages. The relationships between species and
sites are interpreted as in CA
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5.5.3 Application to the Doubs Data Set Using pcoa ()

There is another way to achieve double projection. It is based on correlations of the
environmental variables with the PCoA ordination axes (see Legendre and Legendre
1998, p. 431). If a PCoA of a matrix of Euclidean distances and scaling 1 is
computed, this method produces vectors corresponding to what would be obtained
in a scaling 1 PCA biplot of the same data. This representation is available in
functions pcoa () and biplot.pcoa (), both available in packages ape and
PCNM.

Here is how these functions work. In our example, PCoA is run on a Euclidean
distance matrix computed on a Hellinger-transformed species abundance matrix;
the result of these two operations is a Hellinger distance matrix. In such a case, it
is actually better (simpler and faster) to run a PCA directly on the transformed spe-
cies data, but here the idea is to allow a comparison with the PCA run presented in
Sect. 5.3.3. Two biplots are proposed, with projection of the raw and standardized
species abundances. Compare the result below (Fig. 5.9) with the biplot of the PCA
scaling 1 result.

¥ PCol and projecticn of species vectors using furction poos{)
# mhmA KA E Ak wAk bk b w bk kA hk w kb bk bk kb mxhwhk b b w kb d kb wk bbb mwawhmdh kb wkww

spe.h.pcoca <- pecoa{distispe.h))

¥ Biplo:ts

par{mirow=c{_,2))

f First blp_oct: Hellirger-transfcrmed species data
biclol.pooa({spe.h.pooa, spe.k, dir.axisZ=-_)
abline (b=, 1ty=3)

ak’ine (v=C, 1ty=3)

¥ Second oiplot: standardized Hel  “ngev-trensformed species data
spe.std <- applyispe.k, 2, scale)
biplot.pcoa(spa.h.peoa, spe.sta, diz.axisZ=-1)
ab_ine (h=0, Lty=3)

ab_ine(v=C, lty=3)

# How does this result compare with that of the PCA?

Hints  For projection of species data onto a PCoA plot, it is important to use
the species data with the same transformation (if any) as the one used
to compute the dissimilarity matrix. The standardization proposed
here as an alternative may help better visualize the variables if they
have very different variances.

The argument dir.axis2=-1 reverses axis 2 to make the result
directly comparable with the PCA result in Fig. 5.4, scaling I.
Remember that the signs of ordination axes are arbitrary.
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PCoA biplot PCoA biplot
Response variables projected Response variables projected
as in PCA with scaling 1 as in PCA with scaling 1
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Fig. 5.9 PCoA biplots of the fish data obtained with functions pcoa () and biplot.pcoa().
Left: Hellinger-transformed raw species variables. Right: standardized Hellinger-transformed species.
The bottom and left-hand scales are for the objects, the top and right-hand scales are for the species

As mentioned above, PCoA should actually be reserved to situations where no
Euclidean measure is available or selected. With Jaccard and Sgrensen dissimilarity
matrices computed by ade4, for example, the ordination is fully Euclidean. In
other cases, however, such as Bray—Curtis dissimilarities computed with vegan,
the dissimilarity matrices may not be Euclidean (see Sect. 3.3.5). This results in
PCoA producing some negative eigenvalues. Lingoes and Cailliez corrections are
available in the function pcoa (). This function provides the eigenvalues along
with a broken stick comparison in its output. Compare the examples below:

f Cemoarison of PCoA results with Euclidezn znd non-Euclidean
¥ cissimilarity matrices
# E e R I o o o e o L R R i o S o e o

¥ PCof on a Hellinger distance matrix
is,auclid(dist (sve.h))

sunmmary {s: h.pecoa)

spe.h.pooesvalues
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¥ PCoA cn a Bray-Curtils dissimilarity matrizx
is,euclid(spe.bray}

spe.brav.ooos <- pooca{sce.bray)

spo.bray.ooosdva acs # Observe eigenvalues 18 and following

# PCol cn the square root of a Sray-Curtis dissimilarity matzix
is.euclidisgrt{sce.bray))

spe.braysc.pcoa <- pcca(sgrti{spe.bray))

spe.braysc.pcoaSvalues # Observe the eigenvalues

£ PColA on a Bray—-Curtis cissimilarZty matriz with Lingces
correction

spc.brayl.pcoa <—- pcoa(spc.pray, corrcc-lon = "_ingocs™)
spe.bravl.pcoagvelues # Observe the eigenvalues

$ PCoBA cn a Bray-Curtis dissimilar’ty matrix wicth CaZlliez
correction

spe.bravc.pocoa <— pooalspe.oray, correction = "czilliez™)
spe.brave.pooasvalues # Observe the eigenvalues

# If you want to choose the analysis displaying the highest
# proportion of variation on axes 1+2, which solution will you
# select among those above?

5.6 Nonmetric Multidimensional Scaling

5.6.1 Introduction

If the researcher’s priority is not to preserve the exact distances among objects in
an ordination plot, but rather to represent as well as possible the ordering relation-
ships among objects in a small and specified number of axes, nonmetric multidi-
mensional scaling (NMDS) may be the solution. Like PCoA, NMDS can produce
ordinations of objects from any distance matrix. The method can cope with missing
distances, as long as there are enough measures left to position each object with
respect to a few others. NMDS is not an eigenvalue technique, and it does not maxi-
mize the variability associated with individual axes of the ordination. As a result,
plots may arbitrarily be rotated, centred or inverted. The procedure goes as follows
(very schematically; for details see Legendre and Legendre 1998, p. 445 ef seq.):

* Specify the number m of axes (dimensions) sought.
» Construct an initial configuration of the objects in the m dimensions, to be used
as a starting point of an iterative adjustment process. This is a tricky step, since
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the end-result may depend on the starting configuration. A PCoA ordination
may be a good starting point. Otherwise, try many independent runs with ran-
dom initial configurations.

* An iterative procedure tries to position the objects in the requested number of
dimensions in such a way as to minimize a stress function (scaled from O to 1),
which measures how far the distances in the reduced-space configuration are
from being monotonic to the original distances in the association matrix.

e The adjustment goes on until the stress value can no more be lowered, or until it
reaches a predetermined value (tolerated lack-of-fit).

e Most NMDS programs rotate the final solution using PCA for easier
interpretation.

For a given and small number of axes (e.g. m=2 or 3), NMDS often achieves a
less deformed representation of the distance relationships among objects than a
PCoA in the same number of dimensions. But NMDS is a computer-intensive tech-
nique exposed to the risk of suboptimal solutions in the iterative process. Indeed,
the objective stress function to minimize often reaches a local minimum larger than
the true minimum.

5.6.2 Application to the Fish Data

NMDS can be performed in R with the elegant function metaMDS () from the
vegan package. metaMDS () accepts raw data or distance matrices. Let us apply
it to the fish abundances using the Bray—Curtis index. metaMDS () uses random
starts and iteratively tries to find the best possible solution. Species points are added
to the ordination plot using wascores (). See Fig. 5.10.

If one must use a distance matrix with missing values, NMDS can be computed
with the function isoMDS (). An initial configuration must be provided in the
form of a matrix positioning the sites (argument y) in the number of dimensions
specified for the analysis (argument k). To reduce the risk of reaching a local
minimum, we suggest to use the function bestnmds () of the package 1labdsv.
This function, which is a wrapper for isoMDS (), computes the analysis a
user-specified number of times (argument itr) with internally produced random
initial configurations. The solution with the smallest stress value is retained by the
function.

FOAMDS applied tfo the Zish species - Bray-Curtis distance matrzix
# mh Ak kA m A w ok k kA kA bk km kb bk x bk h ok kdw kb bk d kbbb mh b b mhd whohbomdowkd

spe.nmds <- me.aMMDS (spe, distance="bray")
spe.nmds
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spe.nmdsSstress
ploz (spe.nnds, type="I", malr=paste ("KMDS/Bray - Stress =",
round{spe.nmassstress, 3)))

# How does this result compare with those of PCA, CA and PCoA?

NMDS/Bray - Stress = 8.835
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Fig. 5.10 NMDS biplot of a Bray—Curtis dissimilarity matrix of the fish abundance data.
Species added using weighted averages. The relationships between species and sites are
interpreted as in CA

A useful way to assess the appropriateness of an NMDS result is to compare, in
a Shepard diagram, the distances among objects in the ordination plot with the origi-
nal distances. In addition, the goodness-of-fit of the ordination is measured as the R?
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of either a linear or a non-linear regression of the NMDS distances on the original
ones. All this is possible in R using vegan’s functions stressplot () and
goodness () (Fig. 5.11):

: Sheo - ess o fi
¥ Sheward ot and gocdness o fit
# REkmAdFhrmdnkbhbdbnrdbiddrnbbbrmdnrddr

par{mfrzow=c({l,2})

stressplot (spe.nnds, main="Skepard p’ot")

cof = goodnessi{sce.nmds)

plot {(spe.nnds, type="T", rar="Goodness of fiI')
polints(spe.amds, display="sltes", cex=goI*2)

Hint See how the goodness-of-fit of individual sites is represented using the
results of the goodness () analysis by way of the cex argument of
the points () function. Poorly fitted sites have larger bubbles.

Shepard plot Goodness of fit
S | Non-metric fit, R2 = 0.992 °
® u‘SZaTﬁ‘,"%z':o.gse o8 ,u_) b @
o |
[aY] g
2 o ©
o
2 o o D
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c 0 ] g e -
o CHE .
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Observed Dissimilarity NMDS1

Fig. 5.11 Shepard and goodness-of-fit diagrams of the NMDS result presented in Fig. 5.10

As with the other ordination methods, it is possible to add information coming
from a clustering result to an NMDS ordination plot. For instance, compute a Ward
clustering of the Bray—Curtis matrix, extract four groups and colourize the sites
according to them:
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¥ Ado colours Zrom a clustering result to an NMDS p_ot
t— e e i e e e ki
#
+

Warc clustering ¢Z Bray-Curiils dissimi_erity matrix
and extracticn of Ifour groaps
spe.brey.ward <- hclast(spe.bray, "ward")
spe.bw.groups <- cutree(spe.brev.wa-c, k—4)
gre.lev <— lewvels (facTor{asve.bw.grouos))

# Commdination witn XMDS result
sit.sc <- scores(spe.nmwds)
p <- ordiclet(sit.sc, type="n",

main="KMDS/Bray - clusters Ward/3ray")

fer (L in l:length{gro.lev)}) |
poinTs(sit.sclsce.bw.grotesa==1, , pch=(14-1), cex=%, col=1+1)
}

text(git.so, row.mames (spe), pos=4, cax=0.7)

# Add the dendrogran

ordic’uster{o, sve.hray.waro, occ’-"dark grey™)

legerd (locazor (), waste("Group",c{ :_engta({grp.lev))i,

ch-14+c{l:_cagth{gzp._cv)), co’-l+c{l:lcngthi{grs.lev)),

pt.cex=2}

5.7 Handwritten Ordination Function

To conclude this chapter, let us dive into the bowels of an ordination method...

The Code It Yourself corner #3

Legendre and Legendre (1998) provide the algebra necessary to program the

ordination methods seen above directly “from scratch”, i.e., using the matrix
algebra functions implemented in R. While it is not the purpose of this book

to do this for all methods, we provide an example that could stimulate the

interest among users. After all, numerical ecology is a living science, and

anybody could one day stumble upon a situation for which no ready-made

function exists. The researcher may then be interested in developing his or

her own method and write the functions to implement it.

The example below is based on the algebraic development presented in
Legendre and Legendre (1998), Section 9.1. It is presented in the form of a
function, the kind that any user could write for her or his own use. The steps
are the following for a PCA on a covariance matrix. To obtain a PCA on a
correlation matrix, one has to standardize the data before using the function,

or implement this as an option in the function itself.

1. Compute the covariance matrix S of the original or centred data matrix.

2. Compute the eigenvectors and eigenvalues of S (egs. 9.1 and 9.2).



150

5 Unconstrained Ordination

3. Extract matrix U of the eigenvectors and compute matrix F of the principal

components (eq. 9.4) for the scaling I biplot.

4. Computation of matrices U2 and G for the scaling 2 biplot.
5. Output of the results.

A simple funciicn to perfcrm 2CA

myECh <—- function(¥Y) {
Y.onat <= az.matrix{¥}
obect . .nanes <- rowremes {Y)
var.rames <— co_nam=s (Y}

Centre the data (will ke needed to compute F)
V.cerl <- scale(Y.mal, cenler=TR.Z, scale=7ALEZR)

Covariance matrix 3
Y.cov <— cov(Y.cent)

Cigenvectars and elgenvalues of 8 (ec. 2.7 and 3.2)
Toeig <- eigen(¥.cow)
Copy the elgenvectors to matrix U (used to reprasent

varialb_es in sca_ing 1 bipleols)
L <= Y.elg$veco.ors
rownarnes (J) <— var.ramnes

CorwiuTe matrix I {(used to represent abjecTs
in sca_irg 1 p_cts)

F <= Y.cent%*%U ¥ eq. 9.4
rownames (K} <— objsct.names

Compale nalrix U2 (Lo represaenl variables in scaling 2

piats) Legendre and Legendre 1998, unnumbersed ecuation p. 397)
L2 <= U%~*gaiac(¥Y.eigSvalues™(.53)

rownares (J2) <— var.names

Corpute matrix G {toc represent cojects In scaling 7 plots)
Legendre and Legencdre 1998, unnumbered equation p. £04)

G <- Fi*idiag(V.eigfva_ues™0.3)

rownareas (G) <- objsot.names

Outecuz of a lisz containing a2ll zhe results

result <- list{¥Y.eigSvalues,U,>, 2,0}

nares (result} <- c({"eigenwva’_ues™, 0", "p", "g2", "G")
result
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This function should give exactly the same results as the function PCA ()
used in Section 5.3.5. Now try it on the Hellinger-transformed fish species
data and compare the results.

To make your function active, either save it in a file (called for instance
myPCA.R) and source it, or (less elegant) copy the whole code directly into
your R console.

¥ PCA on “isk spercies usging hand-written furcticn

figh.ZCA <- myPCR(soa. )

summery (Zish.PCA)

# Ligenvalues

Lish.2CRA%elgenva_ues

¥ BEigenvalues expressed as percentages

round (Z0C*[ish.PCASelgernva_des/sum (Lish.2CASelgenva_les), 2)
# Alternate computaticon oI <otal variastion (denominator)
~ound (C0C*fiah . PCAScigerva des/surn (diag{covispe.hy} ), 2)

¥ Cumulative eigenvzlues expressed as percentages

round {cumsur {Z0C*fish. PCASeigenvalues/sum(fish.?CASeigenva_aes)}
iy

# Biplots

par{mfrow=c({l,2) )

£ Zcaling 1 biplot
biplot(fish.PCASF, Zish.PBCASL)
# Zealing 2 biplot

biplot (fisnh.PCRSG, Zish.PCRASC2)

Now you could plot other pairs of axes, for instance axes 1 and 3.
Compared to CA or PCoA, the code above is rather straightforward. But
nothing prevents you from trying to program another method. You can also
display the code of the CA () and pcoa () functions and interpret them with
the manual in hand.






Chapter 6
Canonical Ordination

6.1 Objectives

Simple (unconstrained) ordination analyses one data matrix and reveals its major
structure in a graph constructed from a reduced set of orthogonal axes. It is there-
fore a passive form of analysis, and the user interprets the ordination results a
posteriori, as described in Chap. 5. Canonical ordination, on the contrary, associ-
ates two or more data sets in the ordination process itself. Consequently, if one
wishes to extract structures of a data set that are related to structures in other data
sets, and/or formally test statistical hypotheses about the significance of these rela-
tionships, canonical ordination is the way to go.

Canonical ordination methods can be classified into two groups: symmetrical
and asymmetrical.

Practically, you will:

* Learn how to choose among various canonical ordination techniques: redun-
dancy analysis (RDA), distance-based redundancy analysis (db-RDA), canoni-
cal correspondence analysis (CCA), linear discriminant analysis (LDA),
canonical correlation analysis (CCorA), co-inertia analysis (ColA) and multiple
factor analysis (MFA)

e Compute them using the correct options and properly interpret the results

* Apply these techniques to the Doubs River data

» Explore particular applications of some canonical ordination methods, for
instance, variation partitioning and multivariate analysis of variance (MANOVA)
by RDA

*  Write your own RDA function

D. Borcard et al., Numerical Ecology with R, Use R, 153
DOI 10.1007/978-1-4419-7976-6_6, © Springer Science+Business Media, LLC 2011
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6.2 Canonical Ordination Overview

In the methods explored in Chap. 5, the ordination procedure itself is not influenced
by external variables; these may be only considered after the computation of the
ordination. One lets the data matrix express the relationships among objects and
variables without constraint. This is an exploratory, descriptive approach. Canonical
ordination, on the contrary, explicitly explores the relationships between two matri-
ces: a response matrix and an explanatory matrix in some cases (asymmetrical
analysis), and two matrices with symmetrical roles in other cases. Both matrices are
used in the production of the ordination.

The way to combine the information of two (or, in some cases, more) data matri-
ces depends on the method of analysis. We first explore the two asymmetrical
methods that are mostly used in ecology nowadays, i.e. redundancy analysis (RDA)
and canonical correspondence analysis (CCA). Both combine multiple regression
with classical ordination (PCA or CA). Partial RDA is also explored, as well as a
procedure of variation partitioning based on this method. The significance of
canonical ordinations are tested by means of permutations. After that, we devote
short sections to linear discriminant analysis (LDA), which looks for a combination
of quantitative variables to explain a predefined grouping of the objects, and to
canonical correlation analysis (CCorA), co-inertia analysis (ColA) and multiple
factor analysis (MFA), three symmetrical methods that compute eigenvectors
describing the common structure of two or several data sets.

6.3 Redundancy Analysis

6.3.1 Introduction

RDA is a method combining regression and principal component analysis (PCA).
It is a direct extension of regression analysis to model multivariate response data.
RDA is an extremely powerful tool in the hands of ecologists, especially since the
introduction of the Legendre and Gallagher (2001) transformations that open RDA
to the analysis of community composition data tables (transformation-based RDA
or tb-RDA).

Conceptually, RDA is a multivariate (meaning multiresponse) multiple linear
regression followed by a PCA of the table of fitted values. It works as follows, on
a matrix Y of centred response data and a matrix X of centred (or, more generally,
standardized) explanatory variables:
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* Regress each (centred) y variable on explanatory table X and compute the fitted
(¥) (this is the only required matrix in most analyses) and residual (y ) vectors
(if needed). Assemble all vectors ¥ into a matrix Y of fitted values

e Compute a PCA of the matrix Y of fitted values; this analysis produces a vector
of canonical eigenvalues and a matrix U of canonical eigenvectors

* Use matrix U to compute two types of ordination site scores: use either the origi-
nal centred matrix Y to obtain an ordination in the space of the original variables
Y (i.e. compute YU, obtaining site scores called “Site scores (weighted sums of
site scores)” in vegan), or use the matrix Y of fitted values to obtain an ordina-
tion in the space of variables X (i.e. compute YU, which produces fitted site
scores called “Site constraints (linear combinations of constraining variables)”
in vegan)

e The residual values from the multiple regressions (i.e. Yres=Y—Y) may also be
submitted to a PCA to obtain an unconstrained ordination of the residuals. This
partial PCA, which is not strictly speaking part of the RDA, is computed by
vegan’s rda () function

Additional information on the algebra of RDA is presented in the Code it your-
self corner at the end of this section.

As can be seen from the conceptual steps presented above, RDA computes axes
that are linear combinations of the explanatory variables. In other words, this
method seeks, in successive order, a series of linear combinations of the explana-
tory variables that best explain the variation of the response matrix. The axes
defined in the space of the explanatory variables are orthogonal to one another.
RDA is therefore a constrained ordination procedure. The difference with uncon-
strained ordination is important: the matrix of explanatory variables conditions the
“weights” (eigenvalues), the orthogonality and the direction of the ordination axes.
In RDA, one can truly say that the axes explain or model (in the statistical sense)
the variation of the dependent matrix. Furthermore, a hypothesis (H,) of absence of
linear relationship between Y and X can be tested in RDA; this is not the case in
PCA.

An RDA produces min[p, m, n—1] canonical axes, where n is the number of
objects and m is the number of degrees of freedom of the model (number of numeric
explanatory variables, including levels of factors if qualitative explanatory variables
are included; a factor with k classes requires (k—1) dummy variables for coding, so
there are (k—1) degrees of freedom for this factor). Each of the canonical axes is a
linear combination (i.e. a multiple regression model) of all explanatory variables.
RDA is usually computed, for convenience, on standardized explanatory variables; the
fitted values of the regressions, as well as the canonical analysis results, are unchanged
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by standardization of the X variables.' In vegan’s rda () function, the variation of
the data matrix that cannot be explained by the environmental variables (i.e. the
residuals of the regressions) is expressed by the unconstrained PCA eigenvalues,
which are given after the canonical eigenvalues.

For the reasons explained in Chap. 5 about PCA, an RDA can be computed on
a covariance or a correlation response matrix. To obtain an analysis on the correla-
tion response matrix, standardization of the response data is done by the option
scale=TRUE in vegan’s rda ().

The statistical significance of an RDA (global model) and that of individual
canonical axes can be tested by permutations. These tests are introduced in due
course.

6.3.2 RDA of the Doubs River Data

You will now explore various aspects of RDA. To achieve this, you will first pre-
pare not only the data sets as usual, but also transform a variable and divide the
explanatory variables into two subsets.

6.3.2.1 Preparation of the Data

¥ _cad regulired packages
library (accd)
livrary (vegan)
lisrarvi{peckfor) # Ava’lable on E-Forge,
# CRL= htips://r-Zcrge.r-project.crg/B/2group 1d=1585
“r Mac08 ¥, the gfortrar tackace is raquired by the
ferward.sel () Zunction oI packfor, so users must Install the
¥ gfortran compiler. Choose 'Macdd X7 in the
¥ ‘oran.r-project.org’ window, then ‘toolsg’ .
linrary (MASS)
liorarvie_lipse)
liorary (FactoMineR)

i
i

¥ ARdditiona . funoctions
scurce {"evp_oL.R™)
source ("haoplaoT .R™)

'Note also that in many cases the explanatory variables are not dimensionally homogeneous.
In such cases an effect of standardization is that the absolute values of the canonical coefficients
(i.e. the regression coefficients of the models) measure which variable(s) is or are most important
to explain each canonical axis.
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+ .mport the data from CSv IZiles

spe <- resd.csv("Dcocubs3pe.csv", row.names=_}
anv <— rcead.cav ("DoubsEnv.casv", row.namoes=1)
spa <- read.csv {"DoubsSpa,csv", row.namas=1}
£ Rerove capty site &

spe <— spel-8,]

env <- env[-B,]

spa <— spal-8,]

£ Zet aside the wvariable 'des' {(distance Zrom the scurce) for
later ase
das <— enwv[, ]

£ Remove the 'das’ varisble from the env dataset

anv <—- anv[,—-_]

f Recode the slowe varizble (wen) inzo a factor (qualitatiwve)
¥ variable (to show zicw these zre hancled irn the crdicaticns)
penz <- rep("very steep", nrowlenv))

pen? enviven <= cuartile(erviven) £]17 = "staep”
pen? ‘envioen <= guanlile(envicen) 3]0 = "noderale”
poen? Joavicen <= guantiic{cnvicen) [2]10 = "low"

pen? <- Zzctori{pen?, levels = c¢("_ow", "moderaze™, "steep”,
"very stecp”))

—anle (pen)

f Creaste an cnv2 data Zrame with s_ope as & g¢ualltative varizb_c

env? <- env

envZspen <- penZ

£ Creste two subssts oI exp_anstory variaoles

£ Pk cgraphy (upstream-downstrzam gradienz)

anviooo <— env[,c(l:3)

nanes (envtopo)

¥ Water qua_ity

envchem <- env([,c{4:10)]

manss (erveaemn)

f Hellirger-transform the scecilies dataset
spe.hel <- deccstarnd(spe, "hel irger")

6.3.2.2 RDA Using vegan

vegan allows the computation of an RDA in two different ways. The simplest
syntax is to list the names of the objects involved separated by commas:

simpleRDA <- rda(Y,X,W)
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where Y is the response matrix, X is the matrix of explanatory variables and W is
an optional matrix of covariables (variables whose variation is to be controlled for
in a partial analysis).

This call, although simple, has some limitations. Its main drawback is that it
does not allow factors (qualitative variables) to be included in the explanatory and
covariable matrices. Therefore, in all but the simplest applications, it is better to use
the formula interface:

formulaRDA <- rda(Y ~ wvarl + factorA + var2*var3 +
Condition(vard), data=XWdata)

In this example, Y is the response matrix; the constraint includes a quantitative
variable (varl), a factor (factorA), an interaction term between variables 2 and
3, whereas the effect of var4 is partialled out. The explanatory variables and the
covariable are in object XWdata, which must have the class data.frame.

This is the same kind of formula as used in 1m () and other R functions devoted
to regression. We use it in the example below. For more information about this
topic, consult the rda () help file.

¥ RDA of the Hdellirger-transformed fish species data constrained
¥ by a2ll the ervironmental variables cortaired in envz
¥ Observe the shortcut formula

spe.rda <— raai{soa.hel ~ ., envi}
surmmary (soe.rday # Sca’ing 2 (default)

# Here the default choices are used, i.e. scale=FALSE (RDA on
# a covariance matrix) and scaling=2.

Hint See the shortcut to use all variables present in object env2, without
having to name them.

Here is an excerpt of the output:

Call:
~da(formula = spe.hel ~ alt + pen + deb + pH + dur + pho + nit +
amm + oxy + dbo, data = env?)

Partitioning of wvariance:
Inertia Proportion
Total 0.5025 1.0000
Constrained 0.3654 0.7271
Unconstrained 0.1371 0.2729
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Eigenvalues,

“mpeortance of components:

RDAZ
9537
1369
667

0.
0

0.624

2

RIDAZ
0321
L0833

PC3

RDR4
0232 0
0462 0
6708 0
PC4

0.
0.

70,

159

anc their cont-ribution to the variance

EDAS
.J087
LOL93
L6882 ...
PC5

£.0281 0.0153 0.0140 C.CO98...
G.0560 0.0304 0.0278 G.G195...

DAL
Eigenvalue 0.228 0.
Proportion Explained 0.£5£2 0.
Curulative Zroportion 0.£54 J.
PC1
Eigenvalue 0.0458
Provortion Explainec J.0911
Curulative

Aocumtlated constrained eigenvalues

“roortarce of components

RDAL
Figenvalle 0.228 0.
Prowortion Explained 0.624 0.
Cumulative Zroportion J.624 0.

RDAZ

0537 0.
1470 0.
712 0.

2DAZ
1321
0879
g591

Scalirg 2 for species ard site zcores
* Species are scaled prooorticnal to sigenva ues

* Bites are unscaled:
dirensicrs
* Gereral

Specles scores

RDAL ROAZ RIOAZ
CHA  0.13383 0..7623 -0.238189
TRZ 0.064Z38 0.06648 C.123713
(...
ANG -0.19442  0.24149 GC.033659

Site scores

RDOAL RDAZ
1 0.40151 -3.134306 0
2 0.53523 -0.023084 O
(...
30 -0.483832 0.321417 ¢©
Site cernstraints (lireax
RDAL RDAZ
1 J.23135  0.032295 0
2 0.29737 0..08715 0
(...
30 -C.42572 0.338080 O

graling cors-ant of scores:

1.

DAL
G.018611
0.181572

0.0.7387

ROAZ DAL
.55538  1.600773
43382 0.294615
.31431  0.2782°8

comkinations of

RDAZ RDAL
47774 0.626878
64862 0D.26116°
L24960  0.345839

RDAA
C.0232 0.
0.0632 0.
J.9226 0.

welighted disperzion ecual or

936760

RDAS
0.043221
-C.C09691

G.608110

(weighted sums of species scores)

RDRS
131866
3184556

0.
-J.

0.487541
constralni
RIAS
-3.210700
-0.057741

0.404682

°roportion J.8182 0.8742 0.2047 0.9325 0.95208...

RDAS. ..
0087...
0D238...
94e5. ..

all

RDAG
-0.328737
0.029793

0.017638

RLAG
.9268903
0.458860

-0.251031

ng variables)
RDAG

L31511

.09322

13777
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2ip_ot scores for constraining varlebles

DAl RDAZ RDA3Z RDAZ RDAS
alt 0.8239 -0.223257 0.46634 -0.169346 C.0C3Z229
penncderate -J.3582 -0.338728 -0.2.727 -0.18278 C.137934
(...
dbo -2.5171 -0.721805 -0.15632 0.22064 0.0753648

Centreocids for factor corstraints

DAl RCA2 RDL3 RLALZ RDAD

pen’cw -J3.2800 0.00553C -0.09%025 0.07624Z -0.07880

(..

-)

penvery szeep 0.3908 -0.094673 0.28933 0.02307 -0.1218_C

As was the case in PCA, this output requires some explanations. Some of the

results are similar to those of a PCA, but additional items are provided.

Partitioning of variance: the overall variance is partitioned into constrained and
unconstrained fractions. The constrained fraction is the amount of variance of
the Y matrix explained by the explanatory variables. Expressed as a proportion,
it is equivalent to an R? in multiple regression; in RDA this quantity is also called
the bimultivariate redundancy statistic. However, this R* is biased, like the unad-
justed R? of multiple regression. We present the computation of an adjusted,
unbiased R? below.

Eigenvalues and their contribution to the variance: this analysis yielded 12
canonical axes (with eigenvalues labelled RDA1 to RDA12) and 16 additional,
unconstrained axes for the residuals (with eigenvalues labelled PC1 to PC16).
The results give the eigenvalues themselves, as well as the cumulative propor-
tion of variance explained (for the RDA axes) or represented (for the residual
axes). The last cumulative value is therefore 1. The cumulative contribution to
the variance obtained by the 12 canonical axes is the proportion of the total vari-
ance of the response data explained by the RDA. It is the same value as the
“Proportion constrained” presented above; it is 0.7271 in this example.

One feature of the eigenvalues is worth mentioning. Observe that the canonical
eigenvalues RDA1 to RDAI12 are (of course) decreasing in value; the first
residual eigenvalue (PC1), on the contrary, is larger than the last canonical
eigenvalue (in this example, it is actually larger than most RDA eigenvalues).
This means that the first residual structure (axis) of the data has more variance
than some of the structures that can be explained by the explanatory variables
in X. It is up to the user to exploit this information, for example, by plotting the
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first pair of residual axes and making hypotheses about the causes of the features
revealed. These causes should not, however, involve variables that have already
been used in the model, except if one suspects that products (interactions) or
higher-order combinations (e.g. squared variables) may be required.

* An important distinction must be made: the canonical (RDAx) eigenvalues mea-
sure amounts of variance explained by the RDA model, whereas the residual
(PCx) eigenvalues measure amounts of variance represented by the residual
axes, but not explained by the RDA model.

* Accumulated constrained eigenvalues: these are cumulative amounts of variance
expressed as proportions of the total explained variance, as opposed to their
contribution to the fotal variance described above.

» Species scores are the coordinates of the tips of the vectors representing the
response variables in the bi- or triplots. As in PCA, they depend on the scaling
chosen.

e Site scores (weighted sums of species scores): coordinates of the sites as
expressed in the space of the response variables Y.

» Site constraints (linear combinations of constraining variables): coordinates of
the sites in the space of the explanatory variables X. These are the fitted site
scores.

* Biplot scores for constraining variables: coordinates of the tips of the vectors
representing the explanatory variables. These coordinates are obtained as fol-
lows: correlations are computed between the explanatory variables and the fitted
site scores, and then these correlations are transformed to produce the biplot
scores. All variables, including k—1 levels of factors with k levels, are repre-
sented in this table. For factors, however, a representation of the centroids of the
levels is preferable. See below.

