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Preface

Ecology is sexy. Teaching ecology is therefore the art of presenting a fascinating 
topic to well-predisposed audiences. It is not easy: the complexities of modern 
ecological science go well beyond the introductory chapters taught in high schools 
or the marvellous movies about ecosystems presented on TV. But well-predisposed 
audiences are ready to make the effort. Numerical ecology is another story. For 
some unclear reasons, a majority of ecology-oriented people are strangely reluctant 
when it comes to quantifying nature and using mathematical tools to help under-
stand it. As if nature was inherently non-mathematical, which it is certainly not: 
mathematics is the common language of all sciences. Teachers of biostatistics and 
numerical ecology thus have to overcome this reluctance: before even beginning to 
teach the subject itself, they must convince their audience of the interest and 
 necessity of it.

During many decades, ecologists, be they students or researchers (in the 
 academic, private or government spheres), used to plan their research and collect 
data with few, if any, statistical consideration, and then entrusted the “statistical” 
analyses of their results to a person hired especially for that purpose. That person 
may well have been a competent statistician, and indeed in many cases, the progres-
sive integration of statistics into the whole process of ecological research was trig-
gered by such people. In other cases, however, the end product was a large amount 
of data summarized using a handful of basic statistics and tests of significance that 
were far from revealing all the richness of the structures hidden in the data tables. 
The separation of the ecological and statistical worlds presented many problems. 
The most important were that the ecologists were unaware of the array of methods 
available at the time, and the statisticians were unaware of the ecological hypoth-
eses to be tested and the specific requirements of ecological data (the double-zero 
problem is a good example). Apart from preventing the data to be exploited prop-
erly, this double unawareness prevented the development of methods specifically 
tailored to ecological problems.

The answer to this situation is to form mathematically inclined ecologists. 
Fortunately, more and more such people have appeared during the past four 
decades. The result of their work is a huge development of statistical ecology, the 
availability of several excellent textbooks and the increasing awareness of the 
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responsibility of ecologists with regard to the proper design and analysis of their 
research. This awareness makes the task easier for teachers as well.

Until relatively recently, however, a critical ingredient was still missing for the 
teaching to be efficient and for the practice of statistics to become generalized 
among ecologists: a set of standard packages available to everyone, everywhere. 
A biostatistics or numerical ecology course means nothing without practical exer-
cises. A course linked to a commercial software is much better, but it is bound to 
restrict future applications if the researcher moves and loses access to the software 
that he or she knows. Furthermore, commercial packages are in most cases written 
for larger audiences than the community of ecologists and they may not include all 
the functions required for analysing ecological data. The R language resolved that 
issue, thanks to the dedication of the many researchers who created and freely 
 contributed extensive, well-designed and well-documented packages. Now, the 
teacher no longer has to say: “this is the way PCA works… on paper”; she or he 
can say instead: “this is the way PCA works, now I show you on-screen how to run 
one, and in a few minutes you will be able to run your own, and do it anywhere in 
the world on your own data!”.

Another fundamental property of the R language is that it is meant as a self-
learning environment. A book on R is therefore bound to follow that philosophy, 
and must provide the support necessary for anyone wishing to explore the subject 
by himself or herself. This book has been written to provide a bridge between the 
theory and practice of numerical ecology that anyone can cross. Our dearest hope 
is that it will make many happy teachers and happy ecologists.

Montréal, QC Daniel Borcard 
Besançon, France  François Gillet  
Montréal, QC Pierre Legendre 
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1.1  Why Numerical Ecology?

Although multivariate analysis of ecological data already existed and was being 
actively developed in the 1960s, it really flourished in the years 1970 and later. 
Many textbooks were published during these years; among them were the seminal 
Écologie numérique (Legendre and Legendre 1979) and its English translation 
Numerical Ecology (Legendre and Legendre 1983). The authors of these books 
unified, under one single roof, a very wide array of statistical and other numerical 
techniques and presented them in a comprehensive way, not only to help researchers 
understand the available methods of analyses, but also to explain how to choose and 
apply them in an ordered, logical way to reach their research goals. Mathematical 
explanations are not absent from these books, and they provide a precious insider 
look into the various techniques, which is appealing to readers wishing to go 
beyond the simple user level.

Since then, numerical ecology has become ubiquitous. Every serious researcher 
or practitioner has become aware of the tremendous interest of exploiting the pain-
fully acquired data as efficiently as possible. Other manuals have been published 
(e.g. Orlóci and Kenkel 1985; Jongman et al. 1995; McCune and Grace 2002; 
McGarigal et al. 2000; Zuur et al. 2007). A second English edition of Numerical 
Ecology was published in 1998, broadening the perspective and introducing numerous 
methods that were unavailable at the time of the previous editions. The progress 
continues, and since 1998, many important breakthroughs have occurred. In the 
present book, we present some of these developments that we consider most impor-
tant, albeit in a more user-oriented way than in the above mentioned manuals, using 
the R language. For the most recent methods, we provide explanations at a more 
fundamental level when we consider it appropriate and helpful.

Not all existing methods of data analysis are addressed in the book, of course. 
Apart from the most widely used and fruitful methods, our choices are based on our 
own experience as quantitative community ecologists. However, small sections 
have sometimes been added to briefly describe other avenues than the main ones, 
without going into details.

Chapter 1
Introduction
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1.2  Why R?

The R language has experienced such a tremendous development and reached such 
a wide array of users during the recent years that a justification of its application to 
numerical ecology is not required. Development also means that more and more 
domains of numerical ecology are now covered, up to the point where, computa-
tionally speaking, some of the most recent methods are actually only available 
through R packages.

This book is not intended as a primer in R, however. To find that kind of support, 
readers should consult the CRAN Web page (http://www.R-project.org). The link 
to Manuals provides many free electronic documents and the link to Books many 
references. Readers are expected to have a minimal working knowledge of the 
basics of the language, e.g. formatting data and importing them into R, awareness 
of the main classes of objects handled in this environment (vectors, matrices, data 
frames and factors), as well as the basic syntax necessary to manipulate, create, and 
otherwise use objects within R. Nevertheless, Chap. 2 starts at an elementary level 
as far as multivariate objects are concerned, since these are the main targets of most 
analyses addressed throughout the book, while not necessarily being most familiar 
to many users.

The book is by far not exhaustive as to the array of functions devoted to any of 
the methods. Usually, we present one or several variants, but often other functions 
are available in R. Centring the book on a small number of well-integrated pack-
ages and adding some functions of our own, when necessary, helps users up the 
learning curve while keeping the amount of package-level idiosyncrasies at a 
reasonable level. Our choices do not imply that other existing packages are inferior 
to the ones used in the book.

1.3  Readership and Structure of the Book

The intended audience of this book is the researchers, practitioners, graduate 
students and teachers who already have a background in general and multivariate 
statistics and wish to apply their knowledge to their data using the R language, as 
well as people willing to accompany their learning of the discipline with practical 
applications. Although an important part of this book follows the organization and 
symbolism of Legendre and Legendre (1998) and many references to that book are 
made herein, readers may draw their training from other sources without problem.

Combining an application-oriented book such as this one with a detailed exposé 
of the methods used in numerical ecology would have led to an impossibly long and 
cumbersome opus. However, all chapters start with a short introduction summarizing 
its subject matter, to ensure that readers are aware of the scope of the chapter and 
can appreciate the point of view from which the methods are addressed. Depending 
on the amount of documentation already existing in statistical textbooks, some 
introductions are longer than others.



31.4 How to Use This Book

Overall, the book guides readers through an applied exploration of the major 
methods of multivariate data analysis, as seen through the eye of an ecologist. 
Starting with some exploratory approaches (Chap. 2), it proceeds logically with the 
construction of the key building blocks of most techniques, i.e. association measures 
and matrices (Chap. 3), and then submits example data to three families of approaches: 
clustering (Chap. 4), ordination and canonical ordination (Chaps. 5 and 6), and finally 
spatial analysis (Chap. 7). The aims of methods thus range from descriptive to 
explanatory and to predictive and encompass a wide variety of approaches that should 
provide readers with an extensive toolbox that can address a wide palette of questions 
arising in contemporary multivariate ecological analysis.