» Centroids for factor constraints: coordinates of centroids of levels of factor
variables, i.e. means of the scores of the sites possessing state “1” for a given
level.

In the rda () output, an interesting information is missing: the canonical coef-
ficients, i.e. the equivalent of regression coefficients for each explanatory variable
on each canonical axis. These coefficients can be retrieved by typing coef ():

¥ How to obtzir caronicel coefficients from 2n rda() chbjecc
coef (spe.rda)
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Hint Type ?coef.cca and see how to obtain fitted and residual values.
There is also a calibrate () function allowing the projection of
new sites into a canonical ordination result for bioindication purposes,
although with some conditions.

6.3.2.3 Retrieving, Interpreting and Plotting Results from
a vegan RDA Output Object

The various elements making up the rda () output object can be retrieved in the
same way as for a PCA. This is useful when you want to use the results outside the
functions provided by vegan to handle them.

As mentioned above, the R? of a RDA is biased like the ordinary R? of multiple
regression, and for the same reason (Peres-Neto et al. 2006). On the one hand, any
variable included in explanatory matrix X increases the R?, irrespective of it being
related, or not, to the response data. On the other hand, the accumulation of explan-
atory variables inflates the apparent amount of explained variance because of ran-
dom correlations. This problem can be cured by adjusting the R* using Ezekiel’s
formula (Ezekiel 1930), which is also valid in the multivariate case:

2 n—1 2

R,=1 n—m—l(l R”) (6.1)
where 7 is the number of objects and m is the number of explanatory variables (or,
more precisely, the number of degrees of freedom of the model). Ezekiel’s adjust-
ment can be used as long as the number of degrees of freedom of the model is not
overly large with respect to the number of observations. As a rule of thumb, this
adjustment may be overly conservative when m>n/2. An adjusted R? near 0 indi-
cates that X does not explain more of the variation of Y than random normal
variables would do. Adjusted R? values can be negative, indicating that the explana-
tory variables X do worse than random normal variables would.

In our example, n=29 and m=12 (remember that one of the ten variables is a
factor with k=4 levels, so it occupies 3 degrees of freedom). The R? and adjusted
R? can be computed using vegan’s function RsquareAdj ().

f Retrieval of the adjusted R™2

TT.' mhEm kK Ak mwk kb hwwk ko kw ok ke ok ko k

¥ lradjusted M2 zetrieved from the ~da resuclt
(R2 <— ZsouarcAdi (spc.rda)Sr.sguaarcal

RZ2adj <- Rsguarehd” {sve.rde)Sad]j.r.souared)

f Bkdiusiec 272 retrieves fromw the rda ob’ect
{
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# As one can see, the adjustment has substantially reduced
# the value of the R"2. The adjusted R"2 measures the

# unbiased amount of explained variation and will be used
# later for variation partitioning.

Let us now plot the results of our RDA (Fig. 6.1). We can call this a triplot since
there are three different entities in the plot: sites, response variables and explana-
tory variables. To differentiate the latter two, we draw arrowheads only on the vec-
tors of the quantitative explanatory variables, not on the response variable vectors.

¥ Trigzlcots of the rda results

# R o

¥ Scalirg 1: distarce triploz

plot{spe.rda, scelinc=1, ra’r="Triclot D& spe.hel ~ ervz -
scaling 1 - wa scorss")

# This plot displays all our entities: sites, species,

# explanatory variables as arrows (with heads), or centrcids,
# depending on their type. But arrows for species are missing.
# Let us add them without heads to make them appear different
# from the explanatcry variables, after retrieval from the

# output object:

ape.sc <- scores({spe.rda, cholces=_:2, sczling=1, displavy="sp")
arrcws (0, 0, spe.sc[,1., spe.scl,2, lergth=0, “ty=_, col="rec"}

£ Scalirg 2 tdefzultd: correlation triplot
plot (spe.rda,
mair="T=iplot 2DA sre.hel ~ ervi - scalirg 2 - wa szores™)

apeZ.sc <— 3cores{spe.raa, cholces=1:2, display="sp")
arrows (0, 0, spc2.scl[,1], svc2.sc ,2 7, leng:th=0, l:zy=1,
col="r=d"}

Hint In the scoxres () function argument choices= indicates which axes
are to be selected. Be careful to specify the scaling if it is different from 2.

The two RDA triplots use the site scores that are weighted sums of species (abbrevi-
ated “wa” in vegan). The choice between these and the fitted site scores (abbreviated
“1c”) for the triplots is still controversial. On the one hand, the fitted site scores are
strictly orthogonal linear combinations of the explanatory variables; but they never-
theless represent clearly and exclusively what can be modelled using the explanatory
variables at hand. On the other hand, the site scores that are weighted sums of species
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appear more robust to noise in the environmental variables: McCune (1997) showed
that if the latter contain much random error, the resulting Ic plots may be completely
scrambled. However, weighted sums of species (wa) scores are ‘“‘contaminated”
scores, halfway between the model fitted by the RDA procedure and the original data,
and as such it is not entirely clear how they should be interpreted. When RDA is used
as a form of analysis of variance (Sect. 6.3.2.8), all replicate sites with the same com-
bination of factor levels are represented on top of one another in the fitted site scores
(Ic) triplot; the weighted sums of species (wa) triplot is preferable in that case because
the sites are separated in the plot and their labels can be read.

a Triplot RDA spe.hel ~ env2 - scaling 1 - wa scores
| | |

RDA2

23

©
o dbo
|

T | T T
0.5 0.0 0.5 1.0

RDA1

Fig. 6.1 (a) RDA triplot of the Hellinger-transformed Doubs fish abundance data constrained by
all environmental variables, scaling 1. The bottom and left-hand scales are for the objects and the
response variables, the top and right-hand scales are for the explanatory variables
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b Triplot RDA spe.hel ~ env2 - scaling 2 - wa scores
| | |

29 18 P16 oxy

RDA2

-1.0

23 H
T i T T
-0.5 0.0 0.5 1.0

RDA1

Fig. 6.1 (continued) (b) RDA triplot of the Hellinger-transformed Doubs fish abundance data
constrained by all environmental variables, scaling 2. The bottom and left-hand scales are for the
objects and the response variables, the top and right-hand scales are for the explanatory
variables

Independently of the choice of site scores, the interpretation of the constrained
triplots must be preceded by a test of statistical significance (see below). As in
multiple regression, a non-significant result must not be interpreted and must be
discarded.

Since the wa-Ic issue is open, let us also represent our triplots using the fitted
site scores.
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f Site scores as linear comwcinations of the envirormertal
r variables

f Scalirg 1
plot{gpe.rda, scaeling=1, displav=c({"sp","lc","on™),

arrcws {0, 0, spe.sc([,1l_, spe.scl[,2], length=0, _ty=l, col="rea")

f Scaling 2
plot(spe.rda, digplay=c("sp”,"lc","cn"),

arrcws (0, 7, speZ.scl,l], speZ.sc_ ,2 , length=0, lzy=1,

mair="T-inlot RDA sve.kel ~ anv? - scalirg 1 - 1o scores'")

main=""'"iclot AJA sve.hel ~ env? - scaling 2 - 1o scores™)

col="red"}

Hint See how to choose the elements to be plotted, using the argument
display=c (.. .).Inthisargument, “sp” stands for species, “wa”
for site scores in the species space (weighted averages), “1c” for fit-
ted site scores (linear combinations of explanatory variables), and
“cn” for constraints (i.e. the explanatory variables).

For the species and sites, the interpretation of the two scalings is the same as in

PCA. However, the presence of vectors and centroids of explanatory variables calls
for additional interpretation rules. Here are the essential ones (see Legendre and
Legendre 1998, pp. 586-587):

Scaling 1 — distance biplot: (1) Projecting an object at right angle on a response
variable or a quantitative explanatory variable approximates the position of
the object along that variable. (2) The angles between response and explana-
tory variables in the biplot reflect their correlations (but not the angles among
response variables). (3) The relationship between the centroid of a qualitative
explanatory variable and a response variable (species) is found by projecting the
centroid at right angle on the species variable, as for individual objects, since we
are projecting the centroid of a group of objects. (4) Distances among centroids,
and between centroids and individual objects, approximate their Euclidean
distances.

Scaling 2 — correlation biplot: (1) Projecting an object at right angle on a
response or a quantitative explanatory variable approximates the value of the
object along that variable. (2) The angles in the biplot between response and
explanatory variables, and between response variables themselves or explana-
tory variables themselves, reflect their correlations. (3) The relationship
between the centroid of a qualitative explanatory variable and a response vari-
able (species) is found by projecting the centroid at right angle on the species



6.3 Redundancy Analysis 167

variable (as for individual objects). (4) Distances among centroids, and between
centroids and individual objects, do not approximate their Euclidean
distances.

On these bases, it is now possible to interpret the triplots. Let us take as exam-
ples the pair of plots representing the fitted site scores (Fig. 6.2). The numerical
output shows that the first two canonical axes explain together 56.1% of the total
variance of the data, the first axis alone explaining 45.4%. These are unadjusted
values, however. Since R2adj =0.5224 , the percentages of accumulated constrained
eigenvalues show that the first axis alone explains 0.5224 x 0.6242=0.326 or
32.6% variance, and the two first 0.5224 x 0.7712=0.4029 or 40.3% variance. We
can be confident that the major trends have been modelled in this analysis. Because
ecological data are generally quite noisy, one should never expect to obtain a very
high value of R2adj . Furthermore, the first unconstrained eigenvalue (PC1) is com-
paratively small, which means that it does not display any important residual struc-
ture of the response data.

a Triplot RDA spe.hel ~ env2 - scaling 1- Ic scores
| | |
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Fig. 6.2 (a) Triplot of the RDA with fitted site scores and all environmental variables. Scaling 1
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b Triplot RDA spe.hel ~ env2 - scaling 2 - Ic scores

0.5

OXY

RDA2

25

-1.0

23

-0.5 0.0 0.5
RDA1

Fig. 6.2 (continued) (b) Triplot of the RDA with fitted site scores and all environmental
variables. Scaling 2

These triplots show that oxygen (oxy), altitude (alt), nitrates (nit) and
discharge (deb), as well as slope (mainly the level penvery steep) play an
important role in the dispersion of the sites along the first axis. Both triplots oppose
the upper and lower parts of the river along the first axis. The scaling 2 triplot
shows three groups of fish species correlated with different sets of explanatory
variables: the brown trout (TRU), Eurasian minnow (VATI) and stone loach (LOC)
are found in the first half of the sites, and are correlated with high oxygen content
and slope as well as higher altitude. The bleak (ABL), roach (GAR) and European
chub (CHE), on the opposite, are related to sites 23, 24 and 25 characterized by high
phosphates (pho), ammonium (amm) and biological oxygen demand (dbo) levels.
Most other species are bunched together away from these extremes. They show
mostly shorter projections, indicating that they are either present over most por-
tions of the river or related to intermediate ecological conditions.
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6.3.2.4 Permutation Tests of RDA Results

Due to widespread problems of non-normal distributions in ecological data, classical
parametric tests are often not appropriate in this field. This is why most methods of
ecological data analysis nowadays resort to permutation tests whenever possible.
The principle of a permutation test is to generate a reference distribution of the
chosen statistic under the null hypothesis H, by randomly permuting appropriate
elements of the data a large number of times and recomputing the statistic each
time. Then, one compares the true value of the statistic to this reference distribu-
tion. The p value is computed as the proportion of the permuted values equal to or
larger than the true (unpermuted) value of the statistic for a one-tailed test in the
upper tail, like the F test used in RDA. The true value is included in this count. The
null hypothesis is rejected if this p value is equal to or smaller than the predefined
significance level o.

Three elements are critical in the construction of a permutation test: (1) the
choice of the permutable units, (2) the choice of the statistic and (3) the permutation
scheme.

The permutable units are often the response data (random permutation of the
rows of the Y data matrix), but sometimes other permutable units must be defined.
See Legendre and Legendre (1998, pp. 606 et sq. and especially Table 11.7, p. 612).
In the simple case presented here, the null hypothesis H, states (loosely) that no
(linear) relationship exists between the response data Y and the explanatory vari-
ables X. In terms of permutation tests, this means that the sites in either matrix can
be permuted randomly to produce realizations of this H, thereby destroying the
possible relationship between a given fish assemblage and the ecological condition
of its site. A permutation test does this 100, 1000 or 10000 times to produce a large
sample of test statistics to which the true value is compared.

In RDA, the use of parametric tests is possible only when the response variables
are standardized (Miller 1975; Legendre et al. 2011), which is inappropriate for
community composition data for example. So all RDA programs for ecologists
implement permutation tests. The test statistic (often called pseudo-F) is defined as
follows:

SS(Y)/m

= (6.2)
RSS/(n—m—1)

where m is the number of canonical eigenvalues (or degrees of freedom of the
model), SS(Y) (explained variation) is the sum of squares of the table of fitted
values and residual sum of squares (RSS) is the total sum-of-squares of Y, SS(Y),
minus the explained variation SS(SA().
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The test of significance of individual axes is based on the same principle. The first
canonical eigenvalue is tested as follows: that eigenvalue is the numerator of the
F statistic, whereas the SS(Y) minus that eigenvalue/(n—1-1) is the denominator
(since m=1 in this case). The test of the subsequent canonical axes is more compli-
cated: the previously tested canonical axes have to be included as covariables in
the analysis, as in Sect. 6.3.2.5, and the RDA is recomputed; see Legendre et al.
2011 for details.

The permutation scheme describes how the units are permuted. In most cases,
the permutations are free, i.e. all units are considered equivalent and fully exchange-
able, and the data rows of Y are permuted. In partial canonical analysis (next sub-
section), however, it is the residuals of some regression model that are permuted.
Finally in some situations, permutations may be restricted within subgroups of
data, for instance, when a multistate covariable or a multilevel experimental factor
is included in the analysis.

With this in mind, we can now test our RDA results. Let us run a global test first,
followed by a test of the canonical axes. The test function is called anova () . This
name is unfortunate, since it leads to confusion with the classical ANOVA test,
which it is not.

¥ Clopal test ¢ the ROBR resu_t

anaova.cca (spe.rda, stop~10C3}

£ Tests cf all cencnical axes

anova. coca (spe.rda, bhy="axis", step=1C020}
# The test of the axes can only be run with the formula
# interface. How many canonical axes are significant?

Hint Argument " step" gives the minimal number of permutations requested
to assess if the F value of a test is obviously significant or not.

Of course, given that these tests are available, it is useless to apply other criteria
like the broken-stick or Kaiser—Guttman’s criterion to canonical axes. These could
be applied to the residual, unconstrained axes, however. Let us apply the Kaiser—
Guttman criterion:

f Apply Keiser-Guttman criterion to residual axes
spe.raalChicic[soe.rdaSlASclg > meanl{spe.rdasCAScig) .

# Apparently there is still some interesting variation in these
# data that has not been explained by our set of environmental
# variables
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6.3.2.5 Partial RDA

Partial canonical ordination is the multivariate equivalent of partial linear regression.
For instance, it is possible to run an RDA of a (transformed) plant species data
matrix Y, explained by a matrix of climatic variables X, in the presence of soil
covariables W. Such an analysis would allow the user to display the patterns of the
species data uniquely explained by a linear model of the climatic variables when
the effect of the soil factors is held constant.

We will now run an example using the Doubs data. At the beginning of this
chapter, we created two objects containing subsets of environmental variables. One
subset contains physiographical variables (envtopo), i.e. altitude, slope (the
original, quantitative variable, not the four-level factor used in the previous RDA)
and discharge; the other contains variables describing water chemistry (envchem),
i.e. pH, hardness, phosphates, nitrates, ammonium, oxygen content as well as
biological oxygen demand. The analysis that follows determines whether water
chemistry significantly explains the fish species patterns when the effect of the
topographical gradient is held constant.

In vegan, partial RDA can be run in two ways, depending on whether one uses
the simple or the formula interface. In the first cases, explanatory variables and
covariables may or may not be in separate objects, which can belong to classes
vector, matrix, or data.frame; factor variables cannot be used with that notation,
however. With the formula interface, the X and W data sets must be in the same
object, which must be a data frame and may contain factor variables.

¥ Partial RDA: effect of water chemistry, heclding physiograchy
£ coenastant

¥ Simple Znfterxface; X and W may be sevarate tab_es of
¥ crantitative variables

spechem.physio <- zda({spe.hel, envchen, envtopc)
spechem.physio

surrary (scecher.cnysio)

¥ Formula interface; X and W must oe ‘n The same dats “rame

class (enrv)

spechem.physioZ <- rda{spe.hel ~ pH - dur + pho + rit - amrm +
oxy + c¢hce + Cordition(a’t + pen + deb), data = env)

spechem.physioc?

# The results of the two analyses are identical.
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Hint The formula interface may seem cumbersome, but it allows a better
control of the model and the use of factors among the constraints (X)
or the conditions (W). One could therefore have used the factor-trans-
formed pen variable in the second analysis, but not in the first one.

Here again, some additional explanations are needed about the summary output.

* PFartitioning of variance: This item now shows four components. The first one
(Total)is, as usual, the total inertia (variance in this case) of the response data.
The second line (Conditioned) gives the amount of variance that has been
explained by the covariables and removed.” The third line (Constrained)
gives the amount of variance uniquely explained by the explanatory variables.
The fourth line (Unconstrained) gives the residual variance. Beware: the
values given as proportions (right-hand column) are unadjusted and are therefore
biased. For a proper computation of unbiased, adjusted R*> and partial R?, see
below (variation partitioning).

e FEigenvalues, and their contribution to the variance after removing the contribu-
tion of conditioning variables: these values and proportions are partial in the
sense that the effects of the covariables have been removed. The sum of all these
eigenvalues corresponds therefore to the sum of the constrained and uncon-
strained (residual) variances, excluding the conditioned (i.e. removed)
variance.

We can now test the partial RDA and, if it is significant, draw triplots of the first
pair of axes (Fig. 6.3).

¥ Test o the partial RDA (usinc the results with the Zozmula
£ nterfacs to a_low —he —ests of the axes —o be zun}
anova.cca (speckhern.physioZ, step=1C00)

anova.cca (spechem.physio2, step=1C000, by="axis"

¥ Partial RDA triplots (with Zitted site scores)

£ 2calirg 1

ploz{gpechen.pkysic, scaling=1, digp_zy=c("sp","lc”,"on™y,
mair="Tzionlot RDA sge.hel ~ chem | Toono - scaling 1 - lc
scores™)

sped.sc <- scores(spechem.physio, choices=1:2, =z=caling=1,
display="sp")

arrcws {0, 0, spe3.scl,1l], sped.sc ,2_, leng-h=0, lz-y=1,

col="red")

2Mathematically, to partial out the effect of a matrix W from an ordination of Y by X, one com-
putes the residuals of a multivariate multiple regression of X on W and uses these residuals as the
explanatory variables.
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¥ Scalirg 2

ploz (spechen.physic, display=c(Map™,"1c", "oy,
main="T+»iwlct IDA swe.hel ~ chem | Towo - scalirg 2 - 1c
scores™)

sped.sc «<— scores{spechem.physio, cnoices=1:2

arrcws (U, 0, spef.sc[,1], sved.sc 2., length
col="red")

, disp_
=0, lzy=1,

a Triplot RDA spe.hel ~ chem | Topo - scaling 1 - Ic scores
| |
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0.0
I

-0.5 0.0 0.5
RDA1

Fig. 6.3 (a) RDA triplot, Doubs Hellinger-transformed fish data explained by chemistry, control-
ling for physiography. Sites: model scores (option “1c” of argument display). Scaling 1
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b Triplot RDA spe.hel ~ chem | Topo - scaling 2 - Ic scores

I I 1
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Fig. 6.3 (continued) (b) RDA triplot, Doubs Hellinger-transformed fish data explained by chem-
istry, controlling for physiography. Sites: model scores (option “1c” of argument display).
Scaling 2

As could be expected, the results of this partial analysis differ somewhat from
the previous results, but not fundamentally. Although there are interesting features
to discuss about the amounts of variance explained, we postpone this aspect until
we have seen a quick and elegant manner to compute the adjusted R? of partial
analyses, by means of variation partitioning (Sect. 6.3.2.7). On the triplots, the
explanatory variables show the same relationships to one another, but some of them
(hardness (dur) and nitrates (nit)) are less important to explain the fish commu-
nity structure, as shown by their shorter vectors. This may be due to the fact that
these two variables are well correlated with the position along the river, and there-
fore their apparent effect on the fish community may have been spurious and has
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been removed by the analysis, which controlled for the effect of the physiographical
variables. The scaling 1 triplot shows that the sites are not as cleanly ordered by
their succession along the river. This indicates that the chemical variables do not
necessarily follow that order and that the fish community responds significantly to
the chemical constraints irrespective of their locations along the river.

6.3.2.6 Forward Selection of Explanatory Variables

It happens sometimes that one wishes to reduce the number of explanatory vari-
ables. The reasons vary: search for parsimony, rich data set but poor a priori
hypotheses, or a method producing a large set of explanatory variables which must
be reduced afterwards (as in eigenvector-based spatial analysis, see Chap. 7). In the
Doubs data, there could be two reasons (albeit not compelling) to reduce the num-
ber of explanatory variables: search for parsimony, and possible strong linear
dependencies (correlations) among the explanatory variables in the RDA model,
which could render the regression coefficients of the explanatory variables in the
model unstable.

Linear dependencies can be explored by computing the variables’ variance
inflation factors (VIF), which measure the proportion by which the variance of a
regression coefficient is inflated in the presence of other explanatory variables.
VIFs above 20 indicate strong collinearity. Ideally, VIFs above 10 should be at least
examined, and avoided if possible. VIFs can be computed in vegan after RDA
or CCA:

£ Variarce Inflaticn factors (VIZ}) 1in two RDAS

# R SRR EER SRS ES TR SRR RS S SEREERE TR RS ES TR ST

¥ First RDA cof this Chapter: all envirorment-zl varianles
vif,cca(soe.rda)

vif.cca(spachem.pnysioc) # Partial RDA

Several VIF values are above 10 or even 20 in these analyses so that a reduction
of the number of explanatory variables is justified.

No single, perfect method exists for variable reduction, besides the examination
of all possible subsets of explanatory variables, which is time-prohibitive for real
data sets. In multiple regression, the three usual methods are forward, backward and
stepwise selection of explanatory variables, the latter one being a combination of
the former two. In RDA, forward selection is the method most often applied. This
method works as follows:
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Compute RDA of the response data with all explanatory variables in turn.

Two sets of criteria are used in the presently available functions for selecting the
“best” explanatory variable: (1) in the forward.sel () function of packfor
(see below), one selects the explanatory variable with the highest R? if that vari-
able is also significant (permutation test) at a preselected significance level,;
“best” refers to the variable that explains the largest portion of the variance of
the response data. (2) In the ordistep () function of vegan (see below), the
significance of the F-statistics associated with all variables is tested using per-
mutation tests, and the most significant explanatory variable is selected. In case
of equality, the variable that has the lowest value of the Akaike Information
Criterion (AIC) is selected for inclusion in the model; “best” refers here to the
most significant variable.

The next task is to look for a second (third, fourth, etc.) variable to include in
the explanatory model. Compute all models containing the previously selected
variable(s) plus one of the remaining explanatory variables. (1) In forward.
sel (), select the new variable that forms the model with the highest R? (which
is the same as selecting the variable with the highest semipartial R?) if the partial
contribution of that variable is significant at the preselected significance level,;
the test of significance is a permutation test by partial RDA. (2) In ordis-
tep (), select the new variable whose partial contribution is the most signifi-
cant. In case of ties, select the variable with the lowest AIC.

The process continues until no more significant variable can enter the model.

In its original form, forward selection in packfor’s forward.sel () used

the preselected significance level o as the main stopping criterion: selection was
stopped when no additional variable had a p value smaller than or equal to the sig-
nificance level. However, this criterion is known to be overly liberal, either by
selecting sometimes a “significant” model when none should have been identified
(hence inflating type I error), or by including too many explanatory variables into
the model (hence inflating the amount of explained variance). Blanchet et al.
(2008a) addressed this double problem and proposed solutions to improve this
technique:

— To prevent the problem of inflation of the overall type I error, a global test using

all explanatory variables is first run. If, and only if, that test is significant, the
forward selection is performed.

To reduce the risk of incorporating too many variables into the model, the
adjusted coefficient of multiple determination R2adj of the global model (contain-
ing all the potential explanatory variables) is computed, and used as a second
stopping criterion. Forward selection is stopped if one of the following criteria

is reached: the traditional significance level o or the global Rzadj; in other words,
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if a candidate variable is deemed non-significant or if it brings the R2adj of the
current model over the value of the R2adj of the global model.

This new, enhanced procedure has been implemented in the packfor package
of Dray et al. (2007). The function is called forward.sel (). We can apply it to
the Doubs data. This procedure does not allow for factor variables; we will use the
env data set in the analysis.

¥ Forward selectlon of explaratory wvariables
£ using a double stopping criterion (Blarchet =7 al, 2008a)

¥ 2. RDA with all explanacory wvariables
spe.rca.a_l <- rdalspe.hel ~ ., data=env)

£ 2. Glchal zdjustec R72
(RZa,z2ll <- Rsquareldj (spe.rda,zll)3ad).r,squaread)

¥ 2. Forward selection usirg packfor’s forward.sel ()}

f _ibrary(packfor) & 1f rot already loaded
forward.sel (spe.hel, env, adjRZthresni=RZa.zll)

# Note: as menticned in the informative message printed by the
# function, the last variable in the selection list is tke one
# that violates the adjR2thresh stopping criterion. It should
# not be inciuded in the selection.

The result shows that one can devise an explanatory model of the fish commu-
nity that is much more parsimonious than the model involving all explanatory
variables. Three variables are enough to obtain an R’ i almost as large as that of
the global model. Besides, observe that the forward.sel () selection has been
stopped after the variable leading to a value exceeding the RZadj has been entered.
A moderate excess (here, 0.5948 versus 0.5864) is certainly not a great problem.
The selection diagnostics show that the last variable entered (pen) increases the
Rzadj by 5.5%.

Another function performs several kinds of variable selection: wegan’s
ordistep (). This function does not implement Blanchet et al. (2008a)’s second,
Rzadi -based stopping criterion. So this criterion must be applied by hand to the result
in the way presented below. ordistep () selects the variables on the basis of
their permutational p values, and on AIC in case of ties.

¥ Foerward selection using vegan’s orxdiszen().
£ This functior zllows the use of factors, Options are zlso
¥ avallable for stepwise anc cecixwerd selection of the
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£ explaratory variablas,
step.forward <- ordistes(rda{sce.hel ~ 1, data=env},
scope=focrmu_a{spe.rca.all), direction="forward"”, pstep=12300)

The selected variables are the same in this example as when using forward.
sel () without the adjR2thresh stopping criterion of Blanchet et al. (2008a).
One could apply that stopping criterion by computing the R2adj of RDAs that
incorporate the variables in their order of inclusion by ordistep () and checking
when the cumulative R2aclj criterion of 0.586435 is exceeded:

zcuarsid] (zaa{sne hel ~ alt, data=sav)}Sadj.z.soaared

Rscuarshdj (rda(soe.hel ~ altloxy, da-e=env))Sad”.z.scuared

Recrarehdy (rca(soe.hel ~ alt+oxy+dsco, data—env))sad” .r.sqguared

=Zsguarehd] (raa{sce.hel ~ alttoxy+doo-per,
data=env})facj.r.squarec

These analyses show that the most parsimonious attitude would be to settle for
a model containing only three explanatory variables: altitude, oxygen and biologi-
cal oxygen demand. What would such an analysis look like?

£ Parsimonious RDA
# EREEEE R S ERESEE SRS

spc.rda.pars <- rda(spc.acl ~ 21T = oxy + cbo, data=cav)
sSpe,rda L pars

anova.oca(spe.rda.pass, sien=1000)
anova. cca (spe.rda . pars, sten=1000, by="axis"
vif.cca(soe.rda.oars)

(R2a.pars <- IsquarchAd? (spe.rdz.pars)$ad’.z.sguarcd)

These results are fascinating in that they demonstrate how parsimony can help
improve the quality of a model. With a moderate cost in explanatory power, we
produced a model that is as highly significant, has no harmful collinearity (all VIFs
are now well below 10), and can be decomposed into three significant canonical
axes. The global model produced only two significant axes.

It is now time to produce triplots of this result (Fig. 6.4). We compare them to
the triplots of the global analysis.
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¥ Trisglots of “he parsimonicus RDA (with Zitted site scores)
# R R R R R R E SRS RS EE SRS AR ESREEAFEE RN ESEEEERE RS EEERESEEESES]
f Scalirg 1

ploz{spe.rda.pars, scal.ing=1, displzv=c{"sp","la","cn"},

main="Trivlot RDA ste.hel ~ altt+oxy+tdoo - scaling 1 - 1c
scores™)
sped.sc = scores(spse.rda.pars, cholces=1:2, scaling = 1,

dizplay="sp"}
arrcws (0, , spel.scl,l., swved.sc[,2], lengzh-0, lzv—1,
col="red")
f Scalirg 2
plot{spe.rda.pars, cisp_ay=c{"sp","lc™,"cn"),

main="Triwlet RDA swe.hel ~ altt+oxytdoo - scalirg 2 - 1o
acores™)
speb.sc = scores(spe.rda.pars, cholces=1l:2, disclay="so™}
arrcws (0, 0, speid.sc[,1., =wel.sc ,2., lengzh=0, lz-y=1,
col="red")

# Since there is now a third significant cancnical axis, you
# could plot other combinations: axes 1 and 3, axes 2 and 3.

a Triplot RDA spe.hel ~ alt+oxy+dbo - scaling 1 - Ic scores
| |

RDA2

T ! I T
-1.0 -0.5 0.0 0.5
RDA1

Fig. 6.4 (a) RDA triplot, Hellinger-transformed Doubs fish data constrained by three environ-

mental variables. Model scores. Scaling 1
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b Triplot RDA spe.hel ~ alt+oxy+dbo - scaling 2 - Ic scores
| | 1

oxy 20

TRY

RDA2

dbo 21

25

o L

T T i T

-0.5 0.0 0.5
RDA1

Fig. 6.4 (continued) (b) RDA triplot, Hellinger-transformed Doubs fish data constrained by three
environmental variables. Model scores. Scaling 2

These triplots indeed present the same structures as the ones produced with all
explanatory variables. We shall revisit this result later.

6.3.2.7 Variation Partitioning

A common occurrence in ecology is that one has two or more sets of explanatory
variables pertaining to different classes. In the Doubs data, we have already split
the environmental variables into a first subset of physiographic and a second subset
of chemical variables. For various reasons, one might be interested not only in a
partial analysis like the one that we conducted above, but in quantifying the varia-
tion explained by all subsets of the variables when controlling for the effect of the
other subsets. In multivariate ecological analysis, a procedure of variation partition-
ing has been proposed to that effect by Borcard et al. (1992) and improved by the
use of adjusted R? by Peres-Neto et al. (2006). When two explanatory data sets X
and W are used, the total variation of Y is partitioned as in Fig. 6.5.
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Total variation of Y . o
/ [d]= unexplained variation

Variation explained by W

Variation explained by X

Fig. 6.5 Venn diagram of the variation partitioning of a response data set Y explained by two data
sets X and W. The rectangle represents the total sum-of-squares of Y

X and W both explain some variation of the response data. Since the explanatory
data sets are generally not orthogonal to one another (except in some cases
addressed later), some amount of variation is explained jointly by the two sets (frac-
tion [b] of Fig. 6.5). Consequently, the variation explained by all variables together
is less than the sum of the variations explained by the various subsets. This is why
one can express the variation explained by X as fraction [a+b], the variation
explained by W as fraction [b+c] and the unexplained variation as fraction [d]. In
the case of two explanatory data sets, three RDAs are needed to partition the varia-
tion into the four individual fractions [a], [b], [c] and [d].