1.4  How to Use This Book

The book is meant as a companion when working at the computer. The authors 
pictured a reader studying a chapter by reading the text and simultaneously executing 
the code. To fully understand the various methods, it is preferable to go through the 
chapters sequentially, since each builds upon the previous ones. At the beginning of 
each chapter, an empty R console is assumed to be open. All the necessary data files, 
the scripts used in the chapters, as well as the R functions and packages that are not 
available through the CRAN Web site, can be downloaded from a Web page acces-
sible through the Springer Web site (http://www.springer.com/978-1-4419-7975-9). 
Some of the homemade functions duplicate existing ones, providing alternative solu-
tions (for instance, different or expanded graphical outputs), while others have been 
written to streamline complex sequences of operations.

Although the code provided can be run in one single copy-and-paste shot within 
each chapter (with some rare exceptions for interactive functions), the best proce-
dure is to proceed through the code slowly and explore each set of commands 
carefully. Although the use and meaning of some arguments is explained within 
the code or in the text, readers are warmly invited to use and abuse of the R help 
files (function name following a question mark) to learn about and explore the 
various options available. Our aim is not to describe all options of all functions, 
which would be an impossible and useless task. We are confident that an avid user, 
willing to go beyond the provided examples, will be kept busy for months exploring 
the options that he or she deems the most interesting.

Within each chapter, after the introduction, readers are invited to import the data 
for the exercises, as well as the R packages necessary for the whole chapter. The 
R code used in each chapter is self-contained, i.e. it can be run in one step without 
resorting to intermediate results produced in previous chapters. If such objects are 
needed, they are recomputed at the beginning of the chapter.

In everyday use, one generally does not produce an R object for every single 
operation, nor does one create and name a new graphical window for every plot. We 
do that in the R scripts to provide readers with all the entities necessary to backtrack 
the procedures, compare results and explore variants. Therefore, after having run 
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most of the code in a chapter, if one decides to explore another path using some 
intermediate result, the corresponding object will be available without the need to 
recompute it. This is particularly handy for results of computer-intensive methods 
(like some based on large numbers of random permutations), especially if one uses 
a relatively slow computer.

In the code sections of the book, all calls to graphical windows have been deleted 
for brevity. They are found in the electronic code scripts, however. Furthermore, the 
book shows several, but not all, graphical outputs for reference. They are printed 
in grey scale, although some are in colour when produced by R. This is an incentive 
for readers to be active users of the book and of its code.

Sometimes, readers are made aware of some special features of the code or of 
tricks used to obtain particular results, by means of hint boxes located at the bottom 
of code sections.

Although many methods are applied to the example data, ecological interpreta-
tions is not provided in all cases. Sometimes, questions are left open to readers, as 
an incentive to verify if she or he has correctly understood the method, and hence 
its application and the numerical or graphical outputs.

Lastly, for some methods programming-oriented readers are invited to write 
their own code. These incentives are placed in boxes called “code-it-yourself 
corners”. When examples are readily written, they are meant for pedagogical 
purposes and do not pretend at computational efficiency. The aim of these boxes is 
to help interested readers code the matrix algebra equations presented in Legendre 
and Legendre (1998) into R and obtain the main outputs that ready-made packages 
provide. The whole idea is, of course, to reach the deepest possible understanding 
of the mathematical working of some key methods.

1.5  The Data Sets

Apart from rare cases where ad hoc fictitious data are built for special purposes, the 
applications rely on two main data sets that are readily available in R. However, 
data provided in R packages can change over the years. Therefore, we prefer to 
provide them also in the electronic material accompanying this book because this 
ensures that the results obtained by the readers are exactly the same as those 
presented in the book. The two data sets are briefly presented here. The first 
(Doubs) data set is explored in more detail in Chap. 2, and readers are encouraged 
to apply the same exploratory methods to the second one.

1.5.1  The Doubs Fish Data

In an important doctoral thesis, Verneaux (1973; see also Verneaux et al. 2003) 
proposed to use fish species to characterize ecological zones along European rivers 
and streams. He showed that fish communities were good biological indicators of 
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these water bodies. Starting from the source, Verneaux proposed a typology in four 
zones, and he named each one after a characteristic species: the trout zone (from 
the brown trout Salmo trutta fario), the grayling zone (from Thymallus thymallus), 
the barbel zone (from Barbus barbus) and the bream zone (from the common bream 
Abramis brama). The two upper zones are considered as the “Salmonid region” and 
the two lowermost ones constitute the “Cyprinid region”. The corresponding 
ecological conditions, with much variation among rivers, range from relatively 
pristine, well oxygenated and oligotrophic to eutrophic and oxygen-deprived waters.

The Doubs data set that is used in the present book consists of three matrices 
containing part of the data used by Verneaux for his studies. These data have been 
collected at 30 sites along the Doubs River, which runs near the France–Switzerland 
border in the Jura Mountains. The first matrix contains coded abundances of  
27 fish species, the second matrix contains 11 environmental variables related to 
the hydrology, geomorphology and chemistry of the river, and the third matrix 
contains the geographical coordinates (Cartesian, X and Y ) of the sites. These data 
have already served as test cases in the development of numerical techniques 
(Chessel et al. 1994).

Working with the environmental data available in the R package ade4 (at the 
time of this writing, i.e. ade4 version 1.4-14), we corrected a mistake in the das 
variable and restored the variables to their original units, which are presented in 
Table 1.1.

1.5.2  The Oribatid Mite Data

Oribatid mites (Acari: Oribatida) are a very diversified group of small (0.2–1.2 mm) 
soil-dwelling, mostly microphytophagous and detritivorous arthropods. A well-
aerated soil or a complex substrate like Sphagnum mosses present in bogs and wet 
forests can harbour up to several hundred thousand (105) individuals per square 

Table 1.1 Environmental variables of the Doubs data set used  
in this book and their units

Variable Code Units

Distance from source das km
Altitude alt m a.s.l.
Slope pen ‰
Mean minimum discharge deb m3 s−1

pH of water pH –
Calcium concentration (hardness) dur mg L−1

Phosphate concentration pho mg L−1

Nitrate concentration nit mg L−1

Ammonium concentration amm mg L−1

Dissolved oxygen oxy mg L−1

Biological oxygen demand dbo mg L−1
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metre. Local assemblages are sometimes composed of over a hundred species, 
 including many rare ones. This diversity makes oribatid mites an interesting target 
group to study community–environment relationships at very local scales.

The example data set is composed of 70 cores of mostly Sphagnum mosses 
collected on the territory of the Station de biologie des Laurentides of Université 
de Montréal, Québec, Canada in June 1989. The data were collected in order to test 
various ecological hypotheses about the relationships between living communities 

Table 1.2 Environmental variables of the oribatid mite data set used in this 
book and their units

Variable Code Units

Substrate density (dry matter) SubsDens g dm−3

Water content WatrCont g dm−3

Substrate Substrate 7 unordered classes
Shrubs Shrub 3 ordered classes
Microtopography Topo Blanket – Hummock

Table 1.3 Several help resources in R
Action Use Example Remark
? (question 

mark)
Obtain information 

about a function
?decostand The package to 

which the 
function 
belongs must 
be active

?? (double  
question mark)

Obtain information 
on the basis of a 
keyword

??diversity The search is 
done in all 
the packages 
installed in the 
computer

Type the name  
of a function

Display the code 
of the function 
on-screen

diversity Not all functions 
can be displayed 
fully; some 
contain 
compiled code

help  
 (pack age = "....")

Displays information 
on the package, 
including a list of 
all functions and 
data

help  
 (pack age = "ade4")

data  
 (pac kage = "...")

Lists the data sets 
contained in a 
package

data  
 (pack age = "vegan")

Search on the CRAN  
Web site

Broader search than 
above; access to 
discussion lists

Go to http://cran.r-
project.org/, click on 
the “Search” link and 
choose one of the 
links

Outside the R 
master Web 
server
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and their environment when the latter is spatially structured, and develop statistical 
techniques for the analysis of the spatial structure of living communities. It has 
since become a classical test data set, used in several publications (e.g. Borcard 
et al. 1992, 2004; Borcard and Legendre 1994; Wagner 2004; Legendre 2005; 
Dray et al. 2006; Griffith and Peres-Neto 2006).