The conceptual steps are the following:

* If necessary, forward-select the explanatory variables separately in each subset.

* Run an RDA of the response data Y by X. This yields fraction [a+Db].

e Run an RDA of the response data Y by W. This yields fraction [b+c].

* Run an RDA of the response data Y by X and W together. This yields fraction
[a+b+c].

* Compute the adjusted R* (R’ ;) of the three RDAs above.

* Compute the fractions of adjusted variation by subtraction:

— fraction [a]aaj' = [a+b+c]adj - [b+c:]adj

— fraction [C]adj = [a+b+c]adj - [a+b]adj
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— fraction [b]adj=[a+b]adj—[a]adj:[b+c]adj—[c]adj
— fraction [d]

adj=1—[a+b+c]

adj

The three RDAs can be tested as usual, and fractions [a] and [c] can be computed
and tested by means of partial RDA. Fraction [b], however, is not an adjusted com-
ponent of variance and cannot be estimated and tested by regression methods. It has
zero degree of freedom. Note also that there is no equation for computing an
adjusted R* directly for a partial RDA. The subtractive procedure described above
avoids this difficulty. It has been shown by Peres-Neto et al. (2006) to produce
unbiased estimates of the fractions of variation. Remember also that adjusted R* can
be negative. See Sect. 6.3.2.3. Negative R2adj can be ignored (considered as null) for
the ecological interpretation of the results.

The whole procedure of variation partitioning (except the preliminary stage of
forward selection) can be run in one R command with up to four explanatory matri-
ces. The function to use, available in vegan, is varpart (). Let us apply it to the
Doubs data and follow up with tests of all testable fractions.

¥ Variation partiticning with two sets cf explanstcry variacles
# EE R EE S R RS RSN E AR RS EE R R R R T AT EFEE TSR ER R

¥ Explaration ¢f fracticn labels
par{mfrow=c{_,3))
showverparta (2) ¥ Two explanatory matrices

showverparts (3} ¥ Three sxplanstory matrices
showverparts(4)y ¥ Zour explernatory matrices

¥ .. Varlatlon par-itioning with a_l explanatory varlacles
spe.parc.al_. <- wvarpart(spe.hel, envchem, envtopo)
spe.part.al’

ploz(spe.gart.a’.l, digits=2)

# The plot gives correct values of the adjusted R sguares, but
# the sizes of the circles in the Venn diagram are not to
# scale.

This first partitioning shows that both sets of explanatory variables contribute to
the explanation of the species data. The unique contribution of the chemical variables
(fraction [a], R2adj =0.241) is much larger than that of physiography (fraction [c],
Rz,d(lj =0.112). The variation explained jointly by the two sets (fraction [b],
Rzadj =0.233) is also large. This indicates that the chemical and physiographic
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variables are intercorrelated. This is a good reason to make an effort towards

parsimony, and to combine variation partitioning with forward selection.

£ varizh_es

spe.char <- rda({spe.nel, ervchemn)

R2a,all.chen <- Rsquaredd]j (spe.chen)sadj.r.scuared

forward.sel {(spe.hel, ervcaenr, adjR2thresh = RZa.all.chen,
aperr=5%99)

spe, lope <—- rda(spe.nel, envliooo)

=2a.all.topa <- Raquarend] (spe.topoldadi.r.scuared

forward.sel (spe.hel, arviopo, ad(R2Laresk = RZa.all.lopo,
nperm=9%995}

f Parsimonious subsets of explanatory variables (based on
¥ forward selections)
<

envehen,pars <- aenvenem ,c{4,6,7) |
env-ono.pars <- envoopoc ,ci{l,Z)]

¥ Variazion partiticning
{spe.part <- warpart(spe.hel, enwvchem,pars, enviopo.cars))
plos(spe.pazt, digits=2)

# Tests of all testable fractions

£ Test ¢ frzctions [a+o]

ancva.cca(rda (spe.hel, envchem.pars), stec=1070)

£ Test ¢ fractions [b+c]

anova.cca(rda (spe.hel, envoopec.pars), stec=1070)

£ Test cZ fraciZons [a+b+c)

env.pers <- cbinc(envchem.pars, enviowo.pars)
ancova.cca(rds{spe.hel, env.pars), step=10C03)

£ Test of fzzczlion [z]

anova.cca(rdza {spe.kel, envchem.pars, enviopc.pars), sten=1003J)
£ Test of fraczlon [¢]

anova.cca(rda (spe.hel, envoopc.pars, envchem.parsz), stec=1000)

# Are any of these components nonsignificant?

¥ 2. Separate forward selection ir esach subset of environrwental

As one could have expected, forward-selecting the explanatory variables
independently in each subset (chemistry and physiography) does nothing to prevent
inter-set correlations; some of the variables retained in each set are correlated with
those of the other set. Therefore, fraction [b] remains important. Beware: conduct-
ing variable selection on the union of the two explanatory data sets would make
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fraction [b] very small or empty. If one wants to estimate how much of the variation
of Y is explained jointly by the two explanatory data sets, it is important to carry
out forward selection separately on the two sets of explanatory variables.

In this example, the two independent forward selections run above have retained
the same variables as when the whole set had been submitted to forward selection
(i.e. alt, oxy, dbo) plus variables pen and nit. The latter is strongly correlated
to alt (r=-0.75). This means that in the RDA with the chemical variables, nit
has explained some of the same structures as alt has explained in the physiogra-
phy RDA. Removing nit from the chemical variables and running the partitioning
again yields different results:

¥ 3. variztion psritionirg without —he 'miz' wvariakle

envchemn.para? <— ernvohen[,c{&,7)]
(sve.part? <- varpart{sve.hel, envcaern.parsZ, envhtopo.pars))
plot{spe.cart?, cigits=2)

This last partitioning has been run to demonstrate the effect of correlation among
the explanatory variables of different sets. However, one generally applies variation
partitioning to assess the magnitude of the various fractions, including the common
ones. If the aim is to minimize the correlation among variables, other approaches
are preferable (examination of the VIFs, global forward selection).

With this warning in mind, we can examine what the comparison between the
two latter partitionings tells us. Interestingly enough, the overall amount of varia-
tion explained is about the same (0.595 instead of 0.590). The [b] fraction has
dropped from 0.196 to 0.088 and the unique physiographical fraction (alti-
tude +slope) has absorbed most of the difference, rising from 0.142 to 0.249. This
does not mean that altitude is a better causal candidate than nitrates to explain fish
communities. Comparison of the two analyses rather indicates that nitrate content
is related to altitude just as the fish communities are, and that the interpretation of
both variables must be done with caution since their causal link to the fish com-
munities cannot be untangled. On the other hand, altitude is certainly related to
other, unmeasured environmental variables that have an effect on the communities,
making it a good proxy for them.

The comparisons above tell us that:

1. Forward selection provides a parsimonious solution without sacrificing real
explanatory power: the Rza 4 Of the three partitionings are approximately equal.
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2. The common fractions, which are one of the reasons why partitioning is
computed, must be interpreted with caution, even when the variables responsible
for them are biologically legitimate.

3. Forward-selecting all explanatory variables before attributing the remaining
ones to subsets is in contradiction with the aim of variation partitioning, except
to help identify the magnitude of the effect of some variables responsible for the
common fractions.

4. Forward selection and variation partitioning are powerful statistical tools, but
they cannot replace sound ecological reasoning.

Final note about the [b] fraction. This fraction should never be mistaken for an
interaction term in the analysis of variance sense. In a replicated two-way ANOVA,
the interaction measures the influence of the levels of one factor on the effect of the
other factor. It is most easily measured when the two factors are independent
(uncorrelated, orthogonal) ... a case where the [b] fraction is equal to O.

6.3.2.8 RDA as a Tool for Multivariate ANOVA

In its classical, parametric form, multivariate analysis of variance (MANOVA) has
stringent conditions of application and restrictions (e.g. multivariate normality of
each group of data, homogeneity of the variance—covariance matrices, number of
response variables smaller than the number of objects minus the number of groups).
It is practically never adapted to ecological data, despite its obvious interest for the
analysis of the results of ecological experiments.

Fortunately, RDA offers an elegant alternative, while adding the versatility of the
permutation tests and the triplot representation of results. The condition of homo-
geneity of the variance—covariance matrices still applies, however. It can be tested
by the function betadisper () of package vegan. The trick is to use factor
variables and their interactions as explanatory variables. In the example below, the
factors are coded as orthogonal Helmert contrasts to allow testing the factors and
interaction in a way that provides the correct F values. The interaction is repre-
sented by variables that are the products of the variables coding for the main fac-
tors. Properties (for a balanced design): (1) the sum of each coding variable is zero;
(2) all variables are orthogonal (their scalar products are all zero); (3) the groups of
variables coding for the main factors and their interaction are all orthogonal.

To illustrate this application, let us use a part of the Doubs data to construct a
fictitious balanced two-way ANOVA design. We will use the first 27 sites, leaving
the two last out.
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Let us create a first factor representing altitude. This factor has three levels, one
for each group of sites 1-10, 11-19 and 20-28 (remember that the empty site 8 has
been removed from the data).

The second factor mimics the pH variable as closely as possible. In the real data,
pH is more or less independent from altitude (r=-0.05), but no direct codification
allows the creation of a three-level factor orthogonal to our first factor. Therefore,
we simply create an artificial, three-level factor orthogonal to altitude and approxi-
mately representing pH. Be aware that we do this for illustration purposes only, and
that such a manipulation would not be tolerable in the real world.

The end result is a balanced two-way crossed design with two factors of three
levels each. After having tested for the homogeneity of variance—covariance
matrices for the two factors, we test the two main factors and their interaction, each
time using the appropriate terms as covariables. Using Helmert contrasts instead of
factors allows an explicit control of all the terms of the model specification.

¥ Two-way MANKCVA by RDA

# EE RS A AR EE AR LR EESEEEE RS

# Creation of a factor 'altitude' (3 levels, % sites each)

alt,.Zac <— gl(3,%

¥ Crestion of a factor mimicxing "oi!

pH.fac <-
as.factor{c( ,2,32,2,3,1,3,2,1,2,1,32,3,2,1,1,2,3,2,1,2,3,2,1,1,3
S30)

{ Are the factcrs balanced?

zanole(alt.fac, pH.fac)

f Crecticn of Ee_mert con-rests for —he Zasctozs aad theiz
interzction

all.pH.he_m <- nodel.ralrix{~a_L.lac * pE.Llacz,
contrasta=list{alt.Tac="contr.helmerz", pH.fasc="contr.haelmert)}
all.pH.he_m

# Examine the table of contrasts. Which columns represent
# alt. fac? pH.fac? The interaction?

¥ Check properzy 1 of Helwers conzrasts: a11 wvariables sum to
apoclylalt.pid.heln[,2:9.,2, sum)

¥ Check property 2 of Helmwerts contrasts: variables are

¥ uncorre ated

cor{alt.pll.helm ,2:5])
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£ Verify mu_tivariate homcgereity of within-grouc covarlance
£ matrices using the betadisper () Zunction (vegan pacxage)
¥ Imrplementing Marol Ancerscrn's testing method

spe.hel.dl <- distispe.hel[l:27,])

£ Factor Ma_tituds"

(sope.hel . all.MEV «- beladisoer{spe.ne’.dl, all.Zzc})
anova (spe. el ,a’t . MHV)

perrutest (spe.ke’.alt . .MHV) # Permutatioral Test

f Factor "pA™

(zpe.hel.cH. M3V <- helacisper(spe.he_.dl, pE.Lac))
ancva (spe.nel .pH.MZV)

permulasl (spe.he_.pH.MHV) # Zermulzl_ona’ lLesl

# The within-group covariance matrices are homogeneous.
# We can proceed.

¥ Test —he Interaction first. The facteors alt and pll Zorm toe
¥ nmatrix of covariablcs

interzction.rda <- rda{spes.he_|1:27,_ , a_t.pH.helm|,&:9],
alt.pH.helm ,2:30)
anova (irtcraction.rca, step=10C30, pcrn.max=1C00)

# Is the interaction significant? A significant interaction
# would preclude the analysis of the main factors since it
# would indicate that the effect of a factor depends on the
# level of the other factor.

¥ Test the mair factor alt. The factor pH arna the interaczion
# form the matrix ¢ covarieb_es.

factor.alt.rca <- rcal(swe.hel 1:27,], alt.pE.ae_m[,2:3_,
all.pH.ze_m[,4:9 )

anova (factor.alt.rda, step=1000, perm.max=1000, strata=pd.ZIzc)

# Is the factor alt significant?

£ lest the main factor od. The factor alt arnd —he interasoczion

¥ form the matrix of covarisbles.

faczor.pll.rde <- »da(spe.re’ [1:27, , zl-.oil.heln[,4:5],
alt.pH.ohelm|,c{2:3, &:3)1])

anova (factor,pE.rda, step=130C, perm.max="000, strata=alt.Zac)
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# Is the factor pH significant?

¥ RDA ard triplot for the significant factor alt

alt.rca.cut <- rca(=p el[_:27,] ~ ., as.data.frarefa_t.fac))
ploz{zsl-.rda.ouvt, sca l g=l d‘sp ey=c{"sz", "wa", "cn"),
main="Multivariatse AN factor a_tituade - scaling - - wa

scores™)

spe,.nancva.se <— scozes(alt.rda.cut, chclces=1:2, scalinc=1,
display="sp")

arrcws (0, 0, spe.manova.sc|, 1], spe.manova.scl, 2], length=0,
col="red")

Hints To convince yourself that this procedure is the exact equivalent of an
ANOVA, apply it to species 1 only, and then run a traditional ANOVA
on species 1 with factors alt .fac and pH. fac, and compare the F
values. The probabilities may differ slightly since they are permutational
in RDA.

In the permutational tests of each main effect, the argument strata
restricts the permutations within the levels of the other factor. This
ensures that the proper HO is produced by the permutation scheme.

Examine the help files of functions model.matrix(),
contrasts () and contr.helmert ().

If the design is unbalanced, this procedure can still be applied, but the contrasts
are not orthogonal and therefore the tests of significance of the factors and interaction
have reduced power to detect significant effects.

6.3.2.9 Distance-Based Redundancy Analysis

Ecologists have long needed methods for analysing community composition data
in a multivariate framework. The need was particularly acute in ecological experi-
ments designed to be analysed by multifactorial analysis of variance. We have seen
that community composition data with large numbers of zeros must be transformed
before they are used in MANOVA and other Euclidean-based models. The Legendre
and Gallagher (2001) transformations (Sect. 3.5) are one way to solve that problem:
transformed species data can be used in the ANOVA by RDA described in
Sect. 6.3.2.8. These transformations cover only the chord, Hellinger, chi-square and
Ochiai distance cases, however. Ecologists may want to compute RDA based on
other dissimilarity measures that cannot be computed by a data transformation
followed by the calculation of the Euclidean distance.
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Legendre and Anderson (1999) proposed the method of distance-based redundancy
analysis (db-RDA) to solve that problem. They showed that RDA could be used as
a form of ANOVA which was applicable to community composition data if they
were transformed in some appropriate way, which went through the calculation of
a dissimilarity matrix of the user’s choice. This approach remains fully valid and
useful for all dissimilarity measures that cannot be obtained by a data transforma-
tion followed by the calculation of the Euclidean distance. Among the ones devoted
to communities of living organisms, let us mention most measures for binary data

(e.g. Jaccard (1/1 =S, ), Sgrensen (1/1 =S, )), and quantitative distance measures
like Bray—Curtis (D ,), asymmetric Gower (, /1-S,, ). Whittaker (D,) and Canberra
(D,,)- Dissimilarities intended for other types of data, e.g. symmetric Gower

( 1-S,; ), Estabrook—Rogers (1/1—516 ), and the generalized Mahalanobis dis-
tance for groups of observations, can also be used in canonical ordination through
db-RDA. Examples of papers involving db-RDA are Anderson (1999), Geffen et al.
(2004) and Lear et al. (2008). The method goes as follows:

e Compute a Q-mode dissimilarity matrix for the response data.

* Compute a principal coordinate analysis (PCoA) of the dissimilarity matrix, cor-
recting for negative eigenvalues if necessary. Keep all principal coordinates in a
file; they express all the variance of the data as seen through the dissimilarity
measure.

* Run and test an RDA of the principal coordinates created above (acting as
response data) constrained by the explanatory variables available in the study.
The explanatory variables may represent the factors of a manipulative or men-
surative experiment.

These steps are quite simple; they can be run one by one in R with a few lines
of code only, but a shortcut is available in vegan, as will be shown below. For the
sake of example, we will compute a Bray—Curtis dissimilarity matrix of the fish
data before submitting it to the same ANOVA-like RDA as above.

¥ Distarce-based redurdancy anslvsis (db-RDA}
# R A S AR SRS SR AEEEEE RS SR EEREREEEEEEEEEES S

¥ .. Explicit steps

spe.bray <- vegdist(spe _:27, , "bray")

spe.pcoa <- cmdscale{spe.bray, k=rrow{spe . ’:27,]11-1, eig=TRJE,
ada=TRUZ)

spe.scores <- spe.pcoaSnolints

¥ Tesl of Lhe inlLeraci on. Faclors a’l and pH, EelmerlL-coded,

¥ [o-i Lae malrix ol covariables
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interact.cbrca <—- rcal(spe.sceres[l:27,], slT.pE.helm ,6:9],
alt.pH.helm[,2:37)
anova (interact.dsrda, step=_000, perm.max=_000})

# Is the interaction sigmnificant?
# If not, you can proceed and test the main factors (not shown)

£ 2. bDirect way using vegan's fuanction canscale. 2uns with moael

T interface only.
¥ Rasponse mal.cix can be raw dala:
interect.cbroaZ <- capscale(spe[l:27,] ~ =zlZ.fac*pid.Zac +

Cond’ticn(a_t.fac+pH.fac), cistarnce="bray", =dd=TRUE)
anova (irteract.dorda?, step=1000, cerm.max=1000)

f Or response matrix can be a aissimilarity matrisx:

interact.adbrcal3 <- capscale(spe.bray ~ a’_t.fec*pH.fac
= Condition({a’t. factpH, fac), add=TRUZ)

anova (interact.dsrdald, step=10J0, cerm.max=1000)

Hints In the cmdscale() and capscale() functions, the argument
add=TRUE adds a constant to the distances to avoid negative eigen-
values. This is the Cailliez correction.

When using raw response data, the association coefficient is deter-
mined by the argument distance.

6.3.2.10 Nonlinear Relationships in RDA

One last point is worth mentioning. RDA carries out a multivariate linear regression
analysis followed by a PCA of the fitted values. Consequently, other techniques
used in multiple regression can be used in RDA as well. Consider the fact that all
RDA models presented above used only first-degree explanatory variables.
However, it is frequent that raw species responses are in fact unimodal, with a spe-
cies showing an ecological optimum and some tolerance to the variation of a given
environmental constraint. A strictly linear model would suffer from lack-of-fit in
such a case. Plotting all possible pairs of response versus explanatory variables to
detect such non-linearities would be too cumbersome. An interesting shortcut to
identify and model unimodal responses is to provide second-degree explanatory
variables along with the first degree terms (i.e. provide the terms for a quadratic
model) and run forward selection. This procedure will retain the relevant variables,
be they of the first or second degree. Of course, the interpretation of such results is
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more complex, so that it should be applied only when one has serious reasons to
suspect non-linear relationships. Third-order explanatory variables may even be
useful in the case of unimodal but highly skewed response variable distributions.
Raw polynomial terms are highly correlated, so it is preferable to use orthogonal
polynomials, which can be computed by function poly() of the package
stats.

In the Doubs data, there are several species that are found mostly in the middle
section of the river. Their relationship with the variable “distance from the source”
(das) is therefore unimodal: absence first, then presence, then absence again. Such
a simple case could be a good candidate to experiment with a second-degree vari-
able. When interpreting the result, note that species having their optimum around
mid-river will point to the opposite direction from the das-squared variable das2,
because the quadratic term of a unimodal model is negative. Species with arrows
pointing in the same direction as the das2 variable may be more present at both
ends of the river than in the middle. Remember also that this analysis is done on
untransformed response variables.

¥ RDA with a second degree explaratory variable
# ERE S E RS EESE S A S TR S SR AR EAE TSR EEESESEESESEEESES]

¥ Create a natrix of das and ts orthogeral second degree Term
¥ using poly ()

das.df <- polyi{des, 2}

colramas {aas.df)y <- ¢{"aas", "das2")

£ Verify f both wariables are signiZicant

forward.sel (spe, das.dZI)

¥ RDA ard test
spe.das.rca <- rdaispe ~ ., as.data.Zrame(das.dZ)}
anova (spe.das.rda)

f Triglet using 1o (model) site scores ard sceling 2

ploz(spe.das.rda, scaling=2, display=c{"sp","1lc","cn"),
main="Irivlot 2DA ste ~ das+dasZ - scaling 2 - lc scores™)

speb.sc <— scores(spe.das.rda, choices=1:2, scaling=2,
display="sp")

arrows (0, 0, spe6.sc[,1], swceo6.sc[,2., lengzh=0, 1lty=1,
col="red")

Hint If one computes raw second-degree variables by hand (i.e. by squaring
first-degree variables) or by applying argument raw=TRUE fo func-
tion poly (), it is better to centre the first-degree variables before
computing the second-degree terms, otherwise the latter will be
strongly linearly related to the former. This is not necessary when
using poly ().
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Triplot RDA spe ~ das+das2 - scaling 2 - Ic scores
| |

HRELT
20
E Lo

B 15
] B : k

das _

RDA2

28

29

! das2
30 : t

T T T l I
-3 2 -1 0 1
RDA1

Fig. 6.6 Scaling 2 triplot of the untransformed fish species explained by an orthogonal second
degree polynomial of the variable “distance from the source” (das)

We drew a scaling 2 triplot because we were interested primarily in the relationships
among the species (Fig. 6.6). At first glance, this triplot looks like some mistake
has been made, but in fact it displays exactly what has been asked for. The surpris-
ing feature is, of course, the curved distribution of the sites in the plot. Since we
modelled the data by means of a second-degree function (i.e. a parabolic function)
of the distance from the source, the modelled data (option “1c”) form therefore a
parabola. If you want a triplot showing the sites in a configuration closer to the data,
replace “1c” by “wa” in the plot function above.
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To illustrate the interpretation of the first-order das and the second-order das2
variables, let us take some fish species as examples. We map them along the river
to make the comparison easier. The four examples are the brown trout (TRU), the
grayling (OMB), the bleak (ABL) and the tench (TAN). The code is the same as in
Chap. 2 (Fig. 6.7).

¥ Maps o four Zisk species
# B R

par{nfzow=c(2,2})

plot (gpasx, spaSy, asp=_, col="brown", oex=speiTRU,
xlzb="x (km)", y_ab="v (km}", main="Brown trout")
lines({spasx, spasy, col="ligkt blue™)

plot{spasx, spasy, asp=_, col="hraown", cex=speilM3,
xlab="x (km}", v izb="v (km)", main="Grayling™}
lines (spasx, spaty, co.="light blue™)

plot {spasSx, spasSy, asp=_, col="brown", cex=spe3ARL,
xlab="x (km)", ylak="v (km]", main="Blesak™)
lines(spa$x, spa$y, co_="ligkt blue")

plot(spasSx, spaSy, asp=_, col="brown", cex=speSTAN,
#x1lzb="x (km}", v_zb="v (km}", main=""ench™)
lines (spasSx, spafy, co_="lighkl bhlue™)

Comparing the ordination triplot with these four maps shows how to interpret
the fish vectors in combination with the two variables das and das2. Among all
species, the brown trout TRU is most strongly linked to the upper half of the river;
its vector is opposed to das and orthogonal to (i.e. independent of) das2; the
grayling (OMB) is characteristic of the middle part of the river. Note that its vector
on the triplot is opposed to that of variable das2. The bleak (ABL) is abundant in
the lower half of the river, as confirmed by its vector pointing in the direction of
das, orthogonal to das?2 and directly opposite to TRU. Finally, the tench (TAN) is
present in three different zones along the river, which results in vector pointing
halfway between the das and das2 vectors.
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Fig. 6.7 Bubble plots of the abundances of four fish species, to explain the interpretation of the
second degree RDA presented above

Of course, since we have other, more explicit environmental variables at our
disposal, this exercise may seem unnecessary. But it shows that in other cases, add-
ing a second-degree term may indeed add explanatory power to the model and
improve its fit: the forward selection result confirmed that das?2 added a significant
contribution in this example, the R2aclj being raised by 6.3%.

The use of higher-degree explanatory variables is typical in the frame of spatial
analysis, where the explanatory variables are spatial coordinates and the higher-
degree variables form trend-surface analysis models (see also Chap. 7). This does
not, however, preclude their use with other types of explanatory variables.
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6.3.3 A Hand-Written RDA Function

The code below is another exercise in matrix algebra; just follow the equations.

The Code It Yourself corner #4

To be able to code an RDA from scratch, we will vefer to the algebra provided by
Legendre and Legendre (1998), Section [1.1. The steps arve the following (RDA on a
covarianee marrix);

! - Compute the multivariate finear regression of the centred dara matrix on the
stamdardized matrix of explanatory variables. Obtain the matrix of fitfed values.

2 — Compute PCA on the marrix of fitred values.
3 - Compute the two tvpes of sife scores.
4 - Cutpur of the results.

The equations used are referred fo in the comments, using Legendre and
Legendre’s mumbering.

The code below concentrates on the constrained part of the RDA. It is intended for
readers imferesied in the mathematical procedure of RDA and is not optimized for
performance.

myREA <— Tuncllon(¥, ¥ {

*

4 1. Zreparation of zhe dazs

# kkwddkdkdkd bk kh bk wk kb h ko

At - as.matzix (V)

c «<- scale{Y.ral, scale=FALSE}
.mal <- as.malrix{X)

Xcr <- scale(X.mat)

¥ 2, Computation of The mu.tivariate linear regression
:'ﬁ khkwhkwr kb d ok khkkwhkwb bk wmtkmhdwhdwm kmwkhh ok khk bk kwh bwwhF

# Matrizx of regression coefZicients (ea. 12.4)

B <- solve{l(Xcr) %*% Xor) 3%3 _lHer) %3*% Yo

¥ Matrix of fitted values (eqg. 11.5)
Yrat <- Xor 2% B

1 Matrix of residuoa’s
Yres <- ¥c - ¥Yrat
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-lE

RESTE

HlE

th=

HlE

HlE

vl el

Simersions

n <- nrow(Y)
p <- ncol (Y)
m <- nool ()

3. PCA on fizted walucs

el otk ek ke vk sk e otk sk e ke sk ok ek ke ok ok e

Covariarce matrzixz (og. 11.7)

S <- gov{¥ral)

Figervaluse cecomposition

eiganrd <- eligenr{3)

How mwany canonical axes?

ko <- length(wnizhi{eigersivalass > .00000%01}

Figervaluces of canonical axes

ey <- =2iger3Svalias|like]

Tozal varlasce (facrtia) of the controed matrix
trace — sum(diag{cov(¥a) )

Orthenormal sigenvectors (contriniations of rezp
varlab.eg, scaling 7))

~al[,1l:ke]

o_names (¥}

7 <= elgenSivecio

row.ramnes (J} <-—

Site ascores (vegan's "wa' soor
E <= Yz t L
row,rancs (F) <- row.rnanes{Y}

v '

5ize corstraints (vegan's ‘_c
4 <- Yhaz #*3% U

row.ramnes (7] <- row.names{¥Y}

scores, sczaling

Cancrical cocfficicernts (ocg. Z1.24)
CC <= 3 %7% U

row. namea (C0) <- celnanes (X)
Explanztory variables
Specles-envlircnmen. corre’alicns
CorXi <- zor(X,7)

Clagonal matrix of welights

> <- diag(sgrt{ev/iracel)

Biplot scoress of sxplanatery variables
coordi <- cor¥i 5 D : Zcalirg 1
coord¥2 <- cor¥? £ 2

[F2 e

<
calirg 2
row.rames (coord¥} <- colnames (X)

&, sca_ing l; ec.

e

onas

11.12)

2 eg. 11.23)
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rew.names (ccordx2) <- colnames (X}

t* Sca_irg Lo sgrl of Lhe relzlive sicenvalue
UZ <= U %*% dieg(sgxt(=v))
row.names (U7} <- colnares{Y)
FZ «<— 7 diceg(l/sqrtiev))
rcw.nanes (FZ} <- row.rames (Y)
22 «<— Z %*% diagi(l/aqrtiev))
row.nancs (42} <- row.rancs (Y)

# Uradjuszed RZ
RZ «<— surl{ev/-race)

# Adjustod R2
RPacd] <= 1=({n=1)/(n-m=1)) " (1-R?}

L wk ke h hknk

resu_t <- _istT(tracs, RZ2, RZ2a,ev,C{,U,T,7,
TZ,FZ2,22, cocrdH2)

names (resa_t) <- o("Total wvariancs", "RZ',
"Can coeftf", "Sgpeciss sc17, "wa scl@,
"Riploz scl", "Species sc?", Twa scl',
"Biploz sc2")

resu’ L

Apply the function to the Doubs fish and envirommental data

douos.nyRDA <- mvELA(spe.hel ernv)
sunrary {aochs o myRDA)

{[cr scaling 2)

# 4. PCA o residuals

L bk sk bk ek ke ke ke ko ok

4 write yocur cwn code as ir Chapter 5. It could begir with:
L sigentres <- elgernf{cov(yzesz)}

# ovr - olgernfresivalucs

¥ 5. Cutput

cooraX,

"R2z", "Can ev",
"o scl®,

"le sc?',
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6.4 Canonical Correspondence Analysis

6.4.1 Introduction

The canonical counterpart of CA, canonical correspondence analysis, has been
acclaimed by ecologists ever since its introduction (ter Braak, 1986, 1987, 1988).
It shares many characteristics with RDA, so that a detailed description is not neces-
sary here. Basically, it is a weighted form of RDA applied to the same matrix Q of
contributions to the y* statistic as used in CA (Legendre and Legendre 1998,
Section 11.2). CCA shares the basic properties of CA, combined with those of a
constrained ordination. It preserves the y* distance among sites, and species are
represented as points in the triplots. ter Braak (1986) has shown that, provided that
some conditions are fulfilled,” CCA is a good approximation of a multivariate
Gaussian regression. One particularly attractive feature of a CCA triplot is that
species are ordered along the canonical axes following their ecological optima.
This allows a relatively easy ecological interpretation of species assemblages. Also,
species scores can be used as synthetic descriptors in a clustering procedure
(for instance k-means partitioning) to produce a typology of the species in
assemblages.

CCA does have some drawbacks, however, related to the mathematical proper-
ties of the y? distance. Legendre and Gallagher (2001) state that “a difference
between abundance values for a common species contributes less to the distance
than the same difference for a rare species, so that rare species may have an unduly
large influence on the analysis”. Despite its widespread use, “the 2 distance is not
unanimously accepted among ecologists; using simulations, Faith et al. (1987)
concluded that it was one of the worst distances for community composition data”
(Legendre and Gallagher 2001). Its use should be limited to situations where rare
species are well sampled and are seen as potential indicators of particular charac-
teristics of an ecosystem; the alternative is to eliminate rare species from the data
table before CCA. These problems, among other points, have led to the develop-
ment of the species pretransformations to open these data to the realm of RDA,
ANOVA and other linear methods. Furthermore, the proportion of total inertia rep-
resented by explained inertia (inertia is the measure of explained variation of the
data in CCA), which can be interpreted as an R?, is also biased, but no simple
method exists for its adjustment. Ezekiel’s adjustment cannot be used. A rather

3Two important conditions are that the species must have been sampled along their whole ecologi-
cal range and that they display unimodal responses toward their main ecological constraints. These
conditions are difficult to test formally, but graphs of species abundances in sites arranged along
their scores on the first few ordination axes may help visualize their distributions along the main
ecological gradients.
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cumbersome bootstrap procedure can be used for its estimation, for which no R
code exists as yet (Peres-Neto et al. 2006). This precludes a correct estimation of
the proportion of variation explained by CCA in the case of a single analysis, and
unduly inflates the type I error and the estimation of explained variation in forward
selection since Blanchet et al. (2008a)’s double stopping criterion cannot be
applied. Since one cannot take the number of explanatory variables into account in
computing an adjusted R?, the estimated relative amounts of variation in variation
partitioning are also distorted.