The data set comprises three files that contain the abundances of 35 morpho-
species, 5 substrate and microtopographic variables, and the x–y Cartesian coordi-
nates of the 70 cores. The environmental variables are listed in Table 1.2.

1.6  A Quick Reminder about Help Sources

The R language is intended as a self-learning tool. So please use and abuse of the 
various ways to ask questions, display code, run examples that are imbedded in 
the framework. Some important help tools are presented in Table 1.3.

1.7  Now It Is Time...

... to get you hands full of code, numerical outputs and plots. Revise the basics of 
the methods, explore the code, analyse it, change it, try to apply it to your data and 
interpret your results. Above all, we hope to show that doing numerical ecology in 
R is fun!
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2.1  Objectives

Nowadays, most ecological research is done with hypothesis testing and modelling 
in mind. However, Exploratory Data Analysis (EDA), which uses visualization 
tools and computes synthetic descriptors, is still required at the beginning of the 
statistical analysis of multidimensional data, in order to:

Get an overview of the data•	
Transform or recode some variables•	
Orient further analyses•	

As a worked example, we explore a classical dataset to introduce some  techniques 
of EDA using R functions found in standard packages. In this chapter, you will:

Learn or revise some bases of the •	 R language
Learn some EDA techniques applied to multidimensional ecological data•	
Explore the Doubs dataset in hydrobiology as a first worked example•	

2.2  Data Exploration

2.2.1  Data Extraction

The Doubs dataset used here is available in the form of three comma separated 
values (CSV) files along with the rest of the material (see Chap. 1).

Chapter 2
Exploratory Data Analysis
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Hints At the beginning of a session, make sure to place all necessary data 
files and scripts in a single folder and define this folder as your work-
ing directory, either through the menu or by using function 
setwd().

If you are uncertain of the class of an object, type 
class(object_name).

2.2.2  Species Data: First Contact

We can start data exploration, which first focuses on the community data (object 
spe created above). Verneaux used a semi-quantitative, species-specific, abun-
dance scale (0–5) so that comparisons between species abundances make sense. 
However, species-specific codes cannot be understood as unbiased estimates of the 
true abundances (number or density of individuals) or biomasses at the sites.

We first apply some basic R functions and draw a barplot (Fig. 2.1):
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Fig. 2.1 Barplot of abundance classes
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2.2.3  Species Data: A Closer Look

The commands above give an idea about the data structure. But codes and numbers 
are not very attractive or inspiring, so let us illustrate some features. We first create 
a map of the sites (Fig. 2.2):

Fig. 2.2 Map of the 30 sampling sites along the Doubs River
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Now, the river looks more real, but where are the fish? To show the distribution 
and abundance of the four species used to characterize ecological zones in European 
rivers (Fig. 2.3), one can type:

Hint Note the use of the cex argument in the plot() function: cex is 
used to define the size of an item in a graph. Here its value is a vector 
of the spe data frame, i.e. the abundances of a given species (e.g. 
cex=spe$TRU). The result is a series of bubbles whose diameter at 
each site is proportional to the species abundance. Also, since the 
object spa contains only two variables x and y, the formula has been 
simplified by replacing the two first arguments for horizontal and ver-
tical axes by the name of the data frame.
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At how many sites does each species occur? Calculate the relative frequencies 
of species (proportion of the number of sites) and plot histograms (Fig. 2.4):

Fig. 2.3 Bubble maps of the abundance of four fish species
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Hint Examine the use of the apply() function, applied here to the 
 columns of the data frame spe. Note that the first part of the function 
call (spe > 0) evaluates the values in the data frame to TRUE/
FALSE, and the number of TRUE cases per column is counted by 
summing.

Fig. 2.4 Frequency histograms: species occurrences and relative frequencies in the 30 sites
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Now that we have seen at how many sites each species is present, we may want 
to know how many species are present at each site (species richness, Fig. 2.5):

Hint Observe the use of the type="s" argument of the plot() function 
to draw steps between values.
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Hint Note the special use of function rowSums() for the computation of 
 species richness N0. Normally, rowSums(array) computes the 
sums of the rows in that array. Here, argument spe > 0 calls for the 
sum of the cases where the value is greater than 0.

Finally, one can easily compute classical diversity indices from the data. Let us 
do it with the function diversity() of the vegan package.

Fig. 2.5 Species richness along the river
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Hill’s numbers (N), which are all expressed in the same units, and ratios (E) 
derived from these numbers, can be used to compute diversity indices instead of 
popular formulae for Shannon entropy (H) and Pielou evenness (J). Note that there 
are other ways of estimating diversity while taking into account unobserved species 
(e.g. Chao and Shen 2003).

2.2.4  Species Data Transformation

There are instances where one needs to transform the data prior to analysis. The 
main reasons are given below with examples of transformations:

Make descriptors that have been measured in different units comparable  (ranging, •	
standardization to z-scores, i.e. centring and reduction, also called scaling)
Make the variables normal and stabilize their variances (e.g. square root, fourth •	
root, log transformations)
Make the relationships among variables linear (e.g. log transformation of •	
response variable if the relationship is exponential)
Modify the weights of the variables or objects (e.g. give the same length  •	
(or norm) to all object vectors)
Code categorical variables into dummy binary variables or Helmert contrasts•	

Species abundances are dimensionally homogenous (expressed in the same 
 physical units), quantitative (count, density, cover, biovolume, biomass, frequency, 
etc.) or semi-quantitative (classes) variables and restricted to positive or null values 
(zero meaning absence). For these, simple transformations may be used to reduce 
the importance of observations with very high values: sqrt() (square root), 
sqrt(sqrt()) (fourth root), or log1p() (natural logarithm of abundance + 1 
to keep absence as zero) are commonly applied R functions. In extreme cases, to 
give the same weight to all positive abundances irrespective of their values, the data 
can be transformed to binary 1-0 form (presence–absence).

The decostand() function of the vegan package provides many options 
for common standardization of ecological data. In this function, standardization, 
as contrasted with simple transformation (such as square root, log or 
 presence–absence), means that the values are not transformed individually but 
relative to other values in the data table. Standardization can be done relative to 
sites (site profiles), species (species profiles), or both (double profiles), depend-
ing on the focus of the analysis. Here are some examples illustrated by boxplots 
(Fig. 2.6):
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Hint Take a look at the line: norm <- function(x) sqrt(x%*%x). It is 
an example of a small function built on the fly to fill a gap in the stan-
dard R packages: this function computes the norm (length) of a vector 
using a matrix algebraic form of Pythagora’s theorem. For more matrix 
algebra, visit the Code It Yourself corners.
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Another way to compare the effects of transformations on species profiles is to 
plot them along the river course:

Fig. 2.6 Boxplots of transformed abundances of a common species, Nemacheilus barbatulus 
(stone loach)
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The Code It Yourself corner #1

Write a function to compute the Shannon–Weaver entropy for a site vector 
containing species abundances. The formula is:

[ ]log( )i iH p p′ = − ×∑
where p

i
 = n

i 
 / N and n

i
 = abundance of species i and N = total abundance of all 

species.
After that, display the code of vegan’s function diversity() to see 

how it has been coded among other indices by Jari Oksanen and Bob O’Hara. 
Nice and compact, isn’t it?
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2.2.5  Environmental Data

Now that we are acquainted with the species data, let us turn to the environmental 
data (object env).

First, go back to Sect. 2.2.2 and apply the basic functions presented there to 
env. While examining the summary(), note how the variables differ from the 
species data in values and spatial distributions.

Draw maps of some of the environmental variables, first in the form of bubble 
maps (Fig. 2.7):

Hint See how the cex argument is used to make the size of the bubbles 
 comparable among plots. Play with these values to see the changes in 
the graphical output.
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Now, examine the variation of some descriptors along the stream (Fig. 2.8):

Fig. 2.7 Bubble maps of environmental variables
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Fig. 2.8 Line plots of environmental variables

To explore graphically the bivariate relationships among the environmental 
 variables, we can use the powerful pairs() graphical function, which draws a 
matrix of scatter plots (Fig. 2.9).
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Hint Each scatterplot shows the relationship between two variables identi-
fied on the diagonal. The abscissa of the scatterplot is the variable 
above or under it, and the ordinate is the variable to its left or right.

Moreover, we can add a LOWESS smoother to each bivariate plot and draw 
histograms in the diagonal plots, showing the frequency distribution of each vari-
able, using external functions of the panelutils.R script.

Simple transformations, such as the log transformation, can be used to improve 
the distributions of some variables (make it closer to the normal distribution). 
Furthermore, because environmental variables are dimensionally heterogeneous 
(expressed in different units and scales), many statistical analyses require their 
standardization to zero mean and unit variance. These centred and scaled variables 
are called z-scores. We can now illustrate transformations and standardization with 
our example data (Fig. 2.10).
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Fig. 2.9 Scatter plots between all pairs of environmental variables with LOWESS smoothers
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Hint Normality of a vector can be tested by using the Shapiro–Wilk test, 
available through function shapiro.test().

Fig. 2.10 Histograms and boxplots of the untransformed (left) and log-transformed pen variable 
(slope)
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2.3  Conclusion

The tools presented in this chapter allow researchers to obtain a general impression 
of their data. Although you see much more elaborate analyses in the next chapters, 
keep in mind that a first exploratory look at the data can tell much about them. 
Information about simple parameters and distributions of variables is important to 
consider in order to choose more advanced analyses correctly. Graphical represen-
tations like bubble maps are useful to reveal how the variables are spatially orga-
nized; they may help generate hypotheses about the processes acting behind the 
scene. Boxplots and simple statistics may be necessary to reveal unusual or aberrant 
values.

EDA is often neglected by people who are eager to jump to more sophisticated 
analyses. We hope to have convinced you that it should have an important place in 
the toolbox of ecologists.



31D. Borcard et al., Numerical Ecology with R, Use R,
DOI 10.1007/978-1-4419-7976-6_3, © Springer Science+Business Media, LLC 2011

3.1  Objectives

Most methods of multivariate analysis, in particular ordination and clustering 
techniques, are explicitly or implicitly1 based on the comparison of all possible pairs 
of objects or descriptors. The comparisons take the form of association measures 
(often called coefficients or indices), which are assembled in a square and symmetrical 
association matrix, of dimensions n × n when objects are compared, or p × p when 
variables are compared. Since the subsequent analyses are done on the association 
matrix, the choice of an appropriate measure is crucial. In this chapter, you will:

Quickly revise the main categories of association coefficients•	
Learn how to compute, examine and visually compare dissimilarity matrices •	
(Q mode) and dependence matrices (R mode)
Apply these techniques to a classical dataset•	
Learn or revise some basics of programming functions with the •	 R language

3.2  The Main Categories of Association Measures  
(Short Overview)

It is beyond the scope of this book to explain the various methods in detail, but it is 
useful to provide a wrap-up of the main categories of measures. This facilitates the 
choice of an appropriate index in many situations, and improves the understanding 
of the applications proposed below. Note that we use the expressions “measure”, 

Chapter 3
Association Measures and Matrices

1 The association measure among objects may be implicit. It is the Euclidean distance in principal 
component analysis (PCA, Chap. 5) and k-means partitioning (Chap. 4), for example, and the 
chi-square distance in correspondence analysis (CA, Chap. 5).
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“index” and “coefficient” as synonyms to refer to the quantities used to compare 
pairs of objects or variables.2

3.2.1  Q Mode and R Mode

When pairs of objects are compared, the analysis is said to be in the Q mode. When 
pairs of descriptors are compared, the analysis is said to be in the R mode. This 
distinction is important because the association measures in Q- and R-mode 
analyses are not the same.

In Q mode, the association measure is the distance (dissimilarity) or the similar-
ity between pairs of objects, e.g. Euclidean distance, Jaccard similarity. In R mode, 
one uses a measure of dependence among variables, such as the covariance or 
correlation coefficient.

3.2.2  Symmetrical or Asymmetrical Coefficients in Q Mode:  
The Double-Zero Problem

Virtually, all distance or similarity measures used in ecology are symmetric in one 
sense: the value of the coefficient between objects n

1
 and n

2
 is the same as the value 

of the coefficient between objects n
2
 and n

1
. The same holds for dependence measures 

in the R mode. The problem addressed here is different. It concerns the treatment 
of double-zeros in the comparison of pairs of objects.

In certain cases, the zero value has the same meaning as any other value along 
the scale of a descriptor. For instance, the absence (0 mg/L) of dissolved oxygen in 
the deep layers of a lake is an ecologically meaningful information: the concentra-
tion is below the measurement threshold and this poses severe constraints on aerobic 
life forms, whatever the reason for this condition.

On the contrary, the zero value in a matrix of species abundances (or presence–
absence) is much more tricky to interpret. The presence of a species at two sites 
generally implies that these sites provide a similar set of minimal conditions 
allowing the species to survive; these conditions are the dimensions of its ecological 
niche. The absence of a species from a relevé or site, however, may be due to a 
variety of causes: the species’ niche may be occupied by a replacement species, or 
it may not have reached that site even though the conditions are favourable, or the 

2 Although the term “coefficient” is sometimes narrowly defined as a multiplicative factor of a 
variable in a mathematical expression, it has been applied for decades to the broader sense used 
in this book.
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absence of the species is due to different non-optimal conditions on any of the 
important dimensions of its ecological niche, or the species is present but has not 
been observed or captured by the researcher, or the species does not show a regular 
distribution among the sites under study. The key points here are that (1) in most 
situations, the absence of a given species from two sites cannot readily be counted 
as an indication of resemblance between these sites because this double absence 
may be due to completely different reasons, and (2) the number of uninterpretable 
double zeros in a species matrix depends on the number of species and thus 
increases strongly with the number of rare species detected.

The information “presence” thus has a clearer interpretation than the informa-
tion “absence”. One can distinguish two classes of association measures based on 
this problem: the coefficients that consider the double zeros (sometimes also called 
“negative matches”) as indications of resemblance (like any other value) are said to 
be symmetrical, the others, asymmetrical.3 In most cases, it is preferable to use 
asymmetrical coefficients when analysing species data, unless one has compelling 
reasons to consider each double absence in a matrix as being due to the same cause. 
Possible examples of such exceptions are controlled experiments with known com-
munity compositions or ecologically homogeneous areas with disturbed zones.

3.2.3  Association Measures for Qualitative or Quantitative Data

Some variables are qualitative (nominal or categorical, either binary or multiclass), 
others are semi-quantitative (ordinal) or quantitative (discrete or continuous). 
Association coefficients exist for all types of variables, but most of them fall into two 
classes: coefficients for binary variables (hereunder called binary coefficients for short, 
although it is the variables that are binary, not the values of the association measures) 
and coefficients for quantitative variables (called quantitative coefficients hereafter).

3.2.4  To Summarize…

Keep track on what kind of association measure you need. Before any analysis, ask 
the following questions:

Are you comparing objects (Q-mode) or variables (R-mode analysis)?•	
Are you dealing with species data (usually asymmetrical coefficients) or other •	
types of variables (symmetrical coefficients)?

3 The use of the words symmetrical/asymmetrical for this distinction, as opposed to symmetric/
asymmetric (same value of the coefficient between n

1
 and n

2
 as between n

2
 and n

1
), follows 

Legendre and Legendre (1998).
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Are your data binary (binary coefficients), quantitative (quantitative coefficients) •	
or mixed or of other types (e.g. ordinal; special coefficients)?

In the following sections, you will explore various possibilities. In most cases, 
more than one association measure is available to study a given problem.

3.3  Q Mode: Computing Distance Matrices Among Objects

In the Q mode, we use four packages: stats (included in the standard installation 
of R), vegan, ade4, cluster and FD. Note that this list of packages is by far 
not exhaustive, but it should satisfy the needs of most ecologists.

Although the literature provides similarity as well as distance measures, in R all 
similarity measures are converted to distances to compute a square matrix of class 
"dist" in which the diagonal (distance between each object and itself) is 0 and can 
be ignored. The conversion formula varies with the package used, and this may not 
be without consequences:

In •	 stats, FD and vegan, the conversion from similarities S to dissimilarities 
D is D = 1 − S.
In •	 ade4, it is computed as 1D S= − . This allows some indices to become 
Euclidean, a geometrical property that is useful in some analyses, e.g., principal 
coordinate analysis (see Chap. 5). We come to it when it becomes relevant. 
Distance matrices computed by other packages that are not Euclidean can often 
be made Euclidean by computing D2 <- sqrt(D).
In •	 cluster, all available measures are distances, so no conversion has to be 
made.