Despite these shortcomings, CCA is still widely used and deserves an
illustration.

6.4.2 CCA of the Doubs Data

6.4.2.1 CCA Using vegan

Let us run a CCA of the Doubs data using the formula interface. The species data
are the raw, untransformed abundances (do not use the Hellinger-transformed data,
which are meant to be used with RDA; the preserved distance would no longer be
the y? distance and the results could not be interpreted).

# CANCNICAL CORRESZONDEXCE ANALYSIS {CCA)

# EE R R A T o o I

¥ OCA of tne rzaw fish svecies cata, constrained by all the
# envircnmental wvariables in envZ

spe.cca <- ccaf{sns ~ ., =nvl)

spe.cca

surrary (sos.cca) § Scalicg 2 (cefaa_t)

The differences with an RDA output are the following:

e The variation is now expressed as Mean squared contingency coefficient. It is
biased but cannot easily be adjusted.

¢ The maximum number of canonical axes in CCA is min[(p—1), m, n—1]. The
minimum number of residual axes is min[(p—1), n—1]. In our example, these
numbers are the same as in RDA.

* The species scores are represented by points in the triplot.

e Site scores are weighted averages (instead of weighted sums) of species scores.
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6.4.2.2 CCA Triplot

The code to produce CCA triplots is similar to the one used for RDA, except that
the response variables (species) are represented by points and thus arrows are not
necessary for them.

£ CCA triplots {(using _c site scores)
# EE R EE SR EESEFS AR ERESREEEEESRESREEEEESES]

calirg 1l: specles scores scaled to re_ztive elgenva_ues,
ites are weighteo averages of the species

plot{spe.cca, sceling=1l, disp_zy=c("sp","lc","cn"},
main="Trivlot CCA spe ~ envi - =sca_ing 1")

¥ 2

f Defzult scaling 2: sites scores scaled to relative eigenvalues,
f species are welighted zverages o the 3ites

plot{spe.cca, display=c("sp",”"lc"”,"cn"), main="Trip_ot CCN spe ~
aenvZ - scaling 2™}

a Triplot CCA spe ~ env2 - scaling 1
1 1
omMB
< A CHA
BLA

® -
a N7
<
) e
O

-2 -1 0 1 2 3
CCA1

Fig. 6.8 (a) CCA triplot of the Doubs fish species constrained by all environmental variables
except das. Scaling 1
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b Triplot CCA spe ~ env2 - scaling 2

CCA2

10 penvery_steep

CCA1

Fig. 6.8 (continued) (b) CCA triplot of the Doubs fish species constrained by all environmental
variables except das. Scaling 2

In CCA as in RDA, the introduction of a third entity (explanatory variables) calls
for additional interpretation rules for the triplots. Here are the essential ones:

e Scaling 1 — (1) Projecting an object at right angle on a quantitative explanatory
variable approximates the position of the object along that variable. (2) An
object found near the point representing the centroid of a qualitative explana-
tory variable is more likely to possess state “1” for that variable. (3) Distances
among centroids of qualitative explanatory variables, and between centroids
and individual objects, approximate y* distances.

e Scaling 2 — (1) The optimum of a species along a quantitative environmental
variable can be obtained by projecting the species at right angle on the variable.
(2) A species found near the centroid of a qualitative environmental variable
is likely to be found frequently (or in larger abundances) in the sites possessing
state “1” for that variable. (3) Distances among centroids, and between cen-
troids and individual objects, do not approximate y* distances.
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The scaling 1 triplot focuses on the distance relationships among sites, but the
presence of species with extreme scores renders the plot difficult to interpret
beyond trivialities. Therefore, it may be useful to redraw it without the species
(Fig. 6.9a):

s CCA gca’ing 1 wiplot without species {(usirg lc site scores)
# EE R RS R RS R R R R R R e

ploZ{spe.cca, sceling=1l, disp_zy=c("_c","ca"}, nmein="Blplct CC&
spe ~ env? — aoa_ing 1)

Ch sca_ing 2 biplot without sites
R R R R NSRRI A

4 0]

£
i

plot{spe.cca, scalincg=Z, disp_ay=c("zp", "cr"), main="Biplot CCRQ
spe ~ envl - szaling 2M)

Here the response of the fish communities to their environmental constraints is
more apparent. One can see two well-defined groups of sites, one linked to high
altitude and very steep slope (sites 1-7 and 10) and another with the highest oxygen
contents (sites 11-15). The remaining sites are distributed among various condi-
tions towards more eutrophic waters. Remember that this is a constrained ordina-
tion of the fish community data, not a PCA of the site environmental variables. The
triplot therefore displays how the fish community is organized with respect to the
environmental constraints.

The scaling 2 triplot (Fig. 6.8b) shows two groups of species: OMB, CHA and
BLA linked to high oxygen concentrations; TRU, VAT and LOC linked to high alti-
tude and very steep slope. To help untangle the other species, a biplot without the
sites may be useful. You could plot it as we did above for the scaling 1 biplot, but
this time leaving out the site ("1c") scores and using species ("sp") scores
(Fig. 6.9b).

This closer look shows that ROT, CAR, TAN, BRO, GOU and PER are linked to
high ammonium and phosphate concentrations, as well as high biological oxygen
demand; most other species are linked to high nitrate concentrations, moderate to
low slopes and high discharge.
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Fig. 6.9 (a) Biplot of CCA, scaling 1 with fitted site scores
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b Biplot CCA spe ~ env2 - scaling 2
I I
0 | omB
T CHA
BLA

e
Y
<C
(@]
O w |

o

dur
TOX oxy
B oH
deb X Qﬁﬁ‘&ﬂ?f Steep
nit
) ;
ROT am
dBFEF Ay per HE
BRO VA
LOC TRU

ITo) alt

o' -

T T T T T

-0.5 0.0 0.5 1.0 15

CCA1

Fig. 6.9 (continued) (b) Biplot of CCA, scaling 2 with species scores
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6.4.2.3 Permutation Tests in CCA, Forward Selection
and Parsimonious CCA

CCA results can be tested for significance by permutations, in the same way as
RDA.

¥ Permutation z—ests of CCA resulzos
# AR R RS EEEEE S SRR EREERESEEEER TSRS

¥ Permutation test of the overzall analysis
anova (spe.cca, step=10C0)

f Permutation fest of ezch axis
anova (spe.cca, byv="axls", step=10CD)

The RDA presented in Sect. 6.3.2.2, although globally significant, was not
parsimonious. Therefore, we computed a forward selection of explanatory variables
(Sect. 6.3.2.6). Let us do the same thing here with function oxrdistep (), since
forward.sel () only computes RDA.

¥ CCA-based forwsrd selecticorn usirng vegan's ordistep()

mhm oAk KA A m AT A kA A kA A A w ok kA m bk m ok kA mm e w Ak ko w ok ok A ow ok ow ok ok ko ko

#
£ This functior zllows tha use of factors like 'per!' in envi

coa.step. ftorward <- ordiszen{ccal(swe ~ 1, cata=envl),
scope=formu_a (spe.cca), directlon="forwara", pstep=100C)

The result is the same as the most parsimonious one based on RDA. Therefore,
we can compute a parsimonious CCA on the basis of the same three explanatory
variables: altitude, oxygen concentration and biological oxygen demand.

¥ Parsimecniocus CCA using alt, oxy and dbo
# REkmFEFFhrrdrkbdbnrsrbdddrbbbrsmsdnrrdrmrn dddhn

{spe.cca.care <— coalspe ~ alt + axy - dbo, cata=env2))
anova,cza(spe. o
anova.cca (spe.cc

by="axzs"}

vif.cca(sce.ccal
vif.ccalzsee.cca.mars)

Hint Although the explanatory variables are the same, the VIFs differ from
those of RDA because CCA is a weighted regression procedure where
the (raw) species data have undergone a double standardization (per
rows and columns).



206 6 Canonical Ordination

As in RDA, parsimony has paid off. The unadjusted explained inertia is now
56.3%; it was 72.5% with all explanatory variables. This drop (which would cer-
tainly be smaller if these values were adjusted) is compensated by a clearer model
with three significant canonical axes. The VIFs of the three remaining variables are
around 3, which is good.

6.4.2.4 Three-Dimensional Interactive Plots

Instead of plotting these parsimonious results as we did before, let us explore a
vegan function that can be very useful either for a researcher looking for a new
perspective on his or her results, or for a teacher: a 3D interactive plot. We see
several options to reveal or combine results in different ways. These 3D plots are
run under the rgl package.

¥ Three-dimensional interactive ordinaticn plots
# EE R SR E S AR R AR EREEEEEE R LR EREEEAEEE SR EEEEEEEE LS

£ Plot of the sites orly (wa scores)

# EE e R S e e S e o

orcéirgl (spe.cca.pars, type="I", scaling=1)

Using the mouse, enlarge the plot by dragging its lower

# right-hand corner. Then move the plot around by left-clicking
# on any point in the plot with the left button. Use the scroll
# wheel to zoom in and out.

£

f Connect weigkted average scores to liresr combinaticon scores
crglsoider (spe.cca.pars, scaling=1, col="purple”)
# The purple connections show how well the CCA model fits the
# data. The shorter the connections, the better the fit.

¥ Plol the siles (wa scoras) wilk & cluslesing resc’ L

ﬁ E e R I i R R R R L R o R R

¥ Oolour siles according Lo clusler nembership

gr <- cutree(hciust(vegdist (spe.hel, "euc"), "ward"), 4)

croirgl (sve.cca.cars, Lype="L", scel’_ng=1l, ax.co_="black"™,
col=gr+l}

f Connect sltes to cluster centroclas

crglsoider(spe.cca.pars, gr, scal‘ng=l)
# The sites are nicely clustered along their major ecolegical
# gradients. Remember that this is an analysis of the fish
# commmnity data.

¥ Conmolele COZA 3D Lriplol
# whmd Ak dw koo d ok ok okow ko

orcirgl (spe.cca.pars, type—"I", scaling—2)
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orgltext {spe.cca.pars, display="speciles", type="t", scalirg=2,
col="cyan™)

¥ Plot species groups {(Jaccard sim’larity, useab’e in R mode)
# R T e i Tk R L B b S e e

gs <— cutreelaclust{vegaist (L {spe), rethod="Jjaccard™), "ward™),
4)

croirgl (spe.cca.cars, displey="species", tLype="t", col=gs+l)

rgl.guit ) £ shutdown rgl device zystem

Hint Three-dimensional plots have many options. Type ?ordirgl fo
explore some of them. It is also possible to draw 3D plots of RDA
results, but there is no simple means to draw arrows for the response
variables.

6.5 Linear Discriminant Analysis

6.5.1 Introduction

LDA differs from RDA and CCA in that the response variable is a grouping of the
sites. This grouping may have been obtained by clustering the sites on the basis of
a data set, or it may represent an ecological hypothesis. LDA tries to determine to
what extent an independent set of quantitative variables can explain this grouping.
We insist that the site typology must have been obtained independently from the
explanatory variables used in the LDA; otherwise, the procedure would be circular
and the tests would be invalid.

LDA computes discriminant functions from standardized descriptors. These
coefficients quantify the relative contributions of the (standardized) explanatory
variables to the discrimination of objects. On the other hand, identification func-
tions can be computed from the original (not standardized) descriptors and can be
used to find the group to which a new object should be attributed. The example
below shows both operations (discrimination and identification).

To perform LDA, one must ensure that the within-group covariance matrices of
the explanatory variables are homogeneous, a condition that is frequently violated
with ecological data.
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6.5.2 Discriminant Analysis Using 1da ()

1da () is a function of package MASS. As a simple example, we can use the four-
group classification of sites based on the fish species (gr in the 3D plots above),
and try to explain this classification using the three environmental variables that
have been selected in Sect. 6.3.2.6.

When interpreting the result, we refer to the equations presented in Legendre
and Legendre (1998, Section 11.5).

# LINEAR DISCRIMINANT ARALYSIS (LOR)

# FhREIREE A TR IETFA ST I A I I m R T R AR Em L F R E R E

env.pars?2 <- as.matrix(env[,c(.,5,20)])

£ Verify multivariate heomogereity of within-greouo covariarce
f matrices usirg the betadisper () function (vegan package)

£ mrplementing Marti Anderscn's Testing method

env.parsl.dl <- dist{env.pars2)

{env.MHV <- betfacdlsper{env.parsZ.d., gr}}
anova (env.,MAV)
permutest (env,MHV) # Permutatioral tes:

# The within-group covariance matrices are NOT homogenecus.
# Let us try a log transformation of variables alt and dbo

env.,pars3 <- chind{log{envsalt), envSoxy, loglenvSdho)
co_rames (env, pars3) <- c("a_i.la", "oxy", "dbo._n"}
row.names (env.pars3) <- row.rames (env)

anv.pass3.dl <- gisl{env.pars3)

(env.MHVZ2 <- betaedisper({erv.parzs3.al, g-i)

permutest (env.MHY2)

# This time the within-group covariance matrices are
# homogeneous. We can proceed.

£ Compuzation of TDBAE (discriminazion)

anv.parsid.df <- zas.cata.frane(env.pars3)
{spe.lda <- ldaf{gr ~ a_t.ln + oxy + dbo._n, cata=env.parsi3.af))

¥ The result coblect ccntains the informaticr necessary to
¥ irterpret the DA
surmary (sve. lda)
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¥ Display the groap means Zeor the 3 varilasles
spe, “dadSreans

£ Jenoute the rormalizes eigenvectors imatrix C, eq, 11.33)
{ which ars the standardized discriminart functlion coefiicients
(Cs <- spe.’ dafscaling)

¥ Comouale Lhe canonical eligervalues
spe, _dassvd 2

¥ Peslllion Lhe onjecls La Lhe space ol the zzacnical varliales
(Fo <- predict{sze.lda)$x)

¥ allesralive way: Fp <- scale(eav.pars3.cl, cernler=T20E,
scale=FAL3E) %*%

o

£ ClassiZicaticn of the oblects

(spe.class <- predict{spe.lca)3class)

£ Posterior prekebilitiecs of the okjcects to belong to the groups
({spe.post <- predict(spe.lde)3posterior)

¥ Table cf pricr wersus precicted classiZicaticns
(sove.table <- tasle(cr, spe.c_zs3)

¥ Progortion of correct classification
diag(crep.table (spe.table, 1))

¥ Plot the objects in the svace ¢ the canornical variates
£ with cclours according Zc their classiZicaticn
ploz(F[,1 , F[,2 , =zype="a"}
“exT(F[,1 , F[,2 , row.names{env),
co_=cl{as.nuneric(spe.c_ass)-1) )
ab_ine(v=0, lty="dotted™)
abkline (=0, Llty="dotted™)
% ellipses around the groups

Lor{l i Z:_enclhileve_s(as.lacler(ge)) i) {

cov <— cov{Zp_gr==1,])

cenlre <- app_y{(Fplgr==1,]1, Z, nean)

lines({el_ipse({cov, centre=centre, _eve_=0.95))

¥ Claszificaticn of new oblect (identification)
£ A new object Tz oreated wizh Inf{alzi=56.8, oxygen=30 and
Infdbo)—3.2

~ewe <= o(6.8,90,3.2)
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mews <- az.data.tzame{t(nawo)) # Must bes & row
co_rames (newo) <- colramnes (erv.parsi)

(predict.new <- mreclct(spe.lds, rewdata=neswo))

The new object has been classified in group 1. This calculation could have been
done in the same way for a whole table of new observations. Now you could exam-
ine the profiles of the fish species of group 1. What you have actually done is to
forecast that a site with the environmental values found in vector “new” should
contain this type of fish community.

f Z0A with Zzckknife-bassd classiZicaticn (i.e., leave-ong-out
¥ cross-validation)

spe._ca.&c <- _ca{gr ~ alt.ln + oxy + dbo.ln,
data=env z33.df, CV=TRUE}

surmrary (swe. lda. jac)

f Numbers and propertions oI correct classification
c.class <- spe.lds.jacsclass

tac.teble «— table(gr, spe.jac.class)
diag(crcep.table(spe.jac.tab.e, 1))

The classification success in spe . jac.table seems not as good as the result
in spe.table. Remember, however, that spe.table shows an a posteriori
classification of the objects that have been used in the computations. It is too opti-
mistic. By comparison, cross-validation results are obtained by computing the “Ida”
and classification of each object, in turn, with that object taken out of the
“lda” calculation. It is more realistic.

6.6 Other Asymmetrical Analyses

Not all possible forms of multivariate analysis have been developed above. There
are several additional methods that may prove useful in some applications. Most of
them are derived from RDA. Among them, let us mention Principal response
curves (PRC; Van den Brink and ter Braak 1998, 1999), the asymmetric form of
co-correspondence analysis (ter Braak and Schaffers 2004) and a method to test the
space—time interaction in surveys through space and time without replication at the
level of individual sampling units (Legendre et al. 2010).

PRC are designed to analyse treatment effects over time in terms of differ-
ences between control and treatment; they provide a clear graphical illustration of
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treatment effects at the community as well as the species level. They are available
through the function pre () of package vegan.

Co-correspondence analysis is based on correspondence analysis and is devoted
to the simultaneous ordination of two communities sampled at the same sites. Its
asymmetric form allows one to predict a community on the basis of the other. It can
be computed with an R package called cocorresp.

Space—time interaction testing is based on RDA and a spatial filtering technique
(MEM) described in Chap. 7. An R package called STT is available through an
ESA archive referenced in the paper.

6.7 Symmetrical Analysis of Two (or More) Data Sets

“Symmetrical analysis” means that the two matrices involved in the analysis play
the same role; there is no “dependent” or “explanatory”” matrix. The choice between
symmetrical and asymmetrical ordination methods is akin to the choice between
correlation and model I regression analysis. The former is more descriptive or
exploratory, and also appropriate when no unidirectional causal hypothesis is
imbedded in the model, while the latter is more inferential, i.e. oriented at explain-
ing the variation of response variables by means of a (hopefully parsimonious)
linear combination of explanatory variables. The two approaches are therefore
complementary; they fulfil different research aims and should not be opposed as
competitors on the same terrain.

Three symmetrical methods are presented here because of their interest in ecol-
ogy: canonical correlation analysis (CCorA), co-inertia analysis (ColA) and mul-
tiple factor analysis (MFA). Another method, the symmetric form of
co-correspondence analysis, is devoted to the simultaneous ordination of two com-
munities. It can also be computed with the package cocorresp.

6.8 Canonical Correlation Analysis

6.8.1 Introduction

CCorA is computed on two data tables. The aim of the method is to represent the
observations along canonical axes that maximize the correlations between the two
tables. The solution is found by maximizing the between-set dispersion, expressed
by the covariance matrix between the two sets of variables, with respect to the
within-set dispersion (Legendre and Legendre 1998, Section 11.4). The two sets of
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variables must be quantitative and are assumed to be multinormally distributed. The
limitation of the method is that the total number of variables in the two tables must
be smaller than (n—1).

In CCorA, one can also test the hypothesis of linear independence of the two
multivariate data tables. Pillai and Hsu (1979) have shown that Pillai’s trace is the
most robust statistic to departures from normality.

The availability of RDA and CCA has limited the application of CCorA in ecol-
ogy, since most ecological problems are stated in terms of control-response hypoth-
eses for which asymmetrical ordination should be preferred. CCorA is more
appropriate for exploratory purposes in cases where the two groups of variables are
likely to influence each other, which may often occur in real ecological systems.
Examples are the study of two groups of competing taxa and long-term studies of
soil-vegetation relationships during a colonization process.

6.8.2 Canonical Correlation Analysis using CCorA

In the variation partitioning example of Sect. 6.3.2.7, we used two subsets of envi-
ronmental variables, chemistry and physiography, to explain the structure of the
fish data. Putting aside the variation partitioning of that example, we could study
the structure of common variation of the two complete subsets of explanatory vari-
ables. How does chemistry relate to physiography?

Since the data should be as close as possible to the condition of multinormality,
we transform some variables in the following example to make them more
symmetrically distributed (we used the Shapiro—Wilk method to test for normality;
results not shown here). The variables must be standardized since they have
different physical dimensions. The function used for the analysis is CCorA () of
package vegan.

£ CANONTCAT, CORRRTATTON ANATYSTS (CCovhA)

mhkEhk Kk Ak xhwhk bbbk b b hh kb m kb bk m b m ko hkkhwk ok k

-

=t

Freparation o data {transformations tc maxe wvariacle
: distributions spproximately symmetrical)

anvihem? <- envoehom

envchemZSono <- log{envcaem$pho)

envehemZ8nit <- sgrt{envchendnit)

anvchemZSamn <- loglp(envchemSamm)

envchemZScho <- log(envcaem$dbo)

e

envoopol <- envtopo
envi.opoZiall <- loglenviopo$all)
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envoopoZSoen <- _og{envtopo$pen)
envoopoZSdel <- sgro(envtopoSdeb)
¥ CCorA {on standardized variables)
chem. topo.ccora <- CCorl{ernvchemZ, eavtcpoZ, s-tand.¥Y=TRUZ,
starnd.X=TRUE, aperm=299%)
chem. topo.ccora
biclaot (chem.topo.cocora, plot.type="biplat™}
0 CCorA biplot b CCorA biplot
Clirlit 10t toblom [RININT IRINRRINL NN ] <] INNIIN
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
| | | | | | | | | |
< |
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4 29 S 30
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Fig. 6.10 Biplots of a canonical correlation analysis
physiographic (right) variables of the Doubs data

(CCorA) of the chemical (leff) and

The result shows that there is a significant relationship between the two matrices
(permutational probability=0.001). Pillai’s trace statistic is the sum of the squared
canonical correlations. The canonical correlations are high on the first two axes.
The RDA R? and adjusted R? are not part of the CCorA computations strictly speak-
ing; the two RDAs are computed separately for information. This information is
useful to assess whether the canonical axes are likely to express a substantial
amount of variation (which is the case here), since canonical correlations may be
large even when the common variation is small with respect to the total variation of

the two data sets.
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In Fig. 6.10 the left-hand biplot shows the standardized chemical variables and
the objects projected in their space. The right-hand biplot shows the standardized
physiographical variables and objects in their space. Note that the two spaces are
“aligned” with respect to one another, i.e. the canonical axes show the same trends
expressed by the two sets of variables. The positions of the sites in the two biplots
are related, although not similar. The structures displayed are the result of linear
combinations of variables in each of the biplots so that the interpretation of indi-
vidual variables is difficult. The pair of biplots expresses the fact that oxygenated
waters are related to high altitude and steep slope (i.e. upstream conditions),
whereas discharge (deb) is highly positively correlated with hardness (duxr), phos-
phates (pho) and nitrates (nit); altitude (alt) and slope (pen) are highly nega-
tively correlated with these same variables.

CCorA is also available in package stats (function cancor()) and in a
package (unfortunately) called CCA, a wrapper computing canonical correlations
using cancor (in a function called cc () ) and providing graphical outputs (func-
tion plt.cc()) and extensions to situations where the number of variables
exceeds that of sites (function rec () ).

6.9 Co-inertia Analysis

6.9.1 Introduction

Dolédec and Chessel (1994) proposed an alternative to CCorA called ColA. Dray
et al. (2003) showed that this approach is a very general and flexible way to couple
two or more data tables. ColA is a symmetrical approach allowing the use of vari-
ous methods to model the structure in each data matrix.

The analysis for two data tables is computed as follows:

e Compute the covariance matrix crossing the variables of the two data tables. The
sum of squared covariances is the total co-inertia. Compute the eigenvalues and
eigenvectors of that matrix. The eigenvalues represent a partitioning of the total
co-inertia.

* Project the points and variables of the two original data tables on the co-inertia
axes. By means of graphs, compare the projections of the two data tables in the
common co-inertia space.

One particularly attractive feature of ColA is the possibility to choose the type
of ordination to apply to each data table prior to the joint analysis. Dray et al.
(2003) gave examples of choices, each of them yielding different results. Of course
the type of ordination must be chosen according to the research question and the
mathematical type of the data. The main options are the ordination techniques
explained in Chap. 5 (CA, PCA), but other methods can also be applied.
Furthermore, within the intrinsic limits of the ordination methods applied to each
data set, ColA imposes fewer constraints than CCorA regarding the mathematical
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type and the number of variables in the two tables. Note, however, that the row
weights must be equal in the two separate ordinations, a condition that renders the
use of ColA with correspondence analysis difficult. CA is a weighted regression
approach, and weights depend on the data. To apply ColA, a choice must therefore
be made about the weights of one or the two separate analyses to constrain them to
be equal.

6.9.2 Co-inertia Analysis Using ade4

A function called coinertia () is available in package ade4 to compute ColA.
In the code below, we apply ColA to the chemical and physiographic subsets of
environmental variables of the Doubs data set. Since ade4 requires separate appro-
priate analyses, a PCA of the standardized data (correlation matrix) is first per-
formed on each of the two data tables.* The number of axes to be retained in each
analysis (2 by default) can be specified. The proportion of variance accounted for
by the eigenvalues is then computed to assess the number of axes to be retained in
the ColA. In this example, three axes of the chemistry PCA account for 89.5%
variation, and two axes of the physiography PCA account for 98.9% variation.
After having verified that the row weights are equal in the two PCAs, these two
results are then submitted to ColA which is asked to retain two canonical axes. A
permutation test is run to assess the significance of the co-structure of the data
tables.

# CO-INZRTIA ANAZYSIS

fomE A m At m Ak h o wk ko

# PCA on both matrices

dudi.cher <- dudl . peaf{envcehen?, scale=TRUE, scan=FALSE, =f=3)
duci.topo <- dud:.pca{envtovcZ, scale=TRUE, scan=FALSE, nf=2}
F Relative variation of eigenvalues
duci.chem$elg/sun{dudi.caemseqg)

¥ Relasllive variallon ol elgernvalues
duci.topoSelg/sun(dudi.toposelyg)

# Equel row welghts ir the 2 analyses?

al_.egual (dudi.chemSlw,cadi.copoilw)

# Co-lnertia ara_ysis

cola.chemr.tooo <- coinertiaf{duci.cher,cud.topo, scan=TAL3E,
nf=2}

cola.chan, Looo

“Note that ade4 has been developed around a very general mathematical framework involving
entities that will not be described here, called duality diagrams (Escoufier 1987). Readers are
invited to consult the original publication to learn more about this framework.
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¥ Reletive variaticn on first eigenvalue
cola.chem.topodeig[l] /fsum{coia.ckem.topcSeliyg)

surrary (coia.chem. topo)
randtes: (cola.chem.topo, arepet=9%39) f Parmutation tess
ploz{cola.chem. topa)

Figure 6.11 gives a visual summary of the results of the ColA. The numerical
output looks like this:

ZIigenva_ues decomposilion:
eig covar sdX sa¥ corr
1 ©.78549894 2,603939%1 2.9934980 1.6364535 $.7958037
2 3.05644985 0.2375918 2.8714496 0.5354626 2.509167¢
Inertia & ceirertiz X:
inertia max ratic
1 2.997%9%¢ 4.346012 0.9219%230
12 4.757421 >.5%7203° 0.8%38037

Inertia & coirertia ¥:

inertia max ratic
1 2.877980 2.68115° 0.9988172
12 2.964699 2.9€7525 0.9990479

RV
0.5537773

The numerical results first present the eigenvalue decomposition of the matrix
of co-inertia: eigenvalues (eig), covariance (covar) and standard deviation (sdX and
sdY) of the two sets of site scores on the co-inertia axes and correlations between
the two sets of site scores. This correlation is computed as covar/(sdX*sdY).

The second block of results compares the inertia of the (cumulated) projections
of the X and Y data tables as projected in the ColA (inertia) compared to the maxi-
mum inertia of the axes of the separate ordinations (max). It also gives the ratio
between these values as a measure of concordance between the two projections.

The RV coefficient is the ratio of the total co-inertia to the square root of the
product of the squared total inertias of the separate analyses (Robert and Escoufier
1976). RV is a multivariate generalization of the Pearson correlation coefficient.
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Y Canonical weights X Canonical weights

Fig. 6.11 Graphical results of a co-inertia analysis of the chemical and physiographical variables.
Details: see text. X refers to the first and Y to the second data table

These results show that the first eigenvalue, representing 98.9% of the total
variation, is overwhelmingly larger than the second one. Most of the common struc-
ture of the two data matrices is therefore to be sought on the first axis. The circular
plots in Fig. 6.11 show that axes 1 of the two PCAs are almost perfectly aligned on
the first ColA analysis. The upper right-hand plot (normed site scores) shows the
position of the sites on the co-inertia axes using the chemistry (origins of the
arrows) and physiography (arrowheads) co-inertia weights. The shorter the arrows,
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the better the concordance between the two projections. The lower right-hand pair
of plots shows the contribution of the two groups of variables to the canonical
space. Vectors pointing to the same direction are correlated and longer vectors
contribute more to the structure. Oxygen (oxy) correlates positively with slope
(pen), phosphates (pho) negatively with slope (pen); nitrates (nit), hardness
(dur, label masked by nitrates) and biological oxygen demand (dob) are all nega-
tively correlated with altitude (alt) since these variables have higher values down-
stream, and positively with discharge (deb, which increases downstream).

An extension of ColA called RLQ analysis (Doledec et al. 1996; Dray et al.
2002) relates species traits to environmental variables by means of three tables: site-
by-species (table L), site-by-environment (table R) and species-by-traits (table Q).
It is available through the function r1q() of package ade4.

6.10 Multiple Factor Analysis

6.10.1 Introduction

Yet another approach to the symmetrical analysis of a data set described by k (usu-
ally £>2) subsets or groups of variables is multiple factor analysis (MFA; Escofier
and Pages 1994). This analysis is correlative; it excludes any hypothesis of causal
influence of a data set on another. The variables must belong to the same mathe-
matical type (quantitative or qualitative) within each subset. If all variables are
quantitative, then MFA is basically a PCA applied to the whole set of variables in
which each subset is weighted. MFA computation consists in the following steps:

* A PCA is computed for each (centred and optionally standardized) subset of
variables. Each centred table is then weighted to give them equal weights in the
global analysis, accounting for different variances among the groups. This is
done by dividing all its variables by the first eigenvalue obtained from its PCA

» The k weighted data sets are concatenated. The resulting table is submitted to a
global PCA

e The different subsets of variables are then projected on the global result; com-
mon structures and differences are assessed for objects and variables

The similarity between the geometrical representations derived from each group
of variables is measured by the RV coefficient. RV coefficients, which vary between
0 and 1, can be tested by permutations (Josse et al. 2008).

MFA has been mainly used in sensory evaluation and chemistry so far, but the
potential for ecological applications is promising, as evidenced by a few recent
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contributions (Beamud et al. 2010; Carlson et al. 2010; Lamentowicz et al. 2010).
Indeed, this method is very useful to explore the complex relationships among sev-
eral ecologically meaningful groups of descriptors, whatever their number and type.

MFA can be run by using function mfa () of the package ade4. Note that a
data frame comprising all blocks of variables must first be assembled and set into
class ktab by function ktab.data.frame(). Here we shall use function
MFA () of the package FactoMineR (L& et al. 2008), which is more straightfor-
ward and offers more options.