Therefore, although we stick to the conventional names of the most classical 
coefficients, as they can be found in textbooks, it is implicit from now on that all 
these measures have been converted to distances when computed by R functions. 
For instance, the Jaccard (1901) community index is basically a similarity, but the 
output of the computation of that coefficient in stats, vegan and ade4 is a 
distance matrix.

3.3.1  Q Mode: Quantitative Species Data

Let us use the fish species dataset spe again. We consider the data as quantitative 
although, strictly speaking, the values do not represent raw fish numbers.
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Quantitative species data generally require asymmetric distance measures. In 
this category, frequently used coefficients are the Bray–Curtis dissimilarity D

14
4 

(also known as the reciprocal of the Steinhaus similarity index, S
17

), the chord dis-
tance D

3
, the chi-square distance D

21
 and the Hellinger distance D

17
. Let us compute 

dissimilarity matrices using some of these indices. In the process, we use the package 
gclus for visualization purposes.

Bray–Curtis dissimilarity matrices can be computed directly from raw data, 
although true abundances are often log-transformed because D

14
 gives the same 

importance to absolute differences in abundance irrespective of the order of magni-
tude of the abundances. In this coefficient, a difference of five individuals has the 
same weight when the abundances are three and eight as when the abundances are 
6203 and 6208.

The chord distance is a Euclidean distance computed on site vectors normalized 
to length 1; this normalization is called the chord transformation. The normaliza-
tion is done by vegan’s function decostand(), argument normalize.5

The Hellinger distance is a Euclidean distance on site vectors, where the abun-
dance values are first divided by the site total abundance, and the result is square-
root transformed; this is called the Hellinger transformation. Another description of 
this transformation is to apply a chord transformation on square-root-transformed 
data. Conversely, chord-transformed abundance data are obtained by a Hellinger 
transformation of squared abundance data. This relationship shows the relatedness 
of the chord and Hellinger distances and emphasizes the effect of the Hellinger 
transformation to reduce the importance of large abundances. The Hellinger trans-
formation is obtained in one step by decostand() with the argument 
hellinger.

4 In this book, symbols and numbering of similarity and distance measures are taken from 
Legendre and Legendre (1998).
5 This way of presenting several distance measures (as pre-transformations followed by computa-
tion of a Euclidean distance) was described by Legendre and Gallagher (2001). More about this 
topic in Sect. 3.5 at the end of this chapter.
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3.3.2  Q Mode: Binary (Presence–Absence) Species Data

When the only data available are binary, or when the abundances are irrelevant, or, 
sometimes, when the data table contains quantitative values of uncertain or unequal 
quality, the analyses are done on presence–absence (1-0) data.

The Doubs fish dataset is quantitative, but for the sake of the example we recode 
it to binary form (using the appropriate arguments when needed): all values larger 
than 0 are given a value equal to 1. The exercise consists in computing several dis-
similarity matrices based on appropriate similarity coefficients: the Jaccard (S

7
) and 

Sørensen (S
8
) similarities. For each pair of sites, the Jaccard similarity is the ratio 

Hint  Type ?log1p to see what you have done to the data prior to building 
the second Bray–Curtis dissimilarity matrix. Why use log1p() 
rather than log()?
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between the number of double 1s and the number of species, excluding the species 
represented by double zeros in the pair of objects considered. Therefore, a Jaccard 
similarity of 0.25 means that 25% of the total number of species observed at two 
sites were present in both sites and 75% in one site only. The Jaccard distance 
computed in R is either (1 − 0.25) or 1 0.25−  depending on the package used. The 
Sørensen similarity (S

8
) gives more weight to the number of double 1s and its recip-

rocal (complement to 1) is equivalent to the Bray–Curtis distance computed on 
species presence–absence data.

A further interesting relationship is that the Ochiai similarity (S
14

), which is also 
appropriate for species presence–absence data, is related to the chord and Hellinger 
distances. Computing either one of these distances on presence–absence data, fol-
lowed by division by 2 , produces 1 Ochiai similarity− . This reasoning shows 
that the chord and Hellinger transformations are meaningful for species presence–
absence data. This is also the case for the chi-square transformation: the Euclidean 
distance computed on data transformed in that way produces the chi-square dis-
tance, which is appropriate for both quantitative and presence–absence data.
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Hint  Explore the arguments of the functions vegdist(), dist.
binary() and dist() to see which coefficients are available. Some 
of them are available in more than one function. In dist(), argument 
binary produces (1 − Jaccard). In the help file of dist.binary(), 
be careful: the numbering of the coefficients does not follow Legendre 
and Legendre (1998), but Gower and Legendre (1986).

Association matrices are generally intermediate entities, which are rarely examined 
directly. However, when there are not too many objects involved, it may be useful to 
display them in a way that emphasizes their main features. We suggest that you plot 
several dissimilarity matrices using the additional function coldiss(). A reordering 
feature is included in the function coldiss(), which uses the function order.
single() of the gclus package to reorder each dissimilarity matrix so that 
similar sites are displayed close together along the diagonal. Therefore, you can 
compare the results obtained before and after reordering each matrix.

The package gclus is called within the coldiss() function so that it must 
have been installed prior to running the following code. Figure 3.1 shows an 
example.
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Fig. 3.1 Heat maps of a Bray–Curtis dissimilarity matrix computed on the raw fish data

Compare the two Bray–Curtis plots (raw and log-transformed data; the latter is 
not presented here). The differences are due to the log transformation. In the 
untransformed distance matrix, small differences in abundant species have the same 
importance as small differences in species with few individuals.
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Compare the four colour plots. They all represent distance or dissimilarity 
 matrices built upon quantitative abundance data. Are they similar?

The Code It Yourself corner #2

Write several lines of code to compute Jaccard’s “coefficient of community” 
(S

7
) between sites 15 and 16 of the spe data frame. Sites 15 and 16 now have 

row numbers 14 and 15, respectively, because we deleted row 8 which is 
devoid of species.

Although these examples deal with species data, the Doubs transect is character-
ized by strong ecological gradients (e.g. oxygen, nitrate content; see Chap. 2). 
In  such a well-defined context, it may be interesting to assume for discussion that 
species are absent for similar reasons from a given section of the stream, and 
 compute an association matrix based on a symmetrical coefficient for comparison 
purposes. Here is an example using the simple matching coefficient S

1
 (developed 

in Sect. 3.3.4).
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3.3.3  Q Mode: Quantitative Data (Excluding Species 
Abundances)

For quantitative variables with a clear interpretation of double zeros, the queen of 
the symmetric distance measures is the Euclidean distance D

1
. “It is computed 

using Pythagora’s formula, from site-points positioned in a p-dimensional space 
called a metric or Euclidean space” (Legendre and Legendre 1998, p. 277).

The Euclidean distance has no upper limit, and its value is strongly influenced 
by the scale of each descriptor. For instance, changing the scale of a set of measure-
ments from g/L to mg/L will multiply the Euclidean distance by 1000. Therefore, 
the use of the Euclidean distance on raw data is restricted to datasets that are dimen-
sionally homogeneous, like geographic coordinates. Otherwise, D

1
 is computed on 

standardized variables (z-scores). This also applies to situations, where one wishes 
to give the same weight to all variables in a set of dimensionally homogeneous 
descriptors.

Here, you could compute a matrix of Euclidean distances on the (standardized) 
environmental variables of our env dataset. We remove one variable, das (dis-
tance from the source), since it is a spatial rather than an environmental descriptor. 
The results are displayed using coldiss() (Fig. 3.2).

Jaccard’s similarity index has the following formula for two objects x
1
 

and x
2
:

( 1, 2) / ( )x xS a a b c= + +

where a is the number of double 1s, and b and c are the numbers of 0-1 
and 1-0 combinations, respectively.

After the computation, convert the similarity value to a dissimilarity using 
the formulas used in vegan and ade4 (not the same formula).

-----
For the aficionados: display the code used in the ade4 function dist.

binary() (just type dist.binary). Look how the quantities a, b, c and 
d are computed in just four lines for whole data frames. A fine example of 
programming elegance by Daniel Chessel and Stéphane Dray.
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These plots of distance matrices can be used for a quick comparison. For 
instance, you could plot the Hellinger species-based distance matrix and the envi-
ronmental distance matrix, both using equal-sized categories (byrank=TRUE, the 
default), in order to compare them visually:

Hint See how the environmental variables have been standardized “on the 
fly” using the function scale().

Fig. 3.2 Heat maps of a matrix of Euclidean distances on the standardized environmental 
 variables

The Euclidean distance is of course appropriate to compute matrices of 
 geographical distances based on variables giving the coordinates of the sites in any 
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units on a 1- or 2-dimensional orthogonal (Cartesian) system (such as cm, m, km 
or UTM coordinates). Coordinates in a spherical system (e.g. latitude–longitude) 
must be transformed prior to the computation of a Euclidean distance matrix. This 
transformation can be done by function geoXY() of the package SoDA. Note that 
x–y coordinates should not be standardized (only centred if necessary), since this 
would alter the ratio between the two dimensions.

In the following code lines, you will also compute a matrix of Euclidean dis-
tance on a single variable: das, the distance from the source of the river. This 
matrix thus represents the distances among sites along the river, while the matrix 
based on x–y coordinates represents the distance among points on a geographical 
map (as the crow flies, so to say).

3.3.4  Q Mode: Binary Data (Excluding Species  
Presence–Absence Data)

The simplest symmetrical similarity measure for binary data is the “simple match-
ing coefficient” S

1
. For each pair of sites, it is the ratio between the number of 

double 1s plus double 0s and the total number of variables.
The fish environment dataset is exclusively made of quantitative variables, so we 

create fictitious data to demonstrate the computation of S
1
. We resort to this method 

from time to time, just to show how it is convenient to create datasets of known 
characteristics in R, for instance, for simulation purposes.
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3.3.5  Q Mode: Mixed Types, Including Categorical  
(Qualitative Multiclass) Variables

Among the association measures that can handle nominal data correctly, one is 
readily available in R: Gower’s similarity S

15
. This coefficient has been devised to 

handle data containing variables of various mathematical types, each variable 
receiving a treatment corresponding to its category. The final (dis)similarity 
between two objects is obtained by averaging the partial (dis)similarities computed 
for all variables separately. We use Gower’s similarity as a symmetrical index; 
when a variable is declared as a factor in a data frame, the simple matching rule is 
applied, i.e. for each pair of objects the similarity is 1 for that variable if the factor 
has the same level in the two objects and 0 if the level is different. Gower’s dissimi-
larity is computed using the function daisy() of package cluster. Avoid the 
use of vegdist() (method=“gower”), which is appropriate for quantitative and 
presence–absence, but not for multiclass variables.
daisy() can handle data frames made of mixed-type variables, provided that 

each one is properly defined. Optionally, the user can provide an argument (in the 
form of a list) specifying the types of some or all variables in the dataset.
gowdis() of package FD is the most complete function to compute Gower’s 

coefficient. It computes the distance for mixed variables, including asymmetrical 
binary variables. Variable weights can be specified. gowdis() implements 
Podani’s (1999) extension to ordinal variables.

Let us again create an artificial dataset containing four variables: two random 
quantitative variables and two factors:
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Let us first compute and view the complete S
15

 matrix. Then, repeat the computa-
tion using the two factors (var.g3 and var.g4) only:

Hints  Function gl () is quite handy to generate factors, but unfortunately 
it uses numerals for the levels. Potential confusion would be avoided 
if alphanumerics were used instead of numbers.

Note the use of data . frame () to assemble the four variables. 
Unlike cbind (), data . frame () preserves the classes of the 
variables. Variables 3 and 4 thus retain their class "factor".
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3.4  R Mode: Computing Dependence Matrices  
Among Variables

Correlation-type coefficients must be used to compare variables in the R mode. 
These include the Pearson as well as the non-parametric correlation coefficients 
(Spearman, Kendall) for quantitative or semi-quantitative data, and contingency 
statistics for the comparison of qualitative variables (chi-square statistic and derived 
forms). For presence–absence data, binary coefficients such as the Jaccard, 
Sørensen and Ochiai coefficients can be used in the R mode to compare species.

3.4.1  R Mode: Species Abundance Data

Covariances as well as parametric and non-parametric correlation coefficients are 
often used to compare species distributions through space or time. Note that double-
zeros as well as the joint variations in abundance contribute to increase the  
correlations. In the search for species associations, Legendre (2005) applied 
the transformations described in Sect. 3.5 in order to remove the effect of the total 
abundance per site prior to the calculation of parametric and non-parametric cor-
relations. Some concepts of species association use only the positive covariances or 
correlations to recognize associations of co-varying species.
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Besides correlations, the chi-square distance, which was used in the Q mode, can 
also be computed on transposed matrices (R mode) because it was originally devel-
oped to study contingency tables, which are transposable by definition.

The example below shows how to compute and display an R-mode chi-square 
dissimilarity matrix of the 27 fish species:

3.4.2  R Mode: Species Presence–Absence Data

For binary species data, the Jaccard (S
7
), Sørensen (S

8
) and Ochiai (S

14
) coefficients 

can also be used in the R mode. Apply S
7
 to the fish presence–absence data after 

transposition of the matrix (object spe.t):

3.4.3  R Mode: Quantitative and Ordinal Data  
(Other than Species Abundances)

To compare dimensionally homogeneous quantitative variables, one can use either 
the covariance or Pearson’s r correlation coefficient. Note, however, that these 
measures are linear so that they may perform poorly to detect monotonic but non-
linear relationships among variables. If the variables are not dimensionally homo-
geneous, Pearson’s r must be preferred to the covariance, since r is actually the 
covariance computed on standardized variables.
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Comparison among ordinal variables, or among quantitative variables that may 
be monotonically but not linearly related, can be achieved using rank correlation 
coefficients like Spearman’s r (rho) or Kendall’s t (tau).

Here are some examples based on the fish environmental data env. The function 
cor() (stats package) requires the untransposed matrix, i.e. the original matrix, 
where the variables are in columns. First example: Pearson’s r (Fig. 3.3):

The same variables are now compared using Kendall’s t :
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3.4.4  R Mode: Binary Data (Other than Species  
Abundance Data)

The simplest way of comparing pairs of binary variables is to compute a matrix of 
Pearson’s r. In that case, Pearson’s r is called the point correlation coefficient or 
Pearson’s f. That coefficient is closely related to the chi-square statistic for 2 × 2 
tables without correction for continuity: c2 = nf 2, where n is the number of 
objects.

Fig. 3.3 Multipanel display of pairwise relationships between environmental variables with 
Pearson’s r correlations
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3.5  Pre-transformations for Species Data

In Sect. 3.2.2, we explained why species abundance data should be treated in a 
special way, avoiding the use of double zeros as indications of resemblance among 
sites; linear methods, which explicitly or implicitly use the Euclidean distance 
among sites or the covariance or correlation among variables, are therefore not 
appropriate for such data. Unfortunately, many of the most powerful statistical tools 
available to ecologists, like ANOVA, k-means partitioning (see Chap. 4), principal 
component analysis (PCA, see Chap. 5) and redundancy analysis (RDA, see  
Chap. 6) are linear. Consequently, these methods were more or less “forbidden” to 
species data until Legendre and Gallagher (2001) showed than several asymmetri-
cal association measures (i.e. measures that are appropriate to species data) can be 
obtained by two computational steps: a transformation of the raw data followed by 
the  calculation of the Euclidean distance. These two steps preserve the asymmetri-
cal distance among sites, therefore allowing the use of all linear methods of analysis 
with species data.

As is seen in the following chapters, in many cases one simply has to apply the 
pre-transformation to the species data, and then feed these to the linear methods of 
data analysis: PCA, RDA and so on.