6.10.2 Multiple Factor Analysis Using FactoMineR

In the code below, we apply MFA to three subsets of the Doubs data: the species
(Hellinger-transformed abundances), the physiographical variables (upstream—
downstream gradient), and the chemical variables (water quality). Note that this
example is not at all equivalent to a constrained ordination, where the species data
are explained by environmental variables and where the focus is put on an underly-
ing, one-directional causal model. MFA proposes a symmetrical, exploratory point
of view, where correlative structures are exposed without any reference to a direc-
tionality of possible causal relationships. No formal directional hypothesis is tested,
either. This approach is therefore not adapted to the modelling of asymmetrical
relationships, a task devoted to RDA or CCA. However, MFA could be used in early
stages of a research project as a neutral data exploration technique to help generate
causal hypotheses, which could be tested afterwards on an independent data set.

The function MFA () includes an important argument type, which allows
specifying the mathematical type of each subset: "c" for continuous variables (to
run a PCA on a covariance matrix), "s" for continuous variables requiring stan-
dardization (to run a PCA on a correlation matrix), or "n" for nominal variables
(to run a MCA or multiple correspondence analysis, see Sect. 5.4.5). In our case,
we have to state that the species subset belongs to type "c", whereas the two envi-
ronmental subsets (chemistry and physiography) belong to type "s".

£ MULTIZLE ZACTOR ANALYS3IS
Rk ko kR ok ok ko Kok ke R ok k

¥ MZA or 3 groups oI varlables

¥ Joncatenate —he 3 tables (Eellinger—-transformed species,
¥ vhysiographical wvaziables, cherica’l wvariables)

tap3 <- data.framei{spe.hel, envtcpo, envchem}

dimi{tzb3)

(grr. <= c(ncol{spe}, rcolienvtopoe), ncoel (envehem) )}
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n

vaze the MPA with maltiple plots
~3.rZz <= MFA(canld, group=grr, tvpe=c("<","s s"), neceo=Z,
mame, groun=c (" a corrunizy”, "Physiography", "Water qualizy™)

"o
I3

plo-(t3.mfa, cholix="ind"™, hebillage="ncne")

plos{(L3.mla, cho x="ird", hab llage="nore™, parlial="a’ 1")
ploz(t3.rmfa, choix="var", hebillage="g=zoup"}

plot(t3.mfa, cholx="axes"}

f RV coeZficierts with tests (p-values above the diagcnzsl of
£ Lke malrix)

(rvp <- t3.mfafgroupiRV)

rvol[l,2] <- coellRVispe.ael, scale (eavlicpo))Sp.value
rvo[l,3] <- coeZfRVispe.ael, scale(envchem))Sp.value
rvel[2,3] <- coeffRVi{scale{envtopc), scale(envchem))So.value
rourd(zvp _—-4,-4_, &)

¥ Ligenvalues anc % of wvariac-Zon
“3.mieScig

ev <- ti.mfaSeig , 1]

mares (av) <- linrow(t3.mfafelqg)
evolot (ev)

£ Se_ect the mest characteristic variabhles
aa <- dimacsci{Z3.mfa, axcs=_:2, proba=0.C0J01}

# Plot cnly the sig¢nificart variables (correlatlozns)
varsly -
“3.mrZeSquenti.varicor [unique (¢ (rownanes (az3Dim. _squantil),
rownames (az5Dinm. 23quanti) )}, ]
plo-({varsg ,1:2_, asp=_, type="rn", xlim=ci{-1,1), vlim=c{-1,2})
abkline (=0, Llty=3}
ab_ine(v=C, lty=3)
syrmbols (G, G, clrcles=1, inches=TALSE, acd=T"RUE)
arrcws (0, 0, warsigl[,l_, wvarsigl,2], length=0.08, angle=2Z0)
[or (v LIn lincow(varsig)) |
2f (abs(varsig v,11) > abs{versiglv,21}) {
*f (varsig[v,1] »>= 0} pos <- 4
alsge wos <= 2

else |
*f (varsig[v,2] > 0} pos <- 3

else wos <- 7
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text (varsigl|v,l], wvarsigl|v,2|, labels=rowrames|varsig)|v ,

pos=pos)
}
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Fig. 6.12 Projection of the PCA axes of each subset on the MFA plane 1-2. The circle of radius
1 represents the maximum length of a partial standardized axis

The MFA provides an interesting picture of two main gradients and of the
relationships among the three groups of variables. The first two axes represent more
than 63% of the total variance. The plot “Partial axes” (Fig. 6.12) represents the
projection of the principal components of each separate PCA on the global PCA.
The plot “Individual factor map” (Fig. 6.13) shows the position of the sites accord-
ing to four viewpoints: the labelled black points represent the MFA site scores
(centroids of the site scores of each separate PCA); some of them are connected by
coloured lines to the points representing their scores in the three separate PCAs.
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Fig. 6.13 MFA site scores (centroids; black dots) and selected PCA site scores with their links to
the corresponding MFA centroids. For legibility not all PCA scores and links are drawn

The plot “Correlation circle” (Fig. 6.14) represents the normalized vectors of all
quantitative variables.

In the table below, the RV coefficients appear in the lower-left triangle, below
the diagonal, while the upper-right triangle contains permutational p values. These
results tell us that fish communities are mostly linked to the physiographical condi-
tions (RV=0.58), which are themselves partly linked to water chemistry
(RV=0.36).

Tign community Physiography Water gquality
Fish community 1.000CC0 G.ogoooz 0.9000C02
Physiograpay 0.580280 ~.0C0000 0.002811
Water gquality 0.505324 0.361874 _.Ccoono
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Fig. 6.14 Correlations between the variables of each subset and the MFA site scores on axes
1 and 2

If we examine Figs. 6.13 and 6.14 together, we can easily recognize the main
upstream—downstream gradient along the first axis and the gradient of water quality
along a combination of the first and second axes (from upper left to lower right).
For example, the scores of sites 1, 2 and 3 (Fig. 6.13, left-hand part of the graph)
correspond (Fig. 6.14) to a high altitude and a strong slope, as well as a high oxygen
concentration. Here, close to the source, the ecological conditions are dominated by
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physiography. The (relatively poor) fish community is characterized by TRU, VAT
and LOC. On the opposite side, sites 23, 24 and 25 show the highest concentrations
in phosphates, ammonium and nitrates, and a high biological oxygen demand.
These three sites are heavily polluted and their community is characterized by
another set of three species: ABL, GAR and CHE.

6.11 Conclusion

Ordination is a natural and informative way to look at ecological data, and ordina-
tion involving more than one data matrix is certainly the most powerful family of
methods to reveal, interpret, test and model ecological relationships in the multi-
variate context. We presented what we think are the most important and useful
methods, illustrating them using examples that highlighted their potential (Table 6.1).
This is by no means the end of the story. Researchers continuously propose either
new ways of exploiting the existing methods, or new methods altogether, whose
merits and limits must be put under close scrutiny to allow them to be properly
integrated into the already powerful statistical toolbox of the ecological community.
Readers of this book are encouraged to join this movement.

Table 6.1 Names and some characteristics of the methods described in this chapter

R functions Data; implementation;

Name, acronym Use (examples) packages limitations

A. Asymmetric analyses

Redundancy Predict Y with X: rda All types; species data with
analysis, RDA Variation {vegan} prior transformation;

partitioning varpart m<(n—1). Linear
{vegan} model.

Canonical Predict Y with X cca Y: species abundances;
correspondence {vegan} X: all types; m < (n—1);
analysis, CCA unimodal response to

latent variables

Linear discriminant  Explain classification 1da Y: classification; X:
analysis, LDA with quantitative {MASS} quantitative variables.

variables Linear model.

Principal response ~ Model community prc Y: community data; factor
curves, PRC response through {vegan} “treatment’’; factor

time in controlled “time”
experiments

Space-time Test interaction in {STI} Y: community data; T:
interaction space—time data time vector; S: spatial

analysis, STI

Co-correspondence

sets without
replicated sites
Predict one community

coca

coordinates

Y: data for community 1;

analysis on the basis of {cocorresp} X: data for community
(asymmetric another 2; both at the same sites.
form), COCA Unimodal response to

latent variables

(continued)
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Name, acronym

Use (examples)

R functions

packages

Data; implementation;
limitations

B. Symmetric analyses

Co-correspondence
analysis
(symmetric
form), COCA

Canonical
correlation
analysis, CCorA

Co-inertia analysis,
ColA

RLQ analysis, RLQ

Multiple factor
analysis, MFA

Optimized comparison
of two communities

(descriptive
approach)

Common structures of
two data matrices

Common structures
of two or more
data matrices

Species traits related
to environmental
variables

Common structures
of two or more
data matrices

coca
{cocorresp}

CCorA
{vegan}

coinertia
{aded}

rlqg
{aded}

mfa {aded}
MFA
{FactoMineR}

Y,: data for community 1;
Y,: data for community
2; both at the same sites.
Unimodal response to
latent variables

Two matrices of
quantitative data. Linear
model

Very general and flexible;
many types of data and
ordination methods

Three tables: species-
by-sites, species-
by-environment;
species-by-traits

Simultaneous ordination of
two or more weighted
tables. Mathematical
type must be
homogeneous within
each table







Chapter 7
Spatial Analysis of Ecological Data

7.1 Objectives

Spatial analysis of ecological data is a huge field that could fill several books by
itself. To learn about general approaches in spatial analysis with R, readers may
consult the recent book by Bivand et al. (2008). The present chapter has a more
restricted scope. After a short general introduction, it deals with several methods
that were specifically developed for the analysis of scale-dependent structures of
ecological data; these methods can, of course, be applied to other domains. These
methods are based on sets of variables describing spatial structures in various ways,
derived from the coordinates of the sites or from the neighbourhood relationships
among sites. These variables are used to model the spatial structures of ecological
data by means of multiple regression or canonical ordination, and to identify sig-
nificant spatial structures at all spatial scales that can be perceived by the sampling
design. As you will see, the whole analytical process uses many of the techniques
covered in the previous chapters.
Practically, you will:

e Learn how to compute spatial correlation measures and draw spatial
correlograms

e Learn how to construct spatial descriptors derived from site coordinates and
from links between sites

* Identify, test and interpret scale-dependent spatial structures

* Combine spatial analysis and variation partitioning

* Assess spatial structures in canonical ordinations by computing variograms of
explained and residual ordination scores

D. Borcard et al., Numerical Ecology with R, Use R, 227
DOI 10.1007/978-1-4419-7976-6_7, © Springer Science+Business Media, LLC 2011
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7.2 Spatial Structures and Spatial Analysis:
A Short Overview

7.2.1 Introduction

As mentioned in Chap. 6, spatial structures play a very important role in the analysis
of ecological data. Living communities are spatially structured at many scales, and
these structures are the result of several classes of processes. On the other hand,
beta diversity is the spatial variation in community composition; so, a study of the
factors that can explain the spatial variation of community composition is in every
respect an analysis of beta diversity. The environmental control model advocates
that external forces (climatic, physical, chemical) control living communities. If
these factors are spatially structured, their patterns will reflect on the living com-
munities (examples: patches of desert where the soil is humid enough to support
vegetation; gradient of successive communities through an intertidal zone). The
biotic control model predicts that intra- and interspecific interactions within com-
munities (examples: social groups of animals; top-down or bottom-up processes),
as well as neutral processes such as ecological drift and limited dispersal, may
result in spatial patterns which are the cause of spatial autocorrelation in the strict
sense. Historical events (e.g. past disturbances like fire or human settlements) may
have structured the environment in a way that still influences present-day
communities.
In all, ecological data are a combination of many structures, spatial or not:

e The overall mean of each response variable; if the whole sampling area is under
the influence of an all-encompassing process that changes the mean in a gradient
across the area, then a trend is present. The trend may be due to a process operat-
ing at a scale larger than the sampling area.

e Spatial structures at regional scales: ecological processes of various kinds (biotic
or abiotic) influence the data at scales finer than the overall sampling area, pro-
ducing identifiable spatial patterns.

e Local deterministic structures with no recognizable spatial component because
the sampling design is not fine enough to identify such fine-scale patches.

e Random noise (error): this is the residual (stochastic) component of the variation.
It can be attributed to local effects operating independently at each sampling site.

One of the aims of spatial analysis is to discriminate between these sources of
variation and model the relevant ones separately.
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7.2.2 Induced Spatial Dependence and Spatial Autocorrelation

An important distinction must be made here. As we wrote above, a spatial structure
in a response matrix Y can result from two main origins: either from the forcing of
external (environmental) factors that are themselves spatially structured, or as the
result of processes internal to the community itself. In the first case, one speaks of
induced spatial dependence, in the second case of spatial autocorrelation.

For value y, of a response variable y observed at site j, the model for induced
spatial dependence is the following:

¥, =y + X)) +E, (7.1)

where W is the overall mean of variable y, X is a set of explanatory variables, and
€, is an error term that varies randomly from location to location. The additional
term [f(Xj)] states that Y; is influenced by external processes represented in the
model by explanatory variables. The spatial structure of these variables is reflected
in y. When they form a gradient, they represent what Legendre (1993) called “true
gradients”, that is, gradient-like deterministic structures generated by external
forces, whose error terms are not autocorrelated.
The model for spatial autocorrelation is:

D WI R RER S (7.2)

This equation states that y, is influenced by the values of y at the surrounding
sites i. This influence is modelled by a weighted sum of the (centred) values y, at
these sites. The biological context dictates the radius of the zone influencing a
given point, as well as the weight to be given to the neighbouring points. These
weights are generally dependent on the distance. The spatial interpolation method
called kriging (Isaaks and Srivastava 1989; Bivand et al. 2008) is based on this
model. Kriging is a family of interpolation methods that is not discussed further in
this book. Kriging functions are available in package geoR.

Spatial autocorrelation may mimic gradients if the underlying process has a
range of influence larger than the sampling area. Legendre (1993) called the result-
ing structures “false gradients”. There is no statistical way to distinguish false from
true gradients. One must rely upon biological hypotheses: in some cases, one has a
strong hypothesis about the processes generating spatial structures, and therefore
whether these processes may have produced autocorrelation in the data. In other
cases, an opinion can be formed by comparing the processes detected at the scale
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of the study area with those that are likely to occur at the scale of the (larger) target
population (Legendre and Legendre 1998).

Spatial correlation measures the fact that near points in space have either more
similar (positive correlation) or more dissimilar values (negative correlation) than
randomly selected pairs. This phenomenon, which is generated either by true
autocorrelation (7.2) or by spatial structures resulting from spatial dependence
(7.1), has noxious effects on statistical tests. In spatially correlated data, values at
any given site can be predicted, at least partially, from the values at other sites, if
the researcher knows the biological process and the locations of the sites. This
means that the values are not stochastically independent of one another. The
assumption of independence of errors is violated in such cases. In other words, each
new observation does not bring with it a full degree of freedom. While the fraction
is difficult to determine, the fact is that the number of degrees of freedom used for
a parametric test is often overestimated, thereby biasing the test on the “liberal”
side: the null hypothesis is rejected too often. Numerical simulations have shown,
however, that this statistical problem only occurs when both the response (e.g. spe-
cies) and the explanatory variables (e.g. environmental) are spatially correlated
(Legendre et al. 2002).

7.2.3 Spatial Scale

The term scale is used in many senses across different disciplines. It encompasses
several properties of sampling designs and spatial analysis.

A sampling design has three characteristics pertaining to spatial scale (Legendre
and Legendre 1998, Section 13.0):

* Grain size: size of the sampling units (diameter, surface or volume depending on
the study).

e Sampling interval, sometimes called lag: average distance between neighbour-
ing sampling units.

o Extent (sometimes called range): total length of the transect, surface area or
volume (e.g. air, water) included in the study.

These three properties of a sampling design have an influence on the type and
size of the spatial structures that can be identified and measured. (1) Sampling units
integrate the structures occurring in them: one cannot identify structures of sizes
equal to or smaller than the grain of the study. (2) The sampling interval determines
the size of the finest spatial structures that can be identified (by differentiation
among sampling units). (3) The extent of the study area sets an upper limit to the
size of the measurable patterns. It is therefore essential to match each of these three
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elements to the hypotheses to be tested and to the characteristics of the system
under study (Dungan et al. 2002).

The ecological context of the study dictates the optimal grain size, sampling
interval and extent. The optimal grain size (size of the sampling units) should match
the size of unit entities of the study (e.g. objects like individual plants or animals,
patches of vegetation, lakes, or areas affected by fine-scale processes). The average
distance between unit objects or unit processes should be matched by the sampling
interval. The extent should encompass the range of the broadest processes targeted
by the study. These recommendations are detailed in Dungan et al. (2002).

Note that the expressions “large scale” and “small scale” are somewhat ambigu-
ous because their meanings in ecology and cartography are opposite. In ecology
“small scale” refers to the fine structures and “large scale” to the broadest struc-
tures, contrary to cartography where a large-scale map (e.g. 1:25000) is more
detailed than a small-scale map (e.g. 1:1000000). Therefore, we advocate the use
of “broad scale” (phenomena with large grains, large extents) and “fine scale” in
ecology (Wiens 1989). Although these terms are not strict antonyms, we feel that
they are less ambiguous than “large” and “small scale”.

Finally, ecological processes occur at a variety of scales, resulting in complex,
multiscale patterns. Therefore, identifying the scale(s) of the patterns and relating
them to the appropriate processes are goals of paramount importance in modern
ecology. To reach them, the researcher must rely on appropriate sampling designs
and powerful analytical methods. The approaches presented in this chapter have
been devised for the latter purpose.

7.2.4 Spatial Heterogeneity

A process or a pattern that varies across an area is said to be spatially heteroge-
neous. Many methods of spatial analysis are devoted to the measurement of the
magnitude and extent of this heterogeneity and testing for the presence of spatial
correlation (in other words, spatial structures of any kind). The latter may be done
either to support the hypothesis that no spatial correlation (in the broad sense) is
present in the data (if the researcher has classical parametric tests in mind) or, on
the contrary, to show that correlation is present and use that information in concep-
tual or statistical models (Legendre and Legendre 1998).

Spatial heterogeneity in relation to inter-site distance is most often studied by
means of structure functions. Examples of these are correlograms, variograms
and periodograms. While it is not the purpose of this book to discuss these various
functions, it is useful to devote a section to correlograms, since the main underlying
measures of spatial correlation are used later in this chapter.
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7.2.5 Spatial Correlation or Autocorrelation Functions
and Spatial Correlograms

The two main statistics used to measure spatial correlation of univariate quantita-
tive variables are Moran’s I (Moran 1950) and Geary’s ¢ (Geary 1954). The first is
constructed in much the same way as the Pearson correlation coefficient:

1 n o n

o 2 2 W O =N =)
1(d)=—"=! izll - for h#i (7.3)
—2 (=)
noi-
The expected value of Moran’s I for no spatial correlation is
-1
E() = — (7.4)

Values below E(I) indicate negative spatial correlation, and values above E(I)
indicate positive correlation. E(J) is close to O when 7 (the total number of observa-
tions) is large.

Geary’s ¢ is more akin to a distance measure:

1 n n
ﬁzzwm()’h _yi)z
c(d) = hol =] for h#i (7.5)
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The expected value of Geary’s ¢ for no spatial correlation is E(c)=1. Values
below 1 indicate positive spatial correlation, and values above 1 indicate negative
correlation.

y, and y, are the values of variable y at pairs of sites & and i. To compute spatial
correlation coefficients, one first constructs a matrix of geographical distances
among sites. These distances are then converted to classes d. Both formulas show
the computation of the index value for a class of inter-site distance d. The
weights w, have value w, =1 for pairs of sites belonging to distance class d, and
w, =0 otherwise. W is the number of pairs of points used to compute the coef-
ficient for the distance class considered, i.e., the sum of the w,, weights for that
class.
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A correlogram is a plot of the spatial correlation values against the distance
classes. Combined with statistical tests, a correlogram allows a quick assessment of
the type and range of the spatial correlation structure of a variable. A typical case
is spatial correlation that is positive at short distances, decreases to negative values,
and levels out to a point where it becomes non-significant. The corresponding dis-
tance class sets the distance beyond which a pair of values can be considered as
spatially independent. It is important to note that spatial correlograms display any
kind of spatial correlation, generated by (7.1) (induced spatial dependence) or (7.2)
(spatial autocorrelation); so the name “spatial autocorrelogram” which is often
given to these plots is somewhat misleading.

Univariate spatial correlograms can be computed using the function sp.cor-
relogram() of package spdep. We can apply this function to the variable
“Substrate density” of the oribatid mite data set. We first define neighbourhoods of
size < 0.7 m around the points using the function dnearneigh (). These links
can be visualized using our function plot.links (). Following that, the func-
tion sp.correlogram() finds successive lag orders of contiguous neighbours
and computes Moran’s [ for each of these lag orders. A lag order is the number of
links, or steps in the linkage graph, between two points. It can be construed as a
generalized form of distance between points. For instance, if sites A and C are con-
nected through site B, two links (A-B and B—C) are needed to connect A and C.
They are connected at lag order 2.

Note: Cartesian coordinates can be obtained from latitude—longitude (sometimes
abbreviated to Lat/Lon or LatLon) data using the function geoXY () of package
SoDA.

¥ “cad the required packages
licrary{ace)

livrary {sodep)

library {(vecan)

liorary {aced)

f Packages available at the follcowing URL:

f hotps://r-forge.z-project.org/R/7group 1d=195
licrary{paczfcr)

library {spacemakeR)

liorary {BEM)

linrary (PONM)

source ("oloT. links. R™)  # Furction must ce in working df rectory
source{"sr.value.R"} # Furctien must pe in working cirectory
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£ “wporT the data

mite <- resd.tab e{("mite.oxt")
mile.env <- read.lable("mile env.ixL")
mite.xy <- vead.table{"nize xy.txz")

mite.h <= decostand (mits, "hellings-")
mite.xv.c <- gca’ e(mite.xy, center— T30S, scale—FALSE)

=t

Spatial caorre’ogram {cased on Woran's 1)
mhk Ak kkmhkwhk kb ranh bk hhhkrmh bk b dnbrhhhkhkndwkrhrn

St

Search for neignbours of 2l pcints withiz a redius of 0.7 n
ard multiples (i.e., 23 —o 0.7m, J.7 tc Z.4m ang so cn). The
selints o not form a connected graph at 0.7 .
loz._inks{mite.xy, thresk=0.7)

b7 <= dnez neigh(as,.mat-ix{mrite.xy}), 0, 7.7

sunmrary (nol)

ilLre I TR Y

F Correlogram of substrate densizy

suns.cens <- mite.env [, ]

suns.correlog <- sp.correlogram(nkl, suabs.dens, order=14,
methoc-"I", zero.poclicy-TRUE)

print{scbhs.corre oy, p.adj.mathod="nolm")
ploz{sabs.carre’_og}

Hint We use the print () function to display the correlogram results
because it allows for correction of the p values for multiple testing. In
a correlogram, a test is performed for each lag (distance class), so that
without correction, the overall risk of type I error is greatly increased.
The Holm (1979) correction is applied here.

This correlogram has a single significant distance class: there is positive spatial
correlation at distance class 1 (i.e. 0.0-0.7 m). Negative spatial correlation at
distance class 4 (i.e. 2.1-2.8 m) is hinted at, but the coefficient is not significant
after Holm (1979) correction for multiple testing (see Sect. 7.2.6). Beyond this
mark, no significant spatial correlation is identified, which means that for practical
purposes measurements taken more than 0.7 m, or (conservatively) 2.8 m apart (the
upper limit of class 4), can be considered as spatially independent with respect to
substrate density.

Spatial correlation in the multivariate domain can be assessed and tested for by
means of a Mantel correlogram (Sokal 1986; Oden and Sokal 1986). Basically, one
computes a normalized Mantel statistic r,, (analogous to a Pearson’s r coefficient)
between a dissimilarity matrix among sites and a matrix where pairs of sites belong-
ing to the same distance class receive value 0 and the other pairs, value 1. The process
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is repeated for each distance class. Each r,, value can be tested by permutations. The
expectation of the Mantel statistic for no spatial correlation is r,,=0.

A Mantel correlogram can be computed, tested and plotted (Fig. 7.1) by using
vegan’s function mantel.correlog(). The only data necessary are a
response distance matrix and either the geographical coordinates of the sites or a
matrix of geographical distances among sites. Here is an example of a Mantel cor-
relogram for the oribatid mite data, which is first detrended (Sect. 7.3.2) to make
the data second-order stationary (Sect. 7.2.6).

f Mantel corrslogram ¢Z tke cribatid mize data
# mh Ak Ak kA m A whk ok Ak bk b hk ok w ok kb ko xbwohhohw b b woh kb ok ok ko w

f The species data are first detrended; see Sectiorn 7.3
mite.h.det <- resid{lm{zs.mazrix(mite.n} ~ ., data=mize.xy])

mite.h.Dl <- dist(mite.h.det)

{mi<te.corrs_cog <- manzel.correlog{mite.h.Dl, XY=mite.xy,
rperm=53}))

sunmary (mZte.correlog)

ploz(mite.correlog)

Hint In this run, the number of classes has been computed automatically
using Sturge’s rule. Use argument n.class to provide a user-
determined number of classes.

Mantel correlation
-0.10 -0.05 0.00 0.05 0.10

T T T T T
1 2 3 4 5

Distance class index

Fig. 7.1 Mantel correlogram of the Hellinger-transformed and detrended oribatid mite species
data. Black squares indicate significant multivariate spatial correlation after Holm correction for
multiple testing. The abscissa is labelled in metres since this is the unit of the data used to
construct the distance classes
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In this simple run, most default settings have been applied, including Holm’s
correction for multiple testing (see Sect. 7.2.6). The number of classes has been
computed using Sturge’s rule [number of classes=1 + (3.3219 x log, n), where n is
the number of elements, here the number of pairwise distances]. The resulting num-
ber of classes and the corresponding break points can be read in the result object:

¥ Xumber of classes

mite.correlogdr.class # or: mite.correlog[2]
f Brecsk polnts
mite.correlogibreax.pTs # or: mite.correlogl3]

Hint The default option cutoff=TRUE [limits the correlogram to the
distance classes including all points (the first seven distance classes in
this example); the results for the last five distance classes (computed
on fewer and fewer points) are not shown.

The result shows significant positive spatial correlation in the first two distance
classes (i.e. between 0.15 and 1.61 m; see the break points) and negative significant
correlation in the fourth to sixth classes (between 2.34 and 4.52 m). Examining the
environmental variables allows some speculation about the ecological reasons
behind these structures. Close sites tend to show similar communities because the
soil conditions are rather similar. On the other hand, any pair of sites whose mem-
bers are about 2.7 m apart (class index of distance class 4) falls into contrasting soil
conditions, which in turn explains why their mite communities are different.

7.2.6 Testing for the Presence of Spatial Correlation:
Conditions

As shown above, spatial correlation coefficients can be tested for significance.
However, conditions of application must be respected. The condition of normality
can be relaxed if the test is carried out by permutations. To test the significance
of coefficients of spatial correlation, however, the condition of second-order sta-
tionarity must be met. That condition states that the mean of the variable and its
spatial covariance (numerator of (7.3)) are the same over the study area, and that its
variance (denominator of (7.3)) is finite. This condition tells us, in other words,
that the spatial variation of the data should be adequately described by the same
single spatial correlation function in all portions of the study area. Spatial cor-
relation coefficients cannot be tested for significance if an overall trend is present
in the data (“true gradient”), or if the variable has been measured in a region
where several distinct structures should be modelled by different spatial correlation
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functions. Data displaying simple trends can often be detrended by means of a first- or
higher-degree function of the site geographical coordinates (Sect. 7.3).

Another, relaxed form of stationarity is called the intrinsic assumption, a short
form for “hypothesis of intrinsic stationarity of order 2" (Wackernagel 2003). This
condition considers only the increments of the values of the variable; it states that
the differences (y,—y,) for any distance d (in the numerator of (7.5)) have zero mean
and constant and finite variance over the study area, independently of the location
(Legendre and Legendre 1998). This condition allows one to compute and examine
correlograms but without tests of significance.

Legendre and Legendre (1998, p. 721) show how to interpret all-directional
correlograms (i.e. correlograms built on distance classes defined the same way in
all directions) as well as directional correlograms.

A word is needed here about multiple testing. In Sect. 7.2.5 several spatial
correlation values were tested simultaneously for significance. In such cases, the
probability of type I error increases with the number of tests. If & tests are carried
out, the binomial law tells us that the overall probability of type I error (techni-
cally called the “experimentwise error rate”) is equal to 1 — (1 — @)* where «is the
nominal value for a single test. For instance, in the Mantel correlogram shown in
Fig. 7.1, seven tests are carried out simultaneously. Without correction, the over-
all probability of obtaining at least one type I error is equal to 1 — (1 -0.05)"=0.302
instead of the nominal z=0.05. Several methods have been proposed to achieve
a correct level of type I error in multiple tests (reviewed in Legendre and
Legendre 1998; Wright 1992). The most conservative solution for k independent
tests is to divide the significance level by the number of simultaneous tests:
o/ = ok and compare the p values to ¢/. Conversely, one can multiply the p values
by k (i.e. p'=kp) and compare the resulting values to the unadjusted ¢. For non-
independent tests, Holm’s procedure (Holm 1979) is more powerful. The reason
is that Holm’s correction consists in applying Bonferroni’s correction sequen-
tially by progressively relaxing the correcting factor as follows. First, order
the (uncorrected) p values in increasing order from top to bottom. Then, multiply
the smallest p value by k, the second smallest by k —1, and so on. If an adjusted
p value is smaller than the previous one, make it equal to it. Compare the resulting
values to the unadjusted alpha.

Other corrections have been proposed in addition to the two presented above.
Several are available in a function called p.adjust () in package stats. This
function can be called whenever one has run several simultaneous tests of signifi-
cance. The data submitted to that function must be a vector.
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7.2.7 Modelling Spatial Structures

Beyond the methods described above, there are other, more modelling-oriented
approaches to spatial analysis. Finding spatial structures in ecological data indicates
that some process has been at work to generate them; the most important are
environmental forcing (past or present) and biotic processes. Therefore, it is interesting
to identify the spatial structures in the data and model them. Spatial structures can
then either be related to explanatory variables representing hypothesized causes, or
help generate new hypotheses as to which processes may have generated them.

Spatial structures can be present at many different scales. Identifying these
scales and modelling the corresponding spatial structures separately is a long-
sought goal for ecologists. A first, rather coarse approach in multivariate analysis
is the adaptation of trend-surface analysis to canonical ordination. As suggested by
ter Braak (1987) and demonstrated by Legendre (1990), response data may be
explained by a polynomial function of the (centred) site coordinates. Borcard et al.
(1992) have shown how to integrate this method into variation partitioning to iden-
tify, among other fractions, the pure spatial component of the ecological variation
of species assemblages.

Multivariate trend-surface analysis only allows one to extract rather simple spa-
tial structures because polynomial terms become rapidly cumbersome, and highly
correlated if one uses raw polynomials. In practice, their use is restricted to third-
degree polynomials. A breakthrough came with the development of principal coor-
dinates of neighbour matrices (PCNM) and other forms of eigenvector-based
spatial functions, which are described in Sect. 7.4, after a short example of trend-
surface analysis.

7.3 Multivariate Trend-Surface Analysis

7.3.1 Introduction

Most ecological data have been sampled on geographic surfaces. Therefore, the
crudest way to model the spatial structure of the response data is to regress them on
the X-Y coordinates of the sampling sites. Of course, this will only model a linear
trend; a plane will be fitted through the data in the same way as a straight line would
be fitted to data collected along a transect by regressing them on their X
coordinates.