Legendre and Gallagher proposed five pre-transformations of the species data. 
Four of them are available in vegan as arguments of the function decostand(): 
profiles of relative abundances by site (“total”), site normalization also called 
chord transformation (“normalize”), Hellinger transformation (“hellinger”) 
and chi-square double standardization (“chi.square”). See Sects. 2.2.4 and 
3.3.1 for examples. All these transformations express the data as relative abundances 
per sites (site profiles) in some way; this removes from the data the total abundance 
per site, which is the response of the species to the total productivity of the sites. In 
the Hellinger transformation, the relative abundance values are square-rooted, which 
reduces more strongly the highest abundance values.

3.6  Conclusion

Although association matrices are in most cases intermediate entities, this chapter 
has shown that their computation deserves close attention. Many choices are 
available, and crucial decisions must be made at this step of the analytical 
procedure. The graphical tools presented in this chapter are precious helps to make 
these decisions, but great care must be taken to remain on solid theoretical ground. 
The success of the analytical steps following the computation of an association 
matrix depends on the choice of an appropriate association measure. Commonly-
used distance functions in the Q mode, available in R packages, are presented in 
Table 3.1.
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The similarity coefficients for presence–absence data and the Gower similarity 
should be transformed into distances using 1 S− to avoid the production of nega-
tive eigenvalues and imaginary eigenvectors in principal coordinate analysis. This 
transformation is made automatically by ade4, but not by vegan. In the table, 
functions decostand() and vegdist() belong to package vegan; function 
dist.binary() belongs to package ade4; function daisy() belongs to pack-
age cluster. Other R functions may be used for some distance coefficients. Some are 
mentioned in the course of the chapter. The Euclidean distance may be computed 
either by vegdist(.,“euc”) as shown in the table, or by dist(.).

Table 3.1 Commonly-used distance and dissimilarity functions in Q mode available in R packages. 
The symbol ⇒ means that applying the function designed for quantitative data to presence–
absence data produces the same result as computing the corresponding function designed for 
presence–absence data

Quantitative data Presence–absence data

Community composition data

Ruzicka dissimilarity 
vegdist(.,“jac”)

⇒ Jaccard dissimilarity
vegdist(.,”jac”, 
binary=TRUE)
dist.binary(.,method=1)

Hellinger distance 
decostand(.,“hel”)  
followed by vegdist(.,“euc”)

⇒ Ochiai dissimilarity
dist.binary(.,method=7)

Chord distance 
decostand(.,“norm”)  
followed by vegdist(.,“euc”)

⇒ Ochiai dissimilarity
dist.binary(.,method=7)

Bray–Curtis dissimilarity 
vegdist(.,“bray”)

⇒ Sørensen dissimilarity
dist.binary(.,method=5)

Chi-square distance 
decostand(.,“chi.square”)

Chi-square distance
(idem)

Canberra distance 
vegdist(.,“canberra”)
Other variables, mixed physical units

Standardized variables:
Euclidean distance
vegdist(.,“euc”)

Standardized variables:
Simple matching coefficient
dist.binary(.,method=2)

Non-standardized variables:
Gower distance
daisy(.,“gower”)
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4.1  Objectives

In most cases, data exploration (Chap. 2) and the computation of association 
matrices (Chap. 3) are preliminary steps towards deeper analyses. In this chapter, 
you will go further by experimenting one of the large groups of analytical methods 
used in ecology: clustering. Practically, you will:

Learn how to choose among various clustering methods and compute them•	
Apply these techniques to the Doubs river data to identify groups of sites and •	
fish species
Explore a method of constrained clustering, a powerful modelling approach, •	
where the clustering process is constrained by an external data set

4.2  Clustering Overview

The objective of clustering is to recognize discontinuous subsets in an environment 
which is sometimes discrete (as in taxonomy), and most often perceived as continuous 
in ecology. This requires some degree of abstraction, but ecologists want to get a 
simplified, structured view of their data; generating a typology is one way to 
achieve that goal. In some instances, typologies are compared to independent 
classifications (based on theory or on other typologies obtained from other, inde-
pendent data). What we present here is a collection of methods used to decide 
whether objects are similar enough to be allocated to a group, and identify the 
distinctions or separations between groups.

Clustering consists in partitioning the collection of objects (or descriptors in 
R-mode) under study. A hard partition is a division of a set (collection) into subsets, 
such that each object or descriptor belongs to one and only one subset for that partition 
(Legendre and Rogers 1972). For instance, a species cannot be simultaneously the 
member of two genera: membership is binary (0 or 1). Some methods, less commonly 

Chapter 4
Cluster Analysis
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used, consider fuzzy partitions, in which membership is continuous (between 0 and 1). 
Depending on the clustering model, the result can be a single partition or a series of 
hierarchically nested partitions. Clustering is not a typical statistical method in that it 
does not test any hypothesis. Clustering helps bring out some features hidden in the 
data; it is the user who decides if these structures are interesting and worth interpreting 
in ecological terms.

Note that most clustering methods are computed from association matrices, 
which stresses the importance of the choice of an appropriate association 
coefficient.

One can recognize the following families of clustering methods (Legendre and 
Legendre 1998):

 1. Sequential or simultaneous algorithms. Most clustering algorithms (i.e. effec-
tive methods for solving a problem using a finite sequence of instructions) are 
sequential and consist in the repetition of a given procedure until all objects 
have found their place. The less frequent simultaneous algorithms find the 
solution in a single step.

 2. Agglomerative or divisive. Among the sequential algorithms, agglomerative 
procedures begin with the discontinuous collection of objects, which are succes-
sively grouped into larger and larger clusters until a single, all-encompassing 
cluster is obtained. Divisive methods, on the contrary, start with the collection of 
objects considered as one single group, and divide it into subgroups, and so on 
until the objects are completely separated. In either case, it is left to the user to 
decide which of the intermediate partitions is to be retained, given the problem 
under study.

 3. Monothetic versus polythetic. Divisive methods may be monothetic or poly-
thetic. Monothetic methods use a single descriptor (the one that is considered the 
best for that level) at each step for partitioning, whereas polythetic methods use 
all descriptors; in most cases, the descriptors are combined into an association 
matrix.

 4. Hierarchical versus non-hierarchical methods. In hierarchical methods, the 
members of inferior-ranking clusters become members of larger, higher-ranking 
clusters. Most of the time, hierarchical methods produce non-overlapping 
 clusters. Non-hierarchical methods produce a single partition, without any 
hierarchy among the groups.

 5. Probabilistic versus non-probabilistic methods. Probabilistic methods define 
groups in such a way that the within-group association matrices have a given 
probability of being homogeneous. Probabilistic methods are sometimes used to 
define species associations.
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These categories are not represented equally in the ecologist’s toolbox. Most 
methods presented below are sequential, agglomerative and hierarchical, but others, 
like k-means partitioning, are divisive and non-hierarchical. Two methods are of 
special interest: Ward’s hierarchical clustering and k-means partitioning are both 
least-squares methods. That characteristic relates them to the linear model.

Hierarchical clustering results are generally represented as dendrograms or 
similar tree-like graphs. Non-hierarchical procedures produce groups of objects 
(or variables), which may either be used in further analyses, presented as 
end-results (for instance, species associations) or, when the project has a spatial 
component, mapped on the area under study.

We also discuss a recent method, multivariate regression tree (MRT) analysis, a 
technique of constrained divisive partitioning involving two matrices: the one being 
clustered, and a second one containing a set of explanatory variables which 
provides a constraint (or guidance) as to where to divide the data of the first matrix.

Finally, a brief section is devoted to an example of fuzzy clustering, a non-
hierarchical method that considers partial memberships of objects to clusters.

Before entering the subject, let us prepare our R session by loading the neces-
sary packages and preparing the data tables.
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4.3  Hierarchical Clustering Based on Links

4.3.1  Single Linkage Agglomerative Clustering

Also called nearest neighbour sorting, this method agglomerates objects on the 
basis of their shortest pairwise distances (or greatest similarities): the fusion of an 
object (or a group) with a group at a given similarity (or distance) level only 
requires that one object of each of the two groups about to agglomerate be linked 
to one another at that level. Two groups agglomerate at the distance separating the 
closest pair of their members. This makes agglomeration easy. Consequently, the 
dendrogram resulting of a single linkage clustering often shows chaining of objects: 
a pair is linked to a third object, which in turn is linked with another one, and so 
on. The result may therefore be difficult to interpret in terms of partitions, but 
gradients are revealed quite clearly. The list of the first connections making an 
object member of a cluster, or allowing two clusters to fuse, is called the chain of 
primary connections; it is also called minimum spanning tree. This entity will be 
presented here and used in later analyses.