A way of allowing curvilinear structures to be modelled is to add polynomial
terms of the coordinates to the explanatory data. Second- and third-degree terms are
often applied. It is better to centre (but not standardize, lest one distort the aspect-ratio
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of the sampling design) the X and Y coordinates before computing the polynomial
terms, to make at least the second-degree terms less correlated. The first-, second-
and third-degree functions are:

2=f(X,Y)=b,+bX+bY (7.6)
2=b,+bX+bY+bX +b XY +bY’ (7.7)
2=b,+bX+bY+b X +b XY +bY>+b X’ +b XY +bXY>+bY’ (7.8)

An alternative method is to compute orthogonal polynomial terms using the
function poly () with the default option raw=FALSE, which produces orthogo-
nal polynomials. For a set of X-Y coordinates, the monomials X, X* X° and Y, Y2,
Y3 have a norm of 1 and are orthogonal to their respective lower order terms. X
monomials are not orthogonal to ¥ monomials, however, except when the points
form a regular orthogonal grid; terms containing both X and Y are not orthogonal
to one another and their norms differ from 1. Orthogonal polynomials produce the
exact same R” in regression and canonical analysis as raw polynomials. The orthog-
onality of orthogonal polynomials presents an advantage when selection of explan-
atory variables is used to find a parsimonious spatial model.

Trend-surface analysis can be applied to multivariate data by means of RDA or
CCA. The result is a set of independent spatial models (one for each canonical
axis). One can also use forward selection to reduce the model to its significant
components only.

7.3.2 Trend-Surface Analysis in Practice

Our first step in spatial modelling is to produce some monomials of the X and Y
coordinates on a grid just to become familiar with the shapes they produce through
visualization. We then proceed to apply this technique to the oribatid mite data. As
a courtesy to our readers, we have modified ade4’s s .value () function to draw
round instead of square bubbles in some plots. The modified function is called
sr.value().

F Trend-surface analysias
1‘5 B A L e

F Zinocle nodels on oa sguare, regularly sampled surface
# Censtruct end nlet a ~0 x 10 orid

xygric <- excard.grid{l1:10, 1:20)
ploT{xygrid)
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xygrid, o <- scale(xycrid, sca_e=FALSE) # Centring
X <= xygrid.c[,1]
Y o<- xyarid.c[,2?]

£ Plot some first, second and thira-degree funotions ¢f X and ¥
par{nfrow=c{3,3))

s.ova_ue (xygrid, (X))

s.vaiue (xygrid, (Y))

s.value (xygrid, (X+7})

s.va_ue {(xygrid, (Kh2=-Y"2))

s.va_ue (xygrid, (XMZ2-X*Y-Y"2))

sova_ue (xygrid, (X+¥-H 2+K*Y+Y"2) )

s.va_ue (xygrid, (X~3-¥"3))

sova_ue (xygrid, (I03-H "2¥Y+X*Y"2+Y"3) )

s.va_ue (zygrid, (X+¥+X N 2+XF Y+ Y 24X 34X 2 YY" 2=V 3))

# Try other combinations, for instance with minus signs or with
# coefficients not egqual to 1.

£ Trend-surfzce znalysis of the mite cata
# B I i i D R o S L

F Compuatation of the sTtandard (non-ortacgonal} third-degzee
polynomial
£ function on the previeocusly cenirced X-Y coordinstes
mite.ooely <- poly(as.matrixi{mite.xy.c), degres=2, raw=TRUE)}
co_ramcs (nitec.poly) <-

MM, MHOM, RN, Y MY, CHEY, Y2, THYET, YT AN

# Function poly produces the polynomial terms in the following
# sequence: X, X2, X*3, Y, XY, X*2Y, ¥Y*2, X¥~2, ¥*3).

# The criginal column names give the degree for the two

# variables.

# For instance, "1.2" means X*I*Y*2.

# Here raw polynomials have been computed. For orthogonal

# polynomials, which is the default, raw=FALSE.

$# RDA wilh all 9 po_yromia” Lerms
mite.trencd.rda <- zdz(mite.h ~ ., dete=as.data.Irame({mite.poly))

¥ Comouztation of the adjusted ROZ
(FZ2adi.po’y <— Rsouareldj{mize.trend.rda)szd-.r.squared)

¥ RDA using & third-degree orzhogonal polyncmia’l of the
¥ geographic coordinazes
mite.poly.orthe <- poly(as.ratrix(mite.xy), degres=3)
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co_ramss {mite.po_y.oztho) <-
R UL S AL & LI S A SN L AL ' L e L)
mite.trend.rca.orthe <- zda(mite.h~.,
data cdata, frame (mize.poely,ortho))
(R2adj.poly <- Rsquareldji{mice.trend.rda.ortho)Saed]i.r.sgaared)

=8

f Ferward selectlon asing B_anchet =T al. (2008a) double
£ stopping criterion

mite.trend.Iwd <- forward.sel(mite.n, mite.poly.ortho,
adjR2thresn=RZadi.poly)

f Xew RLM using the € terms retained
(rlie.lLrend.rda?2 <- ~da{mile.h ~ .,
data=as.data. frame (mite.pcly) ,mite.trend.fwd[,21]1))

f Overall test and test of the canonical axes
anova.oca{mite.trenc.rde2, siep-1000)
anova.cca (nite.trenc.rda2, step=1C000, by="axis"

¥ Plot c¢Z the Zhree irndepencent significant spatial s-ruct-ures

£ (canorica_ axcs). For squerc bubzles fyse "s.value"™ Znstcad of
£ "sr.wvalue".

mite.trena. Fit <- scoves,zoe{mite.trend.raa?, choizes=c(1,2,31,
disp_zv—"_c", sceling—1)

par{ntzow=c{l,3))

sr.valae{mite.xy,mite.trend. T2t [, 1)
sr.ovalue{mite, xy, mite.trend. £20[,20)
sr.valae{nmite.xy,mite.trend. L2t [, 3]}

# If you want to construct a raw polynomial function directly
# within the rda call, here is the syntax (2nd degree):

# mite.trernd.rda <- rda{mize.b ~ ¥ + ¥m - I(Xm™2) + I{(¥m*¥r)
# 4+ I(¥m~2))

# Notice how squared variables and product variables are

# requested to be treated "as they are"” by function I(}.

# Otherwise R would consider them as ANOVA terms.

Hint Note that the fitted site scores in scaling 1 have been used in the plots.
We want to display the “pure” spatial model, i.e. the linear combina-
tion of spatial variables, in a projection preserving the Euclidean dis-
tances among sites.
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This analysis shows that the oribatid mite community is significantly spatially
structured, and that three significant independent models can be obtained. The first
one (first canonical axis, 73.8% of the explained variance) displays a strong difference
between the upper and the lower half of the area. The two other models (12.1 and
8.5% of the explained variance, respectively) display finer-scale structures (Fig. 7.2).
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Fig. 7.2 Cubic trend-surface analysis of the Hellinger-transformed oribatid mite data. Three
significant RDA axes have been retained, representing linearly independent spatial structures
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These models could now be interpreted by regressing them on environmental
variables. But we postpone that step until we can implement it in another spatial
modelling framework.

Nowadays, the most useful application of trend-surface analysis is for detrending.
We have seen in Sect. 7.2.6 that data have to be detrended before spatial correlo-
grams can be tested. We will also see later that eigenvector-based spatial analyses
are best applied to detrended data. Therefore, a handy procedure is to test for linear
trends and detrend the data if the trend surface is significant. This means to regress
all variables on the X-Y coordinates and retain the residuals. This can most easily
be done using the function 1m().

¥ Detrerding the mite deta

# FERAFFEE TR RFER A TR AL R R LA

anova (rdaf{mnite.h, mite.xv}) # Rezsult: significant trend
¥ Cemputation of linearly detrendea nite aazta
mite.h.det <- resid{lmi{zs.mazrix(mite.n} ~ ., data=mite.xv])

This detrended data set is now ready for more complex spatial analyses and
modelling.

7.4 Eigenvector-Based Spatial Variables and Spatial Modelling

7.4.1 Introduction

Trend-surface analysis is a rather coarse method of spatial modelling. The multi-
scale nature of ecological processes and data calls for other approaches that can
identify and model structures at all scales that can be perceived by a sampling
design. Practically, this means methods that could model structures at scales rang-
ing from the broadest, encompassing the whole sampled area, down to the finest,
whose sizes are of the order of magnitude of the sampling interval. To achieve this in
the context of canonical ordination, we must construct spatial variables representing
structures of all relevant scales. This is what the PCNM method (principal coordinates
of neighbour matrices; Borcard and Legendre 2002; Borcard et al. 2004) and its
offsprings do. These methods will now be studied in detail.

As will be shown in Sect. 7.4.3, the PCNM method is actually a special case of
a wider family of methods that are now called MEM (Moran’s eigenvector maps;
Dray et al. 2006). However, since many published papers cite this variant under its
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original name, we use it here for explanatory purposes. Bear in mind, however, that
the acronym PCNM is likely to be short-lived in the literature. New papers use the
generic acronym MEM.

7.4.2 Classical Distance-Based MEM, Formerly Called
Principal Coordinates of Neighbour Matrices

7.4.2.1 Introduction

The PCNM method works as follows:

e Construct a matrix of Euclidean (geographic) distances among sites.

e Truncate this matrix to retain only the distances among close neighbours. The
threshold depends on the data. In most cases, it is chosen to be as short as pos-
sible, but all points must remain connected by links smaller than or equal to the
truncation distance. Otherwise, different groups of eigenfunctions are created,
that model the spatial variation within separate subgroups of points but not
among these groups. How to choose the truncation threshold distance is dis-
cussed below. All pairs of points more distant than the threshold receive an
arbitrary “large” distance value corresponding to four times the threshold.

e Compute a PCoA of the truncated distance matrix.

* In most studies, retain the eigenvectors that model positive spatial correlation
(Moran’s I larger than E(1), (7.4)).

» Use these eigenvectors as spatial explanatory variables in multiple regression
or RDA.

The PCNM method presents several advantages over trend-surface analysis. It
produces orthogonal (linearly independent) spatial variables over a much wider
range of spatial scales. It allows the modelling of any type of spatial structures, as
Borcard and Legendre (2002) have demonstrated through extensive simulations.

The PCNM method can work for any sampling design, although the spatial
variables are easier to interpret in the case of regular designs, as shown below.
When the design is irregular, it may happen that a large truncation value must be
chosen to allow all points to remain connected. A large truncation value means a
loss of the finest spatial structures. Therefore, ideally, even an irregular sampling
design should ensure that the minimum distance allowing all points to be connected
is as short as possible. In cases where this distance is too large, Borcard and
Legendre (2002) suggested (1) to add a limited number of supplementary points to
the spatial data to cut down the threshold distance, (2) compute the PCNM variables,
and (3) remove the supplementary points from the PCNM matrix. This ensures that
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the finest scales are better modelled. The trade-off is that the resulting PCNM
variables are no longer totally orthogonal to one another, but if the number of
supplementary points is small with respect to the number of true points, the depar-
ture from orthogonality remains small.

The classical PCNM method produces eigenfunctions for all positive eigenval-
ues. However, some of these eigenfunctions display negative spatial correlation. In
most studies, one is primarily interested in patterns produced by spatially conta-
gious processes, which display positive spatial correlation. Therefore, it is generally
preferable to retain only the eigenfunctions with Moran’s > E([), or to run separate
analyses with the eigenfunctions with positive and negative spatial correlation. The
relationship between the sign of the eigenvalues and the sign of the spatial correla-
tion is not simple for PCNM, whereas the value of Moran’s 7 is a linear function of
the eigenvalue in the case of standard MEM eigenfunctions. So it is advised to
compute Moran’s [ in all cases. Function PCNM () of the package PCNM presented
in Sect. 7.4.2.3 can do that automatically (argument moran).

7.4.2.2 PCNM Variables on Regular Sampling Designs

When the spatial coordinates correspond to points that are equispaced along a
transect or across a surface, the resulting PCNM variables represent a series of
sinusoids of decreasing periods. For a transect with n regularly spaced points and
sampling interval s, the wavelength A, of the eigenfunction with rank i is: 4, =2(n+s)/
(i+1) (Guénard et al. 2010, eq. 3).! Let us construct and illustrate a one-dimensional
(Fig. 7.3) and a two-dimensional (Fig. 7.4) example, both equispaced.

£ Censtructing PONM variables step hy sten
# mhmhk Ak hkkmhwh bk bk mwh bk Ak m kb bk dwhkw ko k ok w kb whhk ok

¥ L. One-cimensZonal sampling: transect with 100 eguispaced

# colnts. The distance befweer sdiacent poirnts is 1

—r20C <- seqg(l:130} # Generate transect points
tri0C.dl <— aist (trld0) 3 Buclidean distance racrix
thresh <— 1 # truncation distance set to 1

# Truncation te tareshold 1

Tr_0C.dl[trld0.d. > thresh] <- <£*Thresa

£ FCoA o truncatsd matrix

Lrl0GLPCoA <- cndscale (LrlCS.dl, e g=Il2Uk, x=lerglh{l2103)-1)

'A simple function to find the wavelength for an intersite distance s=1 is: wavelength <-
function (i, n) {2* (n+1)/(i+1)}.
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¥ Count the positive elgenvalues

(nn,ev <= length(which (t=100,PCokSeiqg > ©.0000001)1))
£ Matrix of PCNM wariables

trl0C.PCNM <- <rl00.PCoASpoirtsl,l:nk. v,

f Plot soms PCNM variables mcedelling positive spatial

£ corrslation {(Fig. 7.3)

par{mfrow=c{L,2})}

sonePCNM <- of(1l, 2, 4, &, 15,

for{i ir _:_ength{somePCHNI) ) {
plot (frld0. PCHM[, somePOINM 2], <Zvyoe="1", vlsh=c("ZCxXM",
scmePCNM[Z] 1))

20, 30, 40}

1

¥ 2. Two-cilnensional sampling: equispzced grid

f The truncatiorn distarnce s set ZTo 1. IT could a_sc be

o cnosen to ke the diacona” distance within a small sguare
i of 4 points, sczi(2)

Xygric2 <- expanc.crid(l:20, 1:20)

xygricZ.dl <- disl{xygrid2}

thresh <= 1 # trunca-lon distance set —o 1

¥ Truncatzon to tareshold 1

xygridlZ.dl [®xygrid2.dl>thresh] <- 4*thresh

¥ PCoR of Lruncaled malrix

xygridlZ. Plok <- omdzcale (xygridZ.dl, eig=TRUE,
k=nrow(xygric2}-1)

£ Count the positive efgenvalues

(nn.ev?2 <— _eaglh(which(xygrid2.2ColkSeiq > 0.0000001) )}

£ Matrix of PCNM wvariables

2ygric2 .PCNM <- xyorid2.PCokSpoirts[,l:ich.evZ]

¥ Plot some PCNM variables nmodelling positive spatial

¥ correlation (Fig. 7.4)

par{mfrow—c(<,2))

somePCHMZ <- (1, 2, &, 10, 26, &G, 130, 150)

for{i ir “:length{somePlHNM2)}
sr.value (xygrid2, xygrid2.PCHNM[, somcPCNMZ[1]],
netrtod—"greyleve ", csize-0.35%, sub-somePCRMZ[1],
ceub=2)

1

Hint Functions s.value() and sr.value () propose two representa-
tions of values on maps: by symbols with sizes proportional to the
values (default argument method = “squaresize”)and by sym-
bols of constant size and values represented by shades of grey (method
= “greylevel”).
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Figures 7.3 and 7.4 show that these variables are periodical and ranging from
broadest to finest scales. As discussed above, this does not imply that only periodi-
cal structures can be modelled by PCNM analysis, however. Even short-range
spatial correlation can be modelled by fine-scale PCNM variables. This topic is
addressed later.
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Fig. 7.3 Some of the 67 PCNM variables with positive eigenvalues built from a transect of
100 equispaced points. The first 49 of them have Moran’s [ larger than E(/), showing that they
model positive spatial correlation
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b

100

Fig. 7.4 Some of the 279 PCNM variables with positive eigenvalues built from a grid of 20 by
20 equispaced points. The first 209 of them have Moran’s / larger than E(/)

7.4.2.3 PCNM Analysis of the Mite Data

PCNM analysis is not restricted to regular sampling designs. The drawback in the
case of irregular designs is that the PCNM variables lose the regularity of their
shapes, sometimes making the assessment of scale more difficult.

Now, it is time to try PCNM analysis on real data. You will first run the analysis
“by hand”, i.e. by separately coding every step. After that, automated functions will
be presented that simplify the analysis.
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In the code below, PCNM variables are constructed using a package dedicated
to this task (called PCNM). Function PCNM () of this package provides an immedi-
ate assessment of the spatial correlation (Moran’s 1, (7.3)) displayed by the com-
puted eigenfunctions. Moran’s I gives a criterion to decide which eigenfunctions
should be used for modelling; see Sect. 7.4.4. Otherwise, the user can apply the
simpler function penm () of the vegan package.

¥ PCMNM anelysis of the oribecic mits caza
# mEmAFEEm Ak kbt kA bk m kAt hrhk n ok Er e kb ko

zy,dl <- dist(mite.=xy)
# Search for the truncation threshold: mazimum value of the
# minimum spanning tree of the Euclidean distance matrix
# wvsing vegan's function spanntree. Use that distance, or any
# other distance larger thanr that, as the truncation distance.
sparning <- spantree{xy.dl}
drir <- max(spanningidist)

f Truncate the distance matrix

xy.dllxv.2l » dmin] <- 4*dmin

ff PColi cZ truncated distarce natrix

xy.2C0A <- cmdscele(xy.al, k=nrow{mite.xy)-1, elg=1RUZ)
ff Count the positive egervalues {(FCNM with positive RND
~egative spatial

£ correlation)

{(no.ev <- lengzhiwhich{xy.Plcaieig » 0.0C00001) )

¥ CJonslrucl 2 dala Irame contalning Lhe PUNM varisbles
mite.PCNM <- as.daza.frame (xyv.PCoASpeints  linrow{mite.xy),
l:nb.ev]}

¥ _b. ... oz construct the PCNM variaoles auvtomatica_ly

¥ “ibrary (PCEM) ¥ T¢ rot already “oaded

xy.dl <- distimite.xvy)

mite.PCNM.auto <-— 2ZONM{(xy.dl)

surmrary (rite. FCNM. autc)

¥ FPlot the miaimun spaning tree vsed to find the truncatior

¥ distance

ploz.spantree (rte FCHNM. z2utofsoanring, mwite.xy)

{dmin <- mite.20NM.autosthresh) & Truncation distarce

(nn,ev <- lenccth(mite, PONM . anzodvaluaes) ) # Number of elgervalues
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f Moren's I of the PCHM variabnles (1= the first distarce clzss,
£ 2 to Truncation chresholdl; also see figure generated by the
# PCHMM{} function (noT reproduced here) .

¥ Expected value of 7, no scatial correlaticn

mite.PCNM. autofexpected Moran

mite. PUNM. autosMoran |

¥ Figenfunctiors with positive spatial correlazion

{selecl <- which(mile.PCNM.au.oSMoran ISPosillve —— TRIE))
length (se . sct) # MNumber of 2C08M wits T > FAT)

mite.PCNM.pos <- as.datz.Irzame (mite.=ZINM.zu%o3vectors) [, se_ect]
[ o use vegar's functior oorn()

e

mite.PCNM.vegar <- porn{aoist{rite.xy))

mite,PCNM <- as.daca.frame(mite.2CNM, vegandvec.ors)

¥ oomin <—- mite.PCHM.vegandSthrestc d

~bh.ev <- lzagth(which{nite.PCNM.vegzanSvalues > C.00C20C2))
# The eigenvectors obtained by this function are divided by the
# square root of their eigenvalue. This is not important for
# their use as spatial variables.
# Contrary to function PCNM(), vegan's pcnm(} does not provide
# Moran's I,which must be computed separately if one chooses to
# retain only the eigenfunctions with positive spatial
# correlation.

Hint The truncation distance can be chosen by the user to be either the
value proposed by the PCNM function (longest link along the mini-
mum spanning tree drawn on the map of the points), or any other value
larger than that. For example, for a regular two-dimensional grid of
points with spacing of 1, one may choose a value slightly larger than
the distance between diagonal neighbours, sqrt(2)=1.4142, as the
truncation distance. The chosen truncation distance may be 1.4143 in
that case.

As one can see, the first 17 PCNMs have significant positive spatial correlations
at the 5% significance level, while significant negative spatial correlations are
found in PCNMs 35-43. The test of significance of Moran’s I may not be a reliable
criterion to eliminate PCNMs from the analysis, however, so we will keep the 23
PCNMs with positive spatial correlation. We will apply forward selection with the
Blanchet et al. (2008a) double stopping criterion.
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£ 2. Rur the glogcal PCNM anelysis on the *detrended~ mite data

mile.PCHNM. rds <- zda{r_Le.h.del, nile.PCNM.pos)
anova.cca(mite. PONM. rda)

¥ 3. Sirce the analysiszs is significant, compuze the adjuszed R2
¥ zad ran a Zorward sclecilon of the PCNM varisbles

(rize.R2a <- ResquareAd:® (mite.DCNM.rda)sadj.r.squered)

(. PCNM. “wd <- forward.scl(nitc.n.oct,

as.ratriz{n’te.PCNM.pos), adiR2tkhresh—mite.RZa))
# According to the R2a critericn, if we retain PCNM 5 we get a
# model with a R2adj slightly higher than that of the complete
# model. This slight excess is not too gserious, however.

(no.s1g.PCNM <- nrow (mite, PCNM. fwd)) # Number o signif. 2CHM

f IZdentity of signiZicant FCNMs in increasing crder
(PUNM, sign <— sorti{mite,PCNM,Zwd[,2]]))

£ Write the significant PCNMs to a new cbiec
SCxM.raed <- mite,PCKM.pos[, c{(PCNM.sign)]

f 4. Xew PCNM anslysis with 1C signiZicant 2CNM wvariebles
¥ Adjustea R-sguare after Zorward selection: R2adj=0.2713

mite.PCNM.rdae?2 <- rcdai{nite.h.det ~ ., datg=2CNN.red)
(ri-e.fwd.R2e <- Rscuaredd” (rZte.PCNM.rdaZ} dzd].r.squared)
anova.cca (nite., PCNM,. zda2)

axes.test <- arava.oca(mize.PCRM.rdalZ, by="axis")

(nn.ax <— lencih(which(zxes.iesl[,5] <= 0.35)}) # Nunber ol
sigrntficant axes

£ 5. Plot the Two sigrificant carnonics| axes

mite.PCNM.axes <- saores.zoa{nite.PCNM.rdszs2, choices—-c(l,Z2),
disp_zy="_c¢", scaling=1)

par{mfrcw—c{_,2))

sr.valuc(mite.xy, mito.PCHMM.axes[, 2]) # &
sr.value{nite.xy, mite.PCHM.axes[,2]) F &

function: =.valuc
function: s.value

[«
[

4
4

0.

Hint Inthe scores.ccal() call above, be careful to setdisplay="1c”.
The default is “wa”, but here we want the fitted site scores.

PCNM analysis of the detrended mite data explained 27.13% of the variance
(seemite.fwd.R2a, the adjusted R? obtained with the ten variables retained by
forward selection, slightly exceeding the total Rzadj ). Two canonical axes, explain-
ing 27.13 x 0.7527°=20.4% of the total variance, are significant; their fitted site

2The value 0.7527 is found in the section “Accumulated constrained eigenvalues” of the RDA
output. It is the proportion of variance explained by the first two canonical axes with respect to
the total explained variance.
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scores have been plotted on a map of the sites. These two plots (Fig. 7.5) represent
the spatially structured variation of the detrended oribatid mite data. Now, is this
variation related to any of the environmental variables? A simple way to assess
this is to regress the fitted site scores of these two canonical axes on the environ-
mental data.
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Fig. 7.5 Manual PCNM analysis of the detrended oribatid mite data, ten significant PCNM vari-
ables. Maps of the fitted site scores of the first two canonical axes
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# IZrnterpreting the spatial variation: regresszicn of the two
F oaignificant canozical axes on the environmental variables
¥ (aZter nocmality Zests)

shapiro.testiresid{Imi{mite.PCHNM.axes[, ] ~ ., datz=mite.env)})
mite.PCHNM.axizl.env <- “mi{r’te.PCNM.axes ,1] ~ ., data-nmite.env)
surmary(rite.PCNM.axisl.env)

shap_ro.lesl (res_d{lm{nile.PCNM.axes[,2] ~ ., dale=m_lLe.=eav)))
mite.PCNM.axis2.env <- _mi{mite.PFCNM.axes ,2] ~ ., data=mite.env)
summrary (m_te.PCNM.axisZ.env)

# As one can see, the two spatial axes are not related to the
# same environmental variables (except for shrubs). They are
# not fully explained by them either. A precise assessment of
# the portions explained will regquire variation partitioning.

This PCNM analysis produced spatial models combining all the PCNM variables
forward-selected from the set of 23 classical PCNMs with positive spatial correla-
tion. Here, both significant canonical axes are a combination of PCNM variables
ranging from broad (PCNM1) to fine scale (PCNM23). While this may be interesting
if one is interested in the global spatial structure of the response data, it does not
allow one to discriminate between broad, medium and fine-scale structures since all
significant PCNMs are combined.

Another approach consists in computing separate RDAs constrained by subsets
of the significant PCNM variables. The PCNM variables being linearly independent
of one another, any submodel defined with a subset of PCNMs is also independent of
any other submodel defined with another subset. These subsets can be defined in
such a way as to model different scales. The choices are arbitrary: there is no gen-
eral rule defining what is broad, medium or fine scale. One can either predefine
these limits, using the sizes of the patterns corresponding to the PCNM variables,
or run forward selection and define submodels corresponding to groups of more or
less consecutive PCNM variables retained by the procedure. One can also draw
maps of the significant PCNM variables (Fig. 7.6) and group them according to the
scales of the patterns they represent:

¥ Maps o the 10 significant PCNM wvarizbles
# i i i i A R Ll S o S e

par{mfrow=c{2,5})

for(i irn Z:ncol (PCNM.>rcd) ) {
sr.value (mite.xy, PCONM.red , i

b

T, sub=PCNM.sign[l], csub=2}
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Fig. 7.6 The ten significant PCNM variables with positive spatial correlation used in the manual
PCNM analysis of the detrended oribatid mite data

On this basis, one could for instance define PCNMs 1, 3 and 4 as “broad scale”,
PCNMs 5, 6,7, 10 and 11 as “medium scale”, and PCNMs 20 and 23 as “fine scale”
descriptors. Separate RDAs with these subsets model broad, medium and fine scale
patterns, respectively.
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£ PCMM anelysis of the mite data - brocad scale
# AR R A EEEEE S SRR EREERESESEAEEERESEEREEREER TS

mite,PCHNM.broad <- rda{mize.b.ast ~ .,
data=nite.zCxM.pos[,c(l,32,4) 1)

anova, coca (mite, PONM , hroad)

axes.nrcac <- anova.cca({mite.PCNM.broad, oy="axis"}

shhax.broad <- Zenglh{which{axes. broadc[,z] <= 0.35}))

~h,ax.broad # Number of signiflcant axses

# Plol ¢l Lhe ifwo sicr’lican:. caronical axes

mite.PCNMoroad.axes <- sccres.ccafnize.2CNM.brcac,
choices=c(l,2), cisclay="1c", scallrg=_l)

par{mfrcw=c{_,2}]

s.va_us({rlle.xy, mile.PCNMhroac.axes ,1])

s.va_ue (mite.xy, mite.PCNMbrecac.axes ,2])

¥ rterpreting snazial wvariet-Zon: regressicr of the two
¥ significant spstial czacnical axcs on thc cnvirernnental
¥ variables

mite.PCNMoroed.axl.env <— lmi{mite.PCNMbrosd.zxes[,1 -~ .,
data=rmitea.enwv)
surcary (2 te, PCNMbroad, exl.erv)

mite.PCNMoroad. axZ . env <- lm{mite.PCWMbroad.axes[,2. ~ .,
data=nitc.cnv)

sunmary (rite. PCNMbroad. axZ .env)
# The broad-scale relationships are clearly related to
# microtopography and the absence of shrubs.

£ PCHMM anelysis of the mite data - mecium scele
# whmhkbEmhwhkbkh sk bd bbbk bl b w bbb s kb whbdw b b dwd ok

mile.PCHM.meq <- ~da(mile.h.del ~ .,
data=mite.PCKM.pos[,c{z,6,7,1C, 11} )}
anova.cza(mn_lLe.PLNM.med)

axes.med <- gncve.ccalnite.PCNM.med, hy="axis")
~k.ax.med <- lengthi{wkich{axes.med 5] <= 0.05)
nb.ax.med # Number of significant axes

¥ Plot of the significant caronical axes (the secors axis is

¥ margira’ly significant)

mite. PONMMead . axas <- scoves. ooz (mite. PCNMomea, choices=c(1,2Y,
display="l2", scal-ng=1)
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par{mfrow=c{’ ,2))
s.va_us(mite.xy, mite.PlNMred.axes ,1])
s.va us(wite.xy, mite.PCHNVMTed.zxes ,2])

¥ ‘rterpreting swazial wvariazlion: regression of the significant
¥ aspatial canornical axes on the environmental variables

mite.PCNMmed.axl.ezv <- lm{mite.2CXNMned.axes|[,1. ~ .,
data=nite.arv)

summrary (m_te.PCNMmec .ax_.env)

mite.PCNMned,ax2.env <— lminize.2CMned.axes[,2. ~ .,
data=nmite.enrv)

sunrary (rite, PCNMmed ., ax2, env)
# The medium-scale features correspond to several types of soil
# coverage and to soil moisture (variable WatrCont).

ff PCNM anslysis of the mize data - fine scale
# mAhkm ok k Ak km Ak kb r oAb At kA bk m b ok k ko A w ok kb ow ok oAb A
;

mile.PCNM. [ ne <— ~da{m’ lLs.h.dal ~
data=mize.PCRM.pos[, {20,221 1)
anova.cca(n_le . PCKM. [ire)

axes. fire <- arova.ooca (mite, PCNM. Fine, by="axizs")
~hhoax.line <- lengilh(which (zxes.[ . ne ,5] <= 0.05))
mhoax., fine # Number of significant axes

£ Plot of the significant caronical axis
milae.PCNMLiae.axaes <- scaores.ccal(m’le.PCNM. [ins,
disp.ay="¢

par{mfrow—c(_,2})

s.va.ue(mite,xy, mite,PCNMIire,axes)

cholces-1,

", osceling=1)

£ Irterpreting spatial wvariatlon: regression of the significant
¥ spatial cancorical ax’s on The environmental variah es

mite.PCNMfine.axl.env <- lm{mite.PChMfire.axes ~ .,
data=mitc.cnv)
surrary (rite. PCNMEine. axl.env)

# The fine-scale structure is weakly related to the
# envirommental variables. Only one soil coverage class (plant
# litter) is significant.

Something has occurred here, which is often found in fine-scale PCNM analysis.
The only convincing correlation is with the presence of bare peat, a feature that was
very localized in the study area. Otherwise, in most cases, fine scale PCNM
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variables cannot be related to environmental descriptors and are mostly the
signature of local spatial correlation generated by community dynamics. This topic
will be addressed later.

7.4.2.4 Hassle-Free PCNM Analysis: Function quickPCNM ()

A single-step PCNM analysis can be performed easily with the function quick-
PCNM (). This function, available in the PCNM package, requires only two argu-
ments: a response data table (pre-transformed if necessary) and a table containing
the site geographic coordinates (which can be one- or two-dimensional). The func-
tion performs a complete PCNM analysis: it checks whether the response data
should be detrended and does it if a significant trend is identified; it constructs the
PCNM variables and tests the global analysis; it runs forward selection, using the
PCNMs with positive spatial correlation; it runs RDA with the retained PCNM
variables and tests the canonical axes; it delivers the RDA results (including the set
of PCNM variables) and plots maps of the significant canonical axes.

¥ Single-sten 200 analysis uvsing fuanction quickPCHM ()
# B o R O R

mito.PCNM.quicx <- cuickPCNM{m:tc.h, mite.xy}
surmary (m- te, PCNM, quick)

mito.PCNM.quic<[[2]] # Pigonwvalues
milae.PCNM.quic<[[3]] # Resu’ls of Torward seleclion

# quickPCNM prevents forward.sel() from admitting a variable
# when the resulting R2adj exceeds that of the complete model.
# Therefore, PCNM5 is not among the selected PCNMs in the

# quickPCNM results.

Function quickPCNM () provides several arguments to fit various needs. For
instance, detrending is done by default if a significant trend is found, but this option
can be disabled (detrend=FALSE). The truncation threshold is computed auto-
matically unless the user provides another value (e.g. thresh=1.234).
Computation of the PCNM variables is overridden if the user provides a ready-
made set of spatial regressors (nyPCNM=userdataset).

quickPCNM() provides a composite output object containing many results.
The summary shows all the components. To draw a biplot of the RDA results, the
code is the following:
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¥ Extract and plet RDA resu_ts from a quick2CNM ouatpuc
¥ (scaling 2)

# B o o T G L e T S L T T LS L o e T

ploT {mize . PCKM.quick$RIA, scal’ng=2)

sp.scores? <- scores{mite.PCNM.quickSRDA, choices=1:2,
sceling=2, display="sp")

arrows (0, 0, sp.scoresl([,1], sv.scoresl[,2], lengtk=d, lty=_
aol="red")

# The scaling 2 shows the relationship of some species with

# some PCNM variables. These correlations can be explored to

# reveal at which scale the species distributions are spatially
# structured,

7.4.2.5 Combining PCNM Analysis and Variation Partitioning

A clever and global approach to assess the environmental variation related to all
scales of spatial variation is to perform a variation partitioning with an environ-
mental data set and up to three subsets of spatial variables. Function varpart ()
can only handle numeric variables (not factors), however, so that we have to recode
environmental variables 3—5 into dummy binary variables.

Variation partitioning aims at quantifying the various unique and combined frac-
tions of variation explained by several sources. In this context, a linear trend can be
considered as a source of variation like any other. The trend is likely to act on the
response as well as the explanatory variables. Therefore, in this application we
advocate not to detrend the response data prior to variation partitioning, but rather
to test for a linear trend and incorporate it explicitly in the partitioning procedure if
it is significant.

In this example, we independently forward-select the X-Y coordinates, the
environmental variables and the PCNM variables before variation partitioning. The
significant PCNM variables are split into a broad and a fine-scale fraction. The par-
titioning results are presented in Fig. 7.7.
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¥ Mite - trend - exvironment - PCNM variaticn partiticning
# AR R R A ESEE AR SRR SRR LRSS EEAREEE RS EEESESEEEEELEEEESEEEEEES]

£ 2. Test trend, If significant, Zozward selection oI
I cocralnates

mile.XY.rda <- rda{mi_e.n, nile.xy)

anova, coa(mite, XY, rada)

(rize.XY.R2a <- Rsquarehd] (mite.XY.rdz)3adj.r.squared)

(rilie . XY¥.[wd <- [orward.sel(mr_lLe.h, as.maloix{m_le.xv),
ad’R2-hresh=m te.XY¥.R2a})

XY.s_.ga <— sosi{nlie.XY.LwdSorder)

XY¥.rec <— mlle.xy[,c{XY.sign}

# 2. Test and forward selection of eavironmental variarles

¥ Recode envircnmental varieb_es 3 to 5 Into dummy oSinery
¥ variablcs

supstraze <- medel.matrix{~mite.env[,3]) ,-1]

shriobs <— model.matrix{~nite.env|,<])|,-1.

“ove <- nodel . matzix(~nite.erv[,5 ) [,-1]

mite.cav? <- chind{mitc.crnv_,1:2], substrztc, shrubs, topco)

# Forward sclection of tae cnvirenneatal wvariables
mite.env.rda <- rda{mite.l, mite.env?)

(rize.erv.R22 <—- Rscuareld: (mite.env.rda) $ad” .r.squared)
mita.eav.twd <- torward.ssl{mrite.h, nits.envz,
adjR2thresn=mite.env.RZz, noerm=94399)

anv.slgrn <— gort(mite.env.IwdSorder)

env.red <— nite.env2[,c(env.s_gn}_

co_nrames (env, red)

¥ 3. Tesl ang lorward selecllon of PCKM varizhles

f Run the g_gba. PCKM analysis on the *undetrended* nite data
mite.undet . PCNM.rda <- rdainite.k, mite.PCNM.pcs)
anova. cca (mite undat. 203, rada)
¥ Since the zna’ysis i=s zignificant, comzmute —he adjusted R2
¥ gnd run oa Tovward gseleczion of The PONM wvariables
(mize.ardet .PCHNM.EZa <—

TaguarasAdi (m! te.undet . PCNM. rda) $adj.r.squaraa)
(rZte.,ardet PCNM. fwe <- forward.sel (mita.h,
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as.matrix{mite.PCEM.pDCS),
adjRZthresh=rite.undez .PCNM.22a))

# According to the R2a critericon, if we retain 12 PCNMs

# we get a model with a R2adj slightly higher than that of the
# complete model. This slight excess is not too serious,

# however.

f Xunber of signif., =ZCNM

{(no.slg.PCNM <- nrow{mite.undet.PCKM.Lwd))

¥ Zdenlily ol sigaificanl PCNMs 1n lacreasing orcer
(PCNM.slgn <- scrti{mite.unde>.PCNM.fwdScrder))

¥ Wr e Lhe signilicarl. PCNMs Lo a new ohjech
PCxM.red <- mite.PCRM.zos [, c(PCNM.sign) ]

¥ £. Brbitrary split ¢f the significant PCMMs into broad and
£ fine sczle

¥ Broed sca’le: PCNMs 1, 2, 3, 4, &, 7, 8, 9, 10, 11
PCXM . krcac <— 2CNM.red[,1:10]

# Finc scalce: 2CNMs 16, 20

PCXM.fire <- PCNM.red[,’1:12]

¥ 5. Mize - envirormmernt - Trend - PCHM variation partitioning

{(mitc.varcart <- warpart{mitc.h, cnv.rcd, XY¥.rcd, 2CXM.brcac,
PCEM, Zine))

par{mfrow=c{_,2)}

showvarparts (4)

plot{mite.varpart, cigits=2)

£ The defzult cpticns _eave the fractions wiin negative R2a

¥ erpty. To display the negatives walues, set The argument

£ cutoff = -Inf,

f Tests of the unigue fractions [a_, [bl, [¢] and [d]

ﬁ E R R R R i R e i R e e

£ FraclLion [al, pure environmenlal

anova.cca(rda{mite.h, env.red, cbhind(XY.red, 2CxM.broad,
PCNM. Zine) )}

¥ Fraction [o], pure —rend

anova.cca(rda{mite., XYy.red, cbind(env.red, 2CxM.broad,
PCNM, Tine) ))

¥ Fraction [c], pare broad scale spatial

anaova,oca (rdatmite,r, PCNM.proad, chind{aenv,rad, XY.red,
BCHM. fine) ) )
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¥ Fractien [c], pare fine sca_e spatilzl
anova, coa (rda{mite, b, PCNM, “ine, obilndlenv, raed, XY, red,
ECNM.broad) )}

# Only the pure envirommental and the pure broad scale
# spatial fractions are significant.

fe] ©.002
[a] bl 0.068 0,006
[h K] 0} poos | 0008 0.008

[o]

[n] [ml

ol N/ m 0.126 023 0,018

0 ju 0.000$.008
5] ©.080
Residuals = [p] Residuals = 0.472

Values =0 not shown

Fig. 7.7 Variation partitioning of the undetrended oribatid mite data into an environmental com-
ponent (upper left-hand circle), a linear trend (upper right-hand circle), a broad scale (lower cir-
cle) and fine scale (disjoined rectangles) PCNM spatial components. The empty fractions in the
plots have small negative R agj Values

When interpreting such a complex variation partitioning diagram, keep in mind
that the R? adjustment is done for each fraction that can be fitted without resorting
to partial RDA or multiple regression (here, the first 15 rows of the table of results),
and that the individual fractions [a] to [p] are then computed by subtraction. Very
small negative R2adj values frequently appear in this process. Negative R2adj values
correspond to explanatory variables that explain less of the response variables’
variation than would be expected by chance; so, for all practical purposes, they can
be interpreted as zeros and neglected during interpretation, although they must be
taken into account for the sum of all fractions to be 1.

The whole set of environmental and spatial variables explains 52.8% of the
variation of the undetrended mite data (see the Rzaclj for “All” fractions). The envi-
ronmental variables alone (matrix X1 in the partitioning results) explain 40.8% of
the variation, of which a mere 5.8% is not spatially structured (fraction [a]). This
fraction represents species—environment relationships associated with local envi-
ronmental conditions.
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The remaining fractions involving environmental and spatial variables (essentially
fractions [g] and [1]) represent spatially structured environmental variation. Fraction
[g] (12.5% variance explained) is common to the environmental and broad scale
PCNM variables. Fraction [1] (23.0%) represents a strong spatial component that
is jointly explained by the environmental variables, the Y coordinate of the sam-
pling sites and the broad scale PCNM variation. This is a typical case of induced
spatial variation, where the spatial structure of environmental factors produces a
similar spatial structure in the response data. In this example, fraction [1], which
represents two-thirds of that joint structure, corresponds to the linear gradient in the
north—south direction of the map represented in the analysis by variable mite.
xy[,2], showing that broad-scale PCNM variables can indeed model a linear gradi-
ent. On the other hand, the common fractions corresponding to the environment and
the fine-scale PCNM structure ([h+k+n+o], R* , =-0.006%) is negligible.

When some variance is explained commonly by the environmental and spatial
variables, one should be careful when inferring causal species—environment rela-
tionships: the correlations may be due to a direct influence of the environmental
variables on the species (direct induced spatial variation), or to some unmeasured
underlying process that is spatially structured and is influencing both the mite com-
munity and the environmental variables (e.g. spatial variation induced by a histori-
cal causal factor).

The variation partitioning also shows that the four sources of variation have
unequal unique contributions: the environment alone ([a], 5.8%), as well as the
broad scale ([c], 8.0%) variation, are significant, while the trend alone ([b], 0.5%)
and the fine scale variation ([d], 0.8%) are not.

There is also some variation explained by spatial variables independently of the
environment. This variation is represented by fractions [b], [c], [d], [f], [i], [j] and
[m]. Together these fractions explain 12% of the variation. Most likely, some of this
variation, especially at broad and medium scales, could be explained by unmea-
sured environmental variables, although one cannot exclude the influence of past
events that could still show their marks in the mite community (Borcard and
Legendre 1994). Fine scale structures are more likely explainable by spatial cor-
relation produced by neutral biotic processes. Neutral processes include ecological
drift (variation in species demography due to random reproduction and random
survival of individuals due to competition, predator—prey interactions, etc.) and
random dispersal (migration in animals, propagule dispersion in plants). Controlling
for spatial correlation by means of PCNM variables when testing species—environ-
ment relationships is briefly addressed in Sect. 7.4.3.4.
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Finally, note that the broad and fine-scale PCNM variables have a non-null
intersection despite the fact that the PCNM variables are orthogonal: fraction
[[+m+n+o0] totals —1.7%. This occurs because other variables (environment and
trend), which are not orthogonal to the PCNMs, are involved in the partitioning, and
also because the variation partitioning procedure involves subtractions of R? that
have been adjusted on the basis of different numbers of explanatory variables.

7.4.3 MEM in a Wider Context: Weights Other than
Geographic Distances

7.4.3.1 Introduction

The PCNM method provides an elegant way of constructing sets of linearly inde-
pendent spatial variables. Since its publication, it has gained a wide audience and
has been applied in several research papers. But it is not the end of the story.

Dray et al. (2006) have greatly improved the mathematical formalism of PCNM
analysis by showing that it is a particular case of a wider family of methods that they
called Moran’s eigenvector maps (MEM). They demonstrated the link between the
eigenvalues of the MEM eigenvectors and Moran’s spatial correlation index, I (7.3).

They reasoned that the relationship among sites, which is the basis for any spa-
tial eigenvector decomposition, actually has two components: (1) a list of links
among objects, represented by a connectivity matrix and (2) a matrix of weights to
be applied to these links. In the simplest case, the weights are binary (i.e. either two
objects are linked, or they are not). In more complex models, non-negative weights
can be placed on the links; these weights represent the easiness of exchange (of
organisms, energy, information, etc.) between the points connected by the links. For
instance, link weights can be made to be inversely proportional to the squared
Euclidean distance among sites.

Furthermore, Dray et al. (2006) showed that (1) by using similarities instead of
distances among sites, (2) setting the relationship of the sites with themselves to
null similarity and (3) avoiding a square-root standardization of the eigenvectors
within the PCoA procedure, one obtains a family of flexible methods (MEM) that
bear an immediate connexion with Moran’s / and can be modulated to optimize the
construction of spatial variables. The MEM method produces n— 1 spatial variables
with positive and negative eigenvalues, allowing the construction of a wide range
of variables modelling positive and negative spatial correlation. The eigenvectors
maximize Moran’s [ index, the eigenvalues being equal to Moran’s I multiplied by
a constant. Therefore, the spatial structures of the data are extracted in such a way



264 7 Spatial Analysis of Ecological Data

that the axes first optimally display the positively autocorrelated structures in
decreasing order of importance, and then the negatively autocorrelated structures in
increasing order.

The MEM method consists in defining two matrices describing the relationships
among the sites:

e A binary connectivity matrix B defining which pairs of sites are connected (1)
and which are not (0)
e A weighting matrix A providing the intensity of the connexions

The final spatial weighting matrix W results from the Hadamard (i.e. term-by-
term) product of these two matrices, B and A.

The connectivity matrix B can be constructed on the basis of distances (by
selecting a distance threshold and connecting all points that are within that dis-
tance) or by other connexion schemes, such as Delaunay triangulation, Gabriel
graph or others (described by Legendre and Legendre 1998, Section 13.3). The
connexion matrix can of course be customized to fit special needs — for instance,
by only allowing connexions among sites along the littoral zone of a lake (not
across water) or along the shoreline of an island.

Matrix A is not mandatory, but is often used to weight the connexions according
to distance, e.g. by inverse distance or inverse squared distance, since it is ecologi-
cally realistic to assume that a process influences a community with an intensity
decreasing with distance. The choice of both matrices is very important because it
greatly affects the structure of the spatial variables obtained. These variables, in
turn, condition the results of the spatial analysis, especially in the case of irregular
sampling: “In the case of regular sampling (e.g. a regular grid), structures defined
by eigenvectors are roughly similar for different definitions of W. For irregular
distributions of sites, however, the number of positive/negative eigenvalues and the
spatial structures described by their associated eigenvectors are greatly influenced
by the spatial relationships defined in W (Dray et al. 2006). These authors provide
the following general recommendations:

The choice of the spatial weighting matrix W is the most critical step in spatial analysis.
This matrix is a model of the spatial interactions recognized among the sites, all other
interactions being excluded. In some cases, a theory-driven specification can be adopted,
and the spatial weighting matrix can be constructed based upon biological considerations
[...]. In most situations, however, the choice of a particular matrix may become rather dif-
ficult and a data-driven specification could then be applied. Under this latter approach, the
objective is to select a configuration of W that results in the optimal performance of the
spatial model.
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For data-driven model specification, the authors proposed a procedure starting
with a user-defined set of possible spatial weighting matrices. For each candidate,
one computes the MEM eigenfunctions, reorders them according to their explana-
tory power, enters them one by one into the model and retains the model with the
lowest corrected Akaike information criterion (AIC). When this is done for all
candidates, one retains the W matrix yielding the lowest AIC.

The AIC -based selection is but one possibility. One could also forward-select
the MEM within each candidate model using Blanchet et al.’s (2008a) double stop-
ping criterion and retain the model with the highest Rzadj. This alternative, which
had not yet been devised when the Dray et al. (2006) paper was published, addresses
the concerns raised by these authors in their conclusion about the drawbacks of
forward selection procedures.

7.4.3.2 MEM Analysis of the Mite Data

Dray et al. (2006) used the oribatid mite data to illustrate MEM analysis. As an
example, we duplicate their analysis, exploring some choices along the steps of the
method. Several packages are used. The following example is based on Stéphane
Dray’s tutorial on MEM analysis, with our thanks to the author. It relies heavily on
the spacemakeR package that Dray devised especially for this purpose.

The spacemakeR functions used below should make model selection rela-
tively easy. Of course, the final result depends upon a proper choice of a class of
models. The function test .W () is particularly useful as it combines the construc-
tion of MEM variables and model selection; examine the help file of that
function.

We experiment with three classes of models:

* The first class is based on Delaunay triangulation with binary weights.

e The second class starts from the same connectivity matrix, to which weights are
added. The weighting function is based on Euclidean distances among the sites:
f,=1=(dld_ )*where d is a distance value and d__ is the maximum value in the
distance matrix.

* The third class evaluates a series of models based on a range of distances around
the points. All pairs of points within the distance considered are linked, the others
not. What should the range of distances be? This can be assessed by means of a
multivariate variogram of the response data. Variograms are plots of semivari-
ances against distance classes. Semivariance is a distance-dependent measure of
variation, which is used in the same way as in the correlograms presented earlier
(e.g. Bivand et al. 2008). A variant of this approach will weight the links by the
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function of inverse distance that was used in the second model class above. This
last variant duplicates the results presented in the Dray et al. (2006) paper.

First and second classes of MEM models: unweighted (binary) and distance-

weighted Delaunay triangulation.

ot o ot S h o

i

i

i

£
i

(mite.del <- trzZnb(mite.xy))
mita,del.res <- fest.Winite.h.det, nite,del)

surmrary (mlte.de_, ressSbest)

ff Tradijusted 272 of best mwodel
¥ Tk s 1line reiurns Lke 272 of Lke mods]l with the smel’est ATICe
(RZ2.del <-—

Tacuarehdi (Z2.de”, 70, 7)

f2 «- function(Dd, dmax, v) ¢« 1 - {(D/dmax}”y }

MEM ara_ysis of The detrended oribatid mite date

R R R R R R A RS R EESEEEE RS A ELEEREEFEEEEEELEEEEEEE NS

Selection of an optimal svatial welghiing matrix
R R T e e R

_. 3earch based on Delatnay triangu’ation.
We use mite.n.det 25 response data and mite.del as Delaunay
triangulation cata.
No welghting matrix (binary weights): function test.W
selects among the M3 varizables constructed or the basis of
the Delzuray triangalation.

De_zuray triangalation

# The screen output says that the best model has an AICe value
# of -94.2 and is based on 7 MEM variables.

Sunmary o7 Lhe cesulls [or Lhe hesl medel

milLe.del . resShesl 532 [which.min(mile.del.resshes | 5AICa)])

Adusiea 272 of besi mode’ (n — 70 aad m - 7)

2. Delaunay triangulation weickted by a funciion of distance.
Distances are rarged to maxinum 2, and raised to mower
zlpha

_argest Euclidean distarce con links bolonging to the Delaunay
triangulation
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max,d” <= max(unlist({rbcéists{r’te.ds , as.mat=ix(mite.xy)}))
# Power is set Zrom 2 to 10

mite.del £f2 <- fest.Wimite. h.det, mifte.del, I=f2, y=2:1.,
drax=max.dl, xy=ss.matrix{m’ze.xy))

# The screen output says that the best model has an AICc value
# of -95.4 and is based on 6 MEM variables.

¥ Tracjusted 272 of best mocel

(R2.delW <-
mite.del.f28cest$R2 [which.min (mite.del . f25best3AICc)])

¥ Bd-usted 272 of best model (n = 70 zad m = &)

Raouaread] (A2.delw, 70, 5)

Third class of MEM models: connectivity matrix based on distances.

¥ 3a. Connectivity matrix based con a distznce (radius around
£ pointa)

£ Assessment of the re_evant discances, besed on a multivariaczs
# wvariogram of the cetrended mite data, with 20 distarce
¥ claases.

(r Te.vario <- varicgmultiv(mite.k.det, mite.xy, nclass=z0)})
plos{mite.variesSa, mite.varicSvar, ty="bh', pch=20,
xleb="Distance"”, ylab="C(distance)™}

The multivariate variogram is presented in Fig. 7.8. It consists in the sum of
univariate variograms computed for all species. The variance increases from 0 to
4 m. Since the shortest distance to keep all sites connected is 1.0111 m (see PCNM
analysis), we explore a range of ten evenly distributed distances ranging from this
threshold up to 4.0 m (i.e. approximately four times the threshold, as in PCNM
analysis).
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Fig. 7.8 Multivariate variogram of the detrended oribatid mite data. Twenty distance classes

= Ceonstruction of 1C reichbournced matrices (class nb)
# Vector of 20 threshc_g distances
(thresnlC <- seqigive.thresh{dis-(mite.xvy)}, 4, Z=2=103})

¥ Create 10 neighbcurbood metrices.

f Each matzix contains all connexicons with lengtas = the

§{ thresho_d wvalue

liszldnb <- _apply{thresalC, dnearneigh, x=as.matrix(mite.xy),
d1=0}

f Disnlay an excerpt oI the flirst nelighbourhood matrix
privti(listwilnats (nb2listw(listlonb [ 1], style="B")) [1:10,1:20,
digics=1}

¥ owow we can apoly Lhe furclion tesl . W{) Lo Lhe 20 neighbournood
ff matrices. There are no weights on the links.
mile.laresa.res <— lapply(llsl 02k, lesi. W, Y=r ls.h.del)
¥ _owest ATCc, besl model, Lhkrestold disLance of besl node’
mite.thresh.mirATC <- sapplyirite.th-esk.res, func-ior {x}
min{x5hest3AIC2, na.rm—TRUE)}
F Smallest ATICc (hest model among the 10)
min{mite.thresh.mirZIC)
£ Xunmber of the model amorg the 10
which.min{nite.throesh. . niqAIC)
£ Truncation thresktcold (distance)
“hreshll whalca.min{mite.thresh.mindAIC) ]

# Identify the best model, that iz, the model with the lowest

# AICc. What is the range of distances in that model? How many
# MEMs were selected?

Hint dnearmneigh() requires two geographic dimensions. Add a con-
stant column (e.g. a column of 1) if you only have one dimension, e.g.
a transect or a time series.
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This result is more interesting than that of the weighted Delaunay MEM. The
AICc of the best model, obtained with a threshold of 2 m, is —100.6 with a model
consisting of five MEM variables only. Let us see if we could improve this result
by weighting the connexions by an inverse distance function.

£ 3b. VarZant: same as esbove, bat connecticns weighted by the
¥ conolonent of the power of the distzaces, 1-{d/dmax) "y

mite.taresn.£2 <- lapp_y{listldnb, functloni{x) tesZ.W{x,
Y=mite.h.det, f£=£f2, v=2:10, dmax=nax(ualist (nbdsts(xz,
az.matrix{rite.xy) )V}, xy=as.metrixi{mite.xyi))

¥ “_owaest ATC, bast model
mite.f2.minAIC <- sapp_vimite.tharesn.f£2, farctlion(x)
min{xshestSAICe, na.zm=TRUE)}

£ 2rallest AICc (best nodel among the 10
min{mite.f2.mirA”C}}

f Xuricer of the model amorg the 1C
(no,kestrod <- which.rwinimite.f2,n2nATC)}

¥ Rotual dmax of best nodel
(drax.besl. <- m_le.laresa. 22 [nb.beslnod] T [1L]1]13a1[1,2]}

Hint  The actual d,  value found by the function is often smaller than the d,
provided to the function by means of the vector of user-selected thresh-
old distances, because the output of the function shows the largest actual
distance within the limit provided by each threshold value. In the exam-
ple, the sixth value in vector threshl0, which contains the list of
user-selected threshold distances, is 2.671639. There is no such dis-
tance in the mite geographic distance matrix; the function found that the
largest distance smaller than or equal to that threshold is 2.668333.

With an AIC_ of —102.7, this is the best result of all our attempts in terms of
AIC_. We can therefore extract this champion model, which contains seven MEM
variables, from the output object:
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¥ Extraction of the ckhampion MEM mode”

# E e o S T R T

mite.MaM . chanp <-
arlist(mite.thresh, F2 [whickh . min(mite. 2. minA7C) ],
recursive—sA°57)

sunrary (mite.MEM. caanp)

mite.MIM.champibesiSva_ues # Eilgenvalues
mite.MIM.champsbestiord § MEM wariables by order oI added RZ

 MEM warlables selected ir the hest mode’
MEMid «<-
mite.MEM. champsbestlord " twhich . min{mite.MEM. champshestSATCC) ]
sort (MaMia)
MEM.all <— mite.MEM.chanpibestivectors
MEM. sclact <— mitc.MIVM.charodoostSvoectors[, sort (o (MEMIG)) !
colrames (MEM. se_ecz) <- zsort(MEMid)
¥ Tracdijustad 22 of best mcdel
22 . MEMbest <-
mite.MEM. champsbest3R2 [which.min (r -e . MEM.champSoest3A-Co) ]
£ Ad-usted RE o best nodel
RazouarshAd] (Z2 . MEMbest, nrowi{nr’te.h.det), lergth{¥M=Mid})

¥ Flot the _inxs using the function plot.lirks()
ploz.lirks (nite.xy, thresk=dmax.best)

¥ Maps of the 7 significart MEM varianles

# LR R I R I I R R T N

par{mfrow=c({z, 4}

for¢l ir Z:acol (MEM,szlect)){
s.va_ue(rte.xy,MEM.select[,1 ., suc=sori(M=Mid) i], csub=2)

}

The very best MEM model among those tested contains seven MEM variables;
four of them are positively spatially correlated (1, 2, 3, 6) and three negatively
(9, 11, 57). Interestingly enough, the same result is found by redoing the selection
using the forward selection procedure proposed by Blanchet et al. (2008a), with two
separate forward selections for the MEM with positive and negative spatial correla-
tion and using only the o value as stopping criterion for the negative MEM.

RDA of the detrended mite data with the seven MEM variables can be computed
in a similar fashion as in the PCNM analysis:
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¥ RDA of the mite data corstrained by the 7 MIM retalned, using
¥ vegsan

Eonkh ke hk ik kA bk kR kA m kb kA Rk km bk kR kR kA kR kb kK
(mite.MEM.rda <- rda(mite.h.det~., as.datz.frame (MEM.select)) )
(rrte.MEM.R2a <- Rscuareld: (mite.MEM.rda)$adj.z.squared)
anova.cca{n’te.MEM. rda)

axes.MEM,Lest <- arcova.cca(niZe.MEM.rca, ky="axZs")

¥ Number of significarnt axes

(no.ax <- leng-hiwhich{axes.MEM.test[,5] <= 0.03))}

£ Plot maps of the two significant cancorical axes

mile.MEM., axes <- scores.ccaf{mile.MEM.rda, cholces=c(l,2},
display="_c", scaling=1)

par{mfrow=c{_,2})}

s.value (mite.xy, mite.MEM.axes[,1])

s.value (mite.xy, mite.MEM.axes[,2])

The Rzadj of the MEM and PCNM models are similar (approximately 0.30), but
the PCNM model requires 11 variables to reach this value and is thus less parsimo-
nious than the MEM model. The graphical result (not reproduced here) closely
resembles that of the PCNM analysis, showing that the structures revealed by the
two analyses are the same.

For the sake of comparison with the PCNM variables, one can plot the seven
MEM variables on a map of the sampling area:

¥ Macs oI the 7 significant MEM varianles
# mhmAk kA E A wAk bk bR bk hk ww bk bk bk hkkmw ko wk ok kR

par {mfrow=c{2,4])

for{l ir Z:ncol (MEM.se_ect) )

s.va’ue(nite,xy, MZM.select 2], sub=gzort (MEMid) [i], =osub=2)
}

The MEMs look similar to the PCNMs at first glance, but a closer look shows
that they differ more than one would have expected. Indeed, the two groups of
spatial variables are rather weakly correlated:

¥ Correlation &f the retained M=V and PONM variacle
# __________________________________________________
cor ({MEM, select, PCHM, red)

m
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These MEM results show that the whole process of selecting and fine-tuning a
spatial model, cumbersome as it may seem, can end up with an efficient and parsi-
monious set of spatial variables.

Note also that test .W() searches the best model, including MEMs with posi-
tive and negative spatial correlation. To identify the two groups of eigenfunctions
and, if desired, run separate analyses, one must compute Moran’s [ of the selected
MEMs found in object MEM. select. Another approach could be to compute
Moran’s I of all MEM candidates of the champion model (object MEM.al1l) and
run separate forward selections on MEMs with positive and negative spatial
correlation.

7.4.3.3 Other Types of Connectivity Matrices

In special cases, when one has a specific spatial model in mind, it is useless to go
through the automatic procedure shown above, which finds the best model among
multiple possibilities. The present subsection shows how to construct connectivity
matrices of several types by hand.

Apart from the Delaunay triangulation used in the example above, the package
spdep offers many possibilities for the definition of connectivity matrices. The
ones constructed below and shown in Fig. 7.9 are described in Legendre and
Legendre (1998), Section 13.3. They are presented in decreasing order of connec-
tivity and are nested (i.e. the edges (connexions) of a minimum spanning tree are
all included in the relative neighbourhood graph and so on).

Depending on the context (hypotheses, data), researchers need connecting
schemes that are more or less dense. Some reasons may be technical (e.g. the use
of a minimum spanning tree in the PCNM procedure presented in Sect. 7.4.2).
Ecological reasons include topographical structure of the sampling area (including
possible barriers), dispersion ability of organisms, permeability of some types of
substrates and so on.

# Connectivity metrices in decreasing order of conrectivicy
F De_aunay triangualation {as in the previous example)
mite.del <- triZnbh{mite.xv}

# Gabriel grzph

mite.gab <- graphlZ-b(cacrie_nelch{as.rmatrixz{mite.xy)), syr=TRUE)

# Relative neighoourhood

mite.rzl <- graphZ-b(re ativereioh(zs.matrix{mite.xy)},
syn—TRUZ)

F Minimen spanring tree

mite.msT <- maZ.nbhicisTt(mize.xy})
# All these neighbourhood matrices are stored in objects of
# eclass nb.




7.4 Eigenvector-Based Spatial Variables and Spatial Modelling 273

¥ Flots of the conrectivity matrices

par{mfrow=c{Z,2})

ploz{mize.del, mite.xy, col="red", pch=20, cex=_1)
title(main="Delaunay triarngulaticn ")

plot{mitc.gab, mite.xy, col="purplec"™, pch=20, ccx=1)
title (main="Cabrial ¢rapa")

ploc(mite.rel, mite.xy, col="dark green", pch=20, cex=1)
title (main="Relative reighbourhocd™)

ploz{mize.mst, mite.xy, col="brown", pchk=20, cex=1)
title(main="Mirimam spanning tree')

Delaunay triangulation Gabriel graph
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Fig. 7.9 Four types of connectivity matrices applied to the oribatid mite sampling plot. They are
presented in decreasing order of connectivity. The links in each model are a subset of the links in
the previous one
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Some of these matrices may contain unwanted links (for instance, along the
borders of the areas). These can be edited either interactively or by command
lines:

£ Zink editing
# R o

£ . Inzeractive:
ploz{mize.del, nmite.xy, ccl="red", pch=2C, cex=2)
“itle(main="Dslaunay triangulaticn ™)

mite.oel2 <- edift.zbmite.del,mize.xv)

# To delete a link, click on its two nodes. Follow on-screen

# instructions.

# Wait until you have finisked editing before entering the next
# command line.

¥ 2. Blzernately, links can a.20 be remnoved by command ines,
¥ after heving converied the nk chject into za edifanle matrix:

mite.cel.mat <- nbZmat{nite.de’, stv_e

¥ Remove connsction between cojects 23 ana 30
mitc.ccl.mat[23,35] <- C

mite.del.mat[35,23] <= C

£ Back-cenversion intc nb cizjcot:

mite.c2l3 <- nelgZzb(neig{mattl-rite.cel.maz))

plo-(mite.dell, nite.xvy)

¥ Example: _ist of nelghbours of site 23 for the De_aunay
Triangalation:

mite.asl[  23]] % Before eciting

mite.cel2 [22]] # After interactive editing

mite.cel3 (2311 # After cormrand _lne editing

The following code shows how to construct connectivity matrices based on a
distance: pairs of sites within a given radius are connected, the others not.

£ Toennes Ity matrix based on oa ol e (radius arowna polnzg)
f Tsing the samce truacatiorn distarce cmin as in the BCNM
¥ example: dmir = 1.011287

mite.taresnd <- dnearreigh{as.matrix{mite.xy), C, dmir=4)
~bZ2rat {rite.taresad) [1:20, Z:10] # Display ¢Z some velues
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¥ Using a shorzer distance {(lxdmin, 2*dmin}

mite.thresnl <- dnearreigh{as.mecriximize.xv), 0, dmir=_}
mile.laresnh?2 <- cneasreigh{as.nalrix{mnile.xy}, 0, dnic=2)

f Tsing a longer distance
mite.thresnd <- dnearneigh{as.metrix{nize.xv), 0, dnin=8}

f Plot oI some connectlvity matrices

par{mfrcw=c{_,2}]

plot(mite.threshl, mize,xy, zol="red", pch=20, cex=0.8)
~itle(main="_ * <cmin"™)

ploc(mize.threshs, mize,xy, col="red", pch=20, cex=0.8)
~itle(main="< * <min™)

# The I*dmin version shows one disconnected point (7). To avoid
# such problems, use a slightly larger dmin value. In this case
# 1.0011188 is enough. The 4*dmin version is very crowded. A

# lot of links are possible within a little more than 4 meters

# around each point.

These connectivity matrices belong to class “nb”. To use them further, we need
to convert them into another class called “1istw”. The function doing this conver-
sion is called nb21istw().

In the simplest case, one of the binary matrices above can be directly converted
as follows (including a matrix-class representation of the connectivity matrix for
convenience, using function 1istw2mat () ):

£ Converslon of & "nb" oblject into a "listw" chjscc
£ Example: nite.threshd4 creztec above. "B" 1s Zor "sinary"

mite,thresnd,lw <- nb2listw(mite,Thresnd, soyle="3")
print(listwimas {(nize.-hreshé. _w) [1:1C, 1:207, digios=1l)

This binary (unweighted) matrix could be used directly to create MEM variables
using the function scores.listw(); see below.

Now, if you want to apply weights (matrix A) onto a binary matrix on the basis
of Euclidean distances, you need two additional steps: (1) replace all values “1” in
the connectivity matrix by the corresponding Euclidean distances [function
nbdists ()] and (2) define weights as a function of inverse distances in this
example (weights may be different in other examples):



276 7 Spatial Analysis of Ecological Data

# Cresztion of a spatial weighting mazrix W = Hadamnard product of

¥ Replace "1" by Zuclidear distarces n the conrectivity matzix
mite.threshd.dl <- rhdists{mize.threshs, as.matrixz{mize.xv])

¥ Welgnts zs function of inverse distance
mite..nv.calst <- lapply(mite.,threshd.ol, fuanction{x}) 1-
x/max (dist(nite.xy}})

F Creation of spatial weichting matrixz W. Argument "B" stands

F for "hinazy"™ but corncerrs the links themselves, not their

£ woelgnhis

mite.invdist.lw <- nmbhZlizzw(mite.zhresnd, glist=mize.inv.dist
style="3")

prirt{listwZmat (mite.invdist._w) [1:1C, 1:20], digits=2)

# All nonzero links have been replaced by weights proportional
# to the inverses of the FEuelidean distances between the
# points.

Now, it is time to compute the MEM spatial variables. This can be done by func-
tion scores.listw() of the package spacemakeR. We do it on the weighted
distance matrix created above. The MEMs are then tested for spatial correlation
(Moran’s I).

¥ Computation &f MFM wvariables (from zn okject of clazss listw)

F ___________________________________________________________

mite,invdist,
sunmrary (mite,invalst.MEM)
mite.invdist MEMSvalues

barplot (mite.invalst.MEMS$va_ues)

§ Test of Moran's I of each eigenvector
(rize . MEM.Morar <- ZestT.scores(mite.invdist.MEM,
mite.invdist,lw, $%3))

¥ MEM with significant spatlial corrs_ation
which (mile,MEM,Moran[, 2] <= 0,95)

length (which(mite.MEM,Moran , 2. <= 0.35})

# 31 to 33 MEM variables have significant Moran's I

# coefficients; among these only MEM 1, 2, 3, 4, 5, 6 and 7

# (significance of 6 and 7 depending on the permutation result)
# have positive spatial correlation.
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¥ Szore the MFM wveczors in new oblects
£ Al_ MEM
mite.invdist.MEM.vec <- mite.invdist.MIMNSvectors
¥ MEM with positive spatial oorzelation
KVEM.Moran.pos <- which({mize.MEM.Morzn ,1] > -

1/ (arow(nite.,invdist .MEMSvectors) -1))
mite.invdist . MEM.pos <- mite.invdist . MZIM.veo[,MNEM.Moran.pos)]
$ MEM with positive *and significant~ spatial correlztion
MEM,Mozan.pos,.s g <-

MEM.Moran.pos[which({mite.MEM.Moran MEM.Koran.pes, 2] <= 0.03)]
mite,invdisT MEM.pos.sig <-

mite. nvdist . MZM.vec[,MEM.Moran.pos.sig]

To show that the MEM variables are directly related to Moran’s 7, let us draw a
scatterplot of the MEM eigenvalues and their corresponding Moran’s I:

¥ Flot oI M3IM eigervalues vs Moran's I

ploc(mize.invdist , MEMSvalres, mite MEM,MorarSstat,
vleb="Morar's 1", xlab="Eigenvalues")

text (-1, 0.5, paste("Correlation=", cor(mite.MEM.MoranSstaz,
mite. nvdist . MEMSvalues)))

As in the case of the automatic model selection presented before, these MEM
variables can now be used as explanatory variables in RDA or multiple regression,
in the same way as PCNM variables were.

These are but several examples. We suggest that you explore the manual of the
package spacemakeR, which presents in great detail the use of many options to
construct, present and use various types of connectivity matrices.

7.4.3.4 Controlling for Spatial Correlation Using MEM

Peres-Neto and Legendre (2010) explored the potential use of polynomials and
MEM eigenfunctions to control for spatial correlation in statistical tests. Their main
conclusion is that MEM, but not polynomials, can adequately achieve this goal. They
propose the following procedure: (1) Test for the presence of a spatial structure using
all positive MEM variables. (2) If the global test is significant, proceed to forward-
select MEM variables, but (a novelty) do this individually for each species, and
retain the union of the MEMs selected, i.e. retain all MEMs that have been selected
at least once. (3) Proceed to test the species—environment relationships, controlling
for spatial correlation by placing the retained MEM variables in a matrix of covari-
ables. The authors demonstrate that this procedure yields correct type I error for tests
of significance in linear models, in the presence of spatial correlation.
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7.4.3.5 MEM on Sampling Designs with Nested Spatial Scales

The hierarchical structure of many natural entities (e.g. metapopulations or
metacommunities; landscapes at various scales) sometimes calls for nested sam-
pling designs. An example is found in Declerck et al. (2011), where the authors
studied cladoceran metacommunities in wetland pools found in several valleys of
the High Andes. The authors analysed the metacommunity spatial structure among
and within valleys by means of a two-level spatial model. The among-valley com-
ponent was modelled by a set of dummy variables. For the within-valley component,
where several pools had been sampled in each valley, a set of MEM variables was
computed for each valley. All dummy and MEM variables were assembled into a
single staggered matrix. The MEM variables were arranged in blocks correspond-
ing to each valley. Within each block, all pools belonging to other valleys received
the value 0, in a way similar to the one presented in Appendix C of Legendre et al.
(2010) in the context of space—time analysis. Declerck et al. (2011) provide a func-
tion called create.MEM.model () to construct the staggered spatial matrix
from a set of Cartesian coordinates and information about the number of groups and
number of sites per group. That function is also available in the electronic material
accompanying this book (see Chap. 1).

7.4.4 MEM with Positive or Negative Spatial Correlation:
Which Ones Should Be Used?

In the course of the examples above, PCNM and MEM eigenfunctions have been
produced, some with positive and some with negative spatial correlation. The ques-
tion therefore arises: should one use all the (significant) eigenfunctions as explana-
tory variables in the following regression or canonical analyses, or only those that
model positive spatial correlation?

There is no single answer to this question. Ecologically speaking, one is generally
more interested in features that are positively correlated at various ranges, simply
because they are the signature of contagious processes that are frequent in nature.
On the other hand, our experience shows that with real data the significant and nega-
tively correlated variables are either related to very local, almost “accidental” data
structures, or they belong to the pure spatial fraction of variation in partitioning, i.e.
they correspond to biotic interactions. If these are of interest, then all eigenfunctions
should be considered in the analyses.

The original PCNM procedure generates a maximum of 2n/3 eigenfunctions
(n=number of sites), with roughly the first n/2 modelling positive spatial correla-
tion, so a forward selection procedure including all variables can be conducted with
the Blanchet et al. (2008a) double stopping criterion, which involves the computation
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of the R?, o Of the global analysis. In the generalized MEM framework, this is not
possible because this method produces n—1 spatial variables, which saturate the
regression model if they are all considered together. This is why Blanchet et al.
proposed to run separate selections on the MEM with positive and negative eigen-
values (usually, the first and the second half of the eigenfunctions), and then apply
the Sidak (1967) correction to the probability values: P =1~-(1-P)" where P is the
p value to be corrected and k is the number of tests (here k=2).

7.4.5 Asymmetric Eigenvector Maps: When Directionality
Matters

7.4.5.1 Introduction

The PCNM and MEM analyses presented above are designed for situations where
the physical processes generating the response structures (e.g. in communities) do
not present any directionality. In other words, the influence of any given point on
its surroundings does not depend on the direction.

There are other situations, however, where directionality matters. The most
obvious one is the cases of streams or rivers. Consider community effects driven by
current: the physical process is geographically asymmetrical, the influence of a site
onto another following an upstream—downstream direction. Colonization of the
stream network by fish from the river mouth represents a different process, which
follows the opposite direction. PCNM or MEM variables are computed on distance
or connectivity matrices, where no directionality is specified. Therefore, informa-
tion about directionality is lost and the modelling, although adequate to reveal
major spatial structures, does not exploit all the potential of directional data. Trends
do not have to be extracted from the data prior to asymmetric eigenvector maps
(AEM) analysis because directional processes are expected to produce trends in the
response data; so, a trend is a part of the response data that one wants to model in
AEM analysis.

This is the reason why Blanchet et al. (2008b) developed the AEM modelling
method. AEM is an eigenfunction-based technique that uses information about the
direction of the physical process, plus the same information as MEM (spatial coor-
dinates of sites, connexion diagram, optional weights) if needed. It works best on
tree-like structures like river networks or on two-dimensional sampling designs like
series of cross-river traps or sampling sites located in a large river or marine cur-
rent. Depending on the process under study, the origin(s) or root(s) in a river net-
work may be located upstream (e.g. flow of dissolved chemical substances,
plankton dispersal) or downstream (fish invasion routes).
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For spatial transects or time series, AEM and MEM regression and canonical
models are very similar, and in most cases they explain the response data with simi-
lar (although not strictly equal) R*. The AEM eigenfunctions are cosine-like, just
like MEM eigenfunctions, although the AEMs have longer wavelengths than
MEMs along transects. If the n observations are regularly spaced along the transect
and the sampling interval is s, the wavelength A, of the AEM with rank i is A, =2ns/i.
AEM analysis should be preferred when modelling gradients and other spatial
structures generated by directional physical processes.

AEM analysis was devised for cases where physical forces drive the communi-
ties in such a way that the causal relationships are directional. This is not the same
as a simple ecological gradient, where an ecological factor is spatially structured
but the communities can still interact in any direction. In the latter case, PCNM and
MEM modelling are appropriate.

7.4.5.2 Principle of the Method

The basic piece of information needed is a table, where each site is described by
the connexions (hereafter called “edges”, following graph-theory vocabulary) that
it has with other sites located in the direction of the root(s) or origin(s) of the direc-
tional structure. The result is a rectangular sites-by-edges table E, where the
sequence of edges connecting each site to the “root” of the network receive code
“1” and the others get code “0”.

Legendre and Legendre (1998, Section 1.5.7) give an example for fish dispersal
from the river mouth in a group of lakes interconnected by a river arborescence. In
other cases, for instance a two-dimensional grid consisting of rows of sampling
devices placed across a large river or a marine current at regular or irregular inter-
vals, each sampling point may influence (and hence be connected to) the one
directly downstream of it, plus the two adjacent to the latter. If the process is
assumed to originate upstream, an imaginary point “0” is created upstream of the
sampling area, representing the root of the process, with connexions to each of the
points in the first row of sites. All edges present in the network are numbered. In
table E, the rows (i) are the sites and the columns (j) are the edges. The construction
rule for AEM is that E(i,j)=1 for all edges j connecting site i to the root (or site 0)
of the graph; otherwise, E(i,j)=0.

The edges (columns) of table E may be weighted if deemed necessary, e.g. if the
transmission of the directional effects are supposed to be easier through some paths
than others.

The next step consists in transforming table E into eigenfunctions. This can
be done in different ways, but the simplest is to compute a PCA of table E and use
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the matrix of principal components as explanatory variables. The AEM method
produces n—1 eigenvectors with positive eigenvalues and none with negative eigen-
values. The corresponding eigenfunctions, however, are also divided in two groups
depicting positive or negative spatial correlation so that the selection of significant
variables must also be run separately for these two groups, in the same way as for
MEM variables.

A more detailed explanation about AEM construction is provided by Blanchet
et al. (2008b). The authors address the various issues related to edge definition and
weighting, which can greatly influence the results of AEM analysis. Blanchet et al.
(2011) present three applications to real ecological data.

As a first example, let us construct a fictitious set of AEM variables based on the
river arborescence shown by Legendre and Legendre (1998, Section 1.5.7). This
example shows how to construct AEM variables in the simplest case, when one can
easily produce a matrix of edges by hand. The construction is done by function
aem () of the package AEM.

¥ AFM ara’ vysis
# EmAEEEE A AL

¥ Coding of & river arborescence.
¥ See Legendre and Legendre {(19%8, p. 47).
lak=l <- c(1,0,1,1,C,0,0,0)

- «(1,0,1,0,C,0,0,0

( )
lake3 <- ¢(1,1,C,0,0,0,0,0)
laked <- <{C,0,C,0,1,0,°,1})
lake:z <- <(C,0,0,0,0,1,2,1)
laked <- c{(C,0,0,0,0,0,0,1})
arpcr <- rhind{_akel, _zke2, _ake3, _zked, lzkez, lake&)

£ AFM ccnstruczion
(arbor.aen <- aen(biarary.ral-arbor))
aroor.aer.vec <- arbor.zsrivectors

£ BFM cigenfunctions can alsce be obtained directly by singular
¥ va'ue deconpcositicon {(furction svd()), which i= what the

¥ functicn acm{} docs:

arscr.c = scale{zrbox, certer=TRUE, scale=FAIIE)

aroccr.svd — svd{zrbor.c)

£ Singular valves oI The previous construction
arcer.svdsd "5

¥ BRFM clgenfuanctions of the preovious cornstriction

arocr.svdsa ,1:3
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Let us now construct AEM variables in a case where the number of data points
and edges is too large to allow the use of the simple procedure presented above. The
sampling design consists of ten cross-river transects with four traps per transect,
and the edges are weighted proportional to inverse squared distance (Fig. 7.10). The
procedure involves function cell2nb () of the package spdep to construct a list
of neighbours from a grid of predefined dimensions.

¥ Cocding of sampling design: 13 cross-river trarsectcs, 4 traps
¥ ver transect. Edeges weighted proporticnal to inverse squared

¥ distarce.

¥ X-Y coordinates

xy “— chbind({l:4C, cxpanc.grid(l:4, Z:12}))

£ Ob-Zect of class b (spdep) containing _inxs oI
£ "queer_"

rh <- cel_Zabi{4, 10, "gueen'}

chess type

f Site-by-edges matrix (procices a fictiticus cbject "C™)
edge.mal. <- buila.binarvyi(ab, xvy)

# Matriz of Euslidean distances
Dl.wat <- as.matriz{dist{=zvy]}

¥ Fxtract the edges, remove The cnes directly linked Zo site 0
aedges.b <- edge.matdedges[-1:-4,]

¥ Construct & vector givirg the length cf sach edge
length.edge <- wvector{_encth=nrow{edges.b)}
for{i ir Z:inrow(edges.k)){

lengzh.edgse[i] <- Dl.matl[edges.bli, 1], edges.bli,2]]
I

£ Weigniing of coges bascd on iaversce squerco distance
welght . vec <- 1-(lergth.edge/max(length, adge)) "2

¥ Construction of AEM elgerfurctions IZrom edge.mrat,

¥ of class build.binary

exarple.hEM <- aem(build.binarvy=edge.mat, weicght=weight.wvec,
m. 1inkU="3UE}

aexarple. . AEMIvalues

ex,AEM,vec <- sxanple,AEMSvectors
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Fig. 7.10 Fictitious directional sampling design for AEM analysis: ten rows of four capture
devices along a stream. A site “0” has been added upstream (bottom of the figure) to set the direc-
tion of the flow

Let us now construct a set of five fictitious species observed at these 40 sites:

¥ Censtruction of 5 fictiticus species

f Two randonly distributed species
spl2 <- matrix{trunc(rnorm{80, 4, 23y, 0}, 40)
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¥ Ore species restrictec to “he upper nalf oI The stream
spd <= of{trunc{rnorm(2C¢, 2, 2.5), 0}, zep(d, 20))

£ Ore species restricted <o The left-hand nalf o the Zransect
spld <— T{matrixz{c(zrurc(rrorm(2d, 8, 3y, 0y, zec(0d, 2073, 10}
5pt <— cspdl,1, spd(,2], spdl,3 , spdl.<], spel,5 , spdl, o],
spil, 7], spdl,8 . spdl, 2], =spdl,1C7)

¥ Ore species restriciea zo the 4 upper _eft-narc sites
5 -

ps <- o, 7, U, O, 3, 8, reo(y, 34))

sp <— chind{spl?2, sp3, spd, soi}

We are ready to proceed with the AEM analysis, using the first half (20, with
positive spatial correlation) of the AEM variables generated earlier. Note that four
out of five species have a random component, so the actual result of the following
AEM analysis will vary from run to run.

# Global AEM ara_vysis with 20 first REM verisbles (Zor
# congutation of R2a)

# R R R R R R R R R R R R R R T L L S R L R
AEM.20 <- rdalsp ~ ., as.dala.lramne(ex.AEM.vec[,1:207 )}
=2a.AEM <- Rsguarehc] (AEM.Z0)Sac]i.r.scgaarec

AFEM, ZIwd <— Zorward.scl(sp,cx.B2EM.vco, ad’RZthrcsh-3Za.AEM)
{(BFM.sign <- scrf (ARM.Twdl, 211
F Write significznz ACM ir &2 new acject
AEM.sign.vec <- ex.ASM.vec|[,c(AIM.=ign)]
(go.AlMsign.rda <—- rdai{sp ~ .,
dala=as,.dala, [rane(AZM.sigr,vex))) # ROA wilh s’ gnil, AEM
anova.cca (sp.AEM=2ign. rda)
AEM.rca.axes.test <- arova.cca(sp.BAEMsicrn.rda, by="axis™)
§# Nunoesr of significant axes
(no.ax,ARM <= leng.h (which (AREM, »da.axes,.tes-[,5. <= 2.05)))

£ Plot of the significant caronical axes

AEM.rca.axes <- scores.ccaf({sp.hAEMsZgrn.rda, cholces=c(l,2}),
display-"_c", scal-ng-1)

par{mfrow—c{_, noc.ax.AEM))

for(: i= “ao.ax . A7M) s.valuei(xv[,c(2,3)], ALM.rda.axes[,1)

In most of the runs, this small example shows that AEM analysis reveals the
patterns formed by the species present only in the upper half of the stream, as well
as the left-right contrast created by the species present only in the left-hand part of
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the stream. The pattern of the more restricted species # 5 is less obvious. A PCNM
analysis (not shown here) reveals less of the structure and has a lower R2adj . This
stresses the importance of modelling directional processes adequately.

7.5 Another Way to Look at Spatial Structures:
Multiscale Ordination

7.5.1 Principle

Wagner (2003, 2004) took an entirely different path towards integration of spatial
information into canonical ordination. Under the well-known argument that auto-
correlated residuals can alter the results of statistical tests, she introduced geostatis-
tical methods to devise diagnostic tools allowing the partitioning of ordination
results into distance classes, the distinction between induced spatial dependence
and spatial autocorrelation, and the use of variograms to check important assump-
tions, such as independence of residuals and stationarity. The principle of multi-
scale ordination (MSO) is the following®:

* Analyse the species by RDA. The explanatory variables can be of any kind
(environmental, spatial, ...). This provides the matrix of fitted values and its
eigenvectors, as well as the matrix of residuals and its eigenvectors.

* By way of a variogram matrix computed for the fitted values, obtain the spatial
variance profiles of the canonical ordination axes (see below).

* By way of a variogram matrix computed for the residuals, obtain the spatial
variance profiles of the residual ordination axes.

* Plot the variograms of the explained and residual variances. Permutation tests
may be used to identify significant spatial correlation in the distance classes.

A variogram matrix is a three-dimensional array containing a separate variance—
covariance matrix for each distance class (Wagner, 2003, Fig. 2). The diagonal of
each matrix quantifies the contribution of the corresponding distance class to the
variance of the data. MSO computes a variogram matrix on the fitted values of a
constrained ordination, thereby allowing its spatial decomposition. Multiplying this
variogram matrix with the matrix of constrained eigenvectors provides the spatial
decomposition of each eigenvalue (variance profiles). The same holds for the
residuals.

3Wagner (2004) describes the method for CCA, but the principle is the same for RDA.
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7.5.2 Application to the Mite Data: Exploratory Approach

Let us use the oribatid mite data as an example. Wagner (2004) also used these data,
but in a CCA context so that the results will differ. MSO can be computed using
functionmso () of the package vegan. This function uses a result object produced
by functions cca () or rda (), plus the table of geographical coordinates and a
value for the interval size (argument “grain”) of the distance classes of the vario-
grams. The first example applies MCO in the exploratory way proposed by Wagner.
An MSO plot of direct ordination can show whether the spatial structure in the
response data can be explained by the explanatory (environmental) variables alone.
In such a case, no detrending is necessary (H. Wagner, pers. comm.), but the confi-
dence interval of the variogram is indicative only, since a variogram should be
computed on stationary data.

Hereunder, MSO is run using the RDA result of the Hellinger-transformed
oribatid mite data explained by the environmental variables. The “grain” of the
variogram (size of a distance class) is chosen to be the truncation threshold used in
the PCNM analysis, 1.011187.

f Mizltiscale crdinaticon (M30)
# mhm ok h ok w A w ok bk b wox Ak ko ok ok kb

£ MSO of the undetrended mite cata ws envizcoment RDIA
b oo
mite.undet.env.raa <- raa(mize.nn, nite.envi)

mite.env.rda.mso <- msol{mite.undet.env.>da, mite.xy, grsir=cmin,
perm=9929}

msoplot (rite.env.sda.mso, alpha=0.05/7)

mite.env.rda.mso

The resulting plot (Fig. 7.11) provides several informations. In the upper part of
the diagram, the dashed line with the crosses represents the sum of the explained
and residual empirical variograms. The continuous lines represent the confidence
envelopes of the variogram of the data matrix. The monotonic increase of the
dashed line is the signature of the strong linear gradient present in the data. Note,
however, that the variogram of the residuals (bottom of the graph) shows no dis-
tance class with significant spatial correlation (after a global Bonferroni correction
for seven simultaneous tests: rejection threshold divided by the number of classes),
and that variogram is essentially flat. This means that the broad-scale linear gradi-
ent is well explained by the environmental variables.
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Fig. 7.11 Plot of the MSO of a RDA of the Hellinger-transformed oribatid mite data explained
by the environmental variables. Explanations: see text

However, an intriguing feature appears. When the species—environment
correlations do not vary with scale, the dashed line remains within the boundaries
of the confidence envelopes. This is not the case here (see classes 1, 2 and 5),
suggesting that it is not appropriate to run a non-spatial, global species—environment
analysis with the implicit assumption that the relationships are scale-invariant. On
the contrary, we can expect the regression parameters to vary with scale, so that a
global estimation is meaningless unless one controls for the regional scale spatial
structure causing the problem.

As an attempt in this direction, let us run an MSO on a partial RDA of the mite
species explained by the environment, controlling for the spatial structure, here
represented by the seven MEM variables of our best model.
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£ MSO of the undetrended mite data vs envircoment RDA,

£ centzolling for MEM

gy

mite.undet.env , MEM <- rda{mite.n, nite,env2,

az.data.Zrame (MEM. select)}

mite.env.MEM.mso <- msc{miZe.unde-.env.MEM, mite.xy, c¢ralin=dmin,
perm=9%9}

msoplot (mite.env.MEM.mso, a_pha=0.35/7)

mite.env.MEM.mso
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Fig. 7.12 Plot of the MSO of a RDA of the Hellinger-transformed oribatid mite data explained
by the environmental variables, controlling for spatial structure (seven MEM variables)

Figure 7.12 shows that the problem of scale-dependence in the model has been
properly addressed. There is no spatial correlation in the residuals, and the vario-
gram of the residual species—environment relationship (after taking the MEM
spatial structure into account) stays within the confidence interval across all scales.
Furthermore, the MEM variables have also removed the major gradient from the
data, resulting in a globally flat empirical variogram. The console message stating
that the “Error variance of regression model [is] underestimated by -Inf percent”
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actually refers to the difference between the total residual variance and the sill of
the residual variance. When the value is negative (and extreme in this case), the
absence of significant autocorrelation causes an underestimation of the global error
value of the regressions. A positive value (e.g. 10%), which could occur if the
residuals were significantly autocorrelated, would act as a warning that the condi-
tion of independent residuals is violated, thereby invalidating the statistical tests
(see Sect. 7.2.2).

7.5.3 Application to the Detrended Mite
and Environmental Data

Let us apply an MSO analysis on detrended data, as an effort to meet the conditions
of application of the calculation of the variogram confidence intervals. We know
from Sect. 7.4.2.5 that there is a significant spatial structure only in the Y direction.
We shall therefore detrend the mite and environmental data on the Y coordinate
before running the RDA.

£ MSO on cestrended mize ard environmenta_ data

¥ Detrerd mite data or ¥V zoordinate
mite.h.det? <- resid(lmf{as.matrixi{mize.k) ~ mize.xzv 2 1}

¥ Detrerd savironmental data on ¥ coordinzte
envZ.oe:t <- reslda(lm{as.matrix(mite.env?) ~ mite.zy ,2_))

# RDAE ard M:SO

mitedet.envdet. . roa <- roa{mize.n.det?, envi.asl)

miteenvdet.rca.mse <- nso{mliece-.envae-.rda, mite.xy,
grain=dmin, operm=%99)

msop_ot (miteenvdet.rda.msc, a_paa=J3.Ch/7)

mileenvdel.roa. nso

The result (Fig. 7.13) tells us a similar story, less the broad-scale gradient which
has been removed prior to the analysis by detrending. The residual variance shows
no spatial correlation, and the second, fourth and fifth class of the variogram of
explained plus residual data fall outside the confidence interval. So the overall
variogram shows no trend, but some regional spatial variance is present. Can the
MEM control successfully for this spatial variance?
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Fig. 7.13 Plot of the MSO of a RDA of the Hellinger-transformed and detrended oribatid mite
data explained by the detrended environmental variables. Explanations: see text

£ MSO of the detrended mi-e data vs environment RDA, contro_ling
¥ [for MEM
oo o e

mite.det.env.MEM <- rda({mize.h.dec?2, envZ.det,

as.data.Zrame {MEM.select)}

mite.env.MEM. mso <- msc(mite.det.env M3V, mite.xy, graln=dmin,
parm=599)

maoplot (mite.env.MEM.mso, a_phz=0.05/7)

mite.env.MEM.mso
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Fig. 7.14 Plot of the MSO of a RDA of the Hellinger-transformed and detrended oribatid mite
data explained by the detrended environmental variables, controlling for spatial structure (seven
MEM variables). Further explanations: see text

The answer is “yes” (Fig. 7.14). As in the undetrended example, one can see no
spatial variance in the residuals or in the data. Compare with Fig. 7.12: the vario-
grams are very similar (although the default graphical output provides a different
ordinate scale). The MEM variables have successfully controlled for the spatial
variance unexplained by the environmental data.

This example shows the potential of combining multivariate geostatistical meth-
ods with canonical ordination when the aim of the study is to test for and model
species—environment relationships while discriminating between the two major
sources of concern related to spatial structures: spatial dependence (7.1) and spatial
autocorrelation (7.2). Some aspects of this approach remain to be explored, how-
ever. Wagner (2004) notes “an important discrepancy between the results presented
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here and those by Borcard et al. (1992). Borcard found that 12.2% of the total iner-
tia was spatially structured but could not be explained by the environmental vari-
ables. In the spatial partitioning of CCA results by multi-scale ordination (MSO),
however, spatial autocorrelation appeared to be limited to distances smaller than
0.75 m, and there was no evidence of any cyclic pattern that could account for such
a large portion of inertia. The large portion of nonenvironmental spatial structure
identified by Borcard et al. (1992) may partly be due to a confounding of the effects
of space and environment (Méot et al. 1998)”. Arguing from an opposite point of
view, we believe that the pure spatial structures revealed by canonical ordination
(and especially in the PCNM and MEM framework which would give an even
larger pure spatial fraction) are real and not due to confounding effects. In the latter
case, they would have shown up in the common fraction of variation, not the pure
spatial fraction. The question is rather: why did the MSO not reveal these struc-
tures? This may be due to the fact that no formal way of quantifying variance
components in MSO has been devised as yet (H. Wagner, pers. comm.). However,
this does by no means invalidate the MSO approach which, combined with the
powerful tools developed in this chapter, increases our control over the complex
process of extracting meaningful spatial information from ecological data.

7.6 Conclusion

Spatial analysis of ecological data has undergone huge developments during the last
three decades. The paradigm shift announced by Legendre (1993) has been accom-
panied by an increasing awareness, not only of the importance of spatial structures
per se, but also of the need for refined modelling tools to identify, represent and
explain the complex structures by which ecological interactions manifest them-
selves in living communities. While an entire family of techniques aimed at predic-
tion and mapping has been developed in the field of geostatistics and some of them
can be applied to ecological problems, the specific questions and data in ecology
demanded other approaches more directly related to the multivariate structure of
communities and their relationship to the environment. We have presented the most
important among them in this chapter, encouraging readers to apply them to their
own data in a creative way. The multiscale nature of ecological problems can now
be addressed in a much deeper way than before, and the authors of the methods are
themselves constantly surprised at the range of applications ecologists make of
their statistical offsprings. Many more developments will certainly be made in the
forthcoming years, and we wish to conclude by inviting the readers to participate
in this effort, both by asking new and challenging ecological questions and by
devoting themselves to the exciting task of methodological development.
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