Common hierarchical clustering methods are available through the function 
hclust() of the stats package. You will now compute and illustrate (Fig. 4.1) 
your first cluster analysis on the basis of an association matrix computed in Chap. 3 
and recomputed here for convenience:
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4.3.2  Complete Linkage Agglomerative Clustering

Contrary to single linkage clustering, complete linkage clustering (also called 
furthest neighbour sorting) allows an object (or a group) to agglomerate with 
another group only at the distance corresponding to that of the most distant pair of 
objects; thus, a fortiori, all members of both groups are linked (Fig. 4.2):

Fig. 4.1 Single linkage agglomerative clustering of a matrix of chord distance among sites 
 (species data)
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The comparison between the two dendrograms shows the difference in the 
philosophy and the results of the two methods: single linkage allows an object to 
agglomerate easily to a group, since a link to a single object of the group suffices 
to induce fusion. This is a “closest friend” procedure, so to say. The resulting 
dendrogram does not always show clearly separated groups, but can be used to 
identify gradients in the data. At the opposite, complete linkage clustering is much 
more contrasting. A group admits a new member only at a distance corresponding 
to the furthest object of the group: one could say that the admission requires 
unanimity of the members of the group. It follows that, the larger a group is, the 
more difficult it is to agglomerate with it. Complete linkage, therefore, tends to 
produce many small separate groups, which tend to be rather spherical in multivariate 
space and agglomerate at large distances. Therefore, this method is interesting to 
search for and identify discontinuities in data.

Fig. 4.2 Complete linkage agglomerative clustering of a matrix of chord distance among sites 
(species data)
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Table 4.1 The four methods of average clustering. The names in quotes are the corresponding 
arguments of function hclust()

Arithmetic average Centroid clustering

Equal weights Unweighted Pair-Group Method using  
arithmetic Averages (UPGMA) 
“average”

Unweighted Pair-Group Method  
using Centroids (UPGMC) 
“centroid”

Unequal weights Weighted Pair-Group Method using 
arithmetic Averages (WPGMA) 
“mcquitty”

Weighted Pair-Group Method 
using Centroids (WPGMC) 
“median”

4.4  Average Agglomerative Clustering

This family comprises four methods that are based on average dissimilarities 
among objects or on centroids of clusters. The differences among them are in the 
way of computing the positions of the groups (arithmetic average versus centroids) 
and in the weighting or non-weighting of the groups according to the number of 
objects they contain when computing fusion distances. Table 4.1 summarizes their 
names and properties.

The best-known method of this family, UPGMA, allows an object to join a group 
at the mean of the distances between this object and all members of the group. When 
two groups join, they do it at the mean of the distances between all members of one 
group and all members of the other. Let us apply it to our data (Fig. 4.3):



60 4 Cluster Analysis

Note that UPGMC and WPGMC can sometimes lead to reversals in the dendro-
grams. The result no longer forms a series of nested partitions and may be difficult 
to interpret. An example is obtained as follows (Fig. 4.4):

Fig. 4.3 UPGMA clustering of a matrix of chord distance among sites (species data)
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4.5  Ward’s Minimum Variance Clustering

This method is based on the linear model criterion of least squares. The objective 
is to define groups in such a way that the within-group sum of squares (i.e. the 
squared error of ANOVA) is minimized. The within-cluster sum of squared errors 
can be computed as the sum of the squared distances among cluster members 
divided by the number of objects. Note also that although the computation of 
within-group sums of squares (SS) is based on a Euclidean model, the Ward method 
produces meaningful results from distances that are Euclidean or not.

In hclust(), Ward’s minimum variance clustering is obtained by using the 
argument method="ward"  (Fig. 4.5):

Fig. 4.4 UPGMC clustering of a matrix of chord distance among sites (species data)
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Hint Below you will see more options of the plot() function which pro-
duces dendrograms of objects of class hclust. Another path is to 
change the class of such an object using function as.dendro-
gram(), which opens yet more possibilities. Type ?dendrogram 
for details.

Fig. 4.5 Ward clustering of a matrix of chord distance among sites (species data)
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4.6  Flexible Clustering

Lance and Williams (1966, 1967) proposed a model encompassing all the clustering 
methods seen above, which are obtained by changing the values of four parameters. 
See Legendre and Legendre (1998, p. 333). hclust() is implemented using the 
Lance and Williams algorithm. As an alternative to the examples above, flexible 
clustering is available in the R package cluster, function agnes(), using argu-
ments method and par.method. See the help file of agnes() for more details.

4.7  Interpreting and Comparing Hierarchical  
Clustering Results

4.7.1  Introduction

Remember that clustering is a heuristic procedure, not a statistical test. The choices of 
an association coefficient and a clustering method influence the result. This stresses the 
importance of choosing a method that is consistent with the aims of the analysis. The 
objects produced by hclust() contain the information necessary to fully describe 
the clustering results and draw the dendrogram. To display the list of items available in 
the output object, type summary(name_of_clustering_object).

This information can also be used to help interpret and compare clustering 
results. We now explore several possibilities offered by R for this purpose.

4.7.2  Cophenetic Correlation

The cophenetic distance between two objects in a dendrogram is the distance where 
the two objects become members of the same group. Locate any two objects, start 
from one, and “climb up the tree” to the first node leading down to the second 
object: the level of that node along the distance scale is the cophenetic distance 
between the two objects. A cophenetic matrix is a matrix representing the cophe-
netic distances among all pairs of objects. A Pearson’s r correlation, called the 
cophenetic correlation in this context, can be computed between the original 
 dissimilarity matrix and the cophenetic matrix. The method with the highest cophe-
netic correlation may be seen as the one that produced the best clustering model for 
the distance matrix.

Of course, the cophenetic correlation cannot be tested for significance, since the 
cophenetic matrix is derived from the original dissimilarity matrix. The two sets of 
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distances are not independent. Furthermore, the cophenetic correlation depends 
strongly on the clustering method used, independently of the data.

As an example, let us compute the cophenetic matrix and correlation of two 
clustering results presented above, by means of the function cophenetic() of 
package stats.

To illustrate the relationship between a distance matrix and a set of cophenetic 
matrices obtained from various methods, one can draw Shepard-like diagrams 
(Legendre and Legendre 1998, p. 377) by plotting the original distances against the 
cophenetic distances (Fig. 4.6):
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Another possible statistic for the comparison of clustering results is the Gower 
(1983) distance, computed as the sum of squared differences between the original and 
cophenetic distances. The clustering method that produces the smallest Gower 
distance may be seen as the one that provides the best clustering model of the distance 
matrix. The cophenetic correlation and Gower distance criteria do not always desig-
nate the same clustering result as the best.

4.7.3  Looking for Interpretable Clusters

To interpret and compare clustering results, users generally look for interpretable 
clusters. This means that a decision must be made: at what level should the 
 dendrogram be cut? Although it is not mandatory to select a single cutting level for 
a whole dendrogram (some parts of the dendrogram may be interpretable at finer 
levels than others), it is often practical to find one or a few levels where interpreta-
tions are made. These levels can be defined subjectively by visual examination of 
the dendrogram, or they can be chosen to fulfil some criteria, like a predetermined 



66 4 Cluster Analysis

Fig. 4.6 Shepard-like diagrams comparing chord distances (species data) to four cophenetic 
distances. A LOWESS smoother shows the trend in each plot
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number of groups for instance. In any case, adding information on the dendrograms 
or plotting additional information about the clustering results can be very useful.

4.7.3.1  Graph of the Fusion Level Values

The fusion level values of a dendrogram are the dissimilarity values where a fusion 
between two branches of a dendrogram occurs. Plotting the fusion level values may 
help define cutting levels. Let us plot the fusion level values for some of the 
dendrograms produced above (Fig. 4.7).
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From right to left, this first graph shows clear jumps after each fusion between 2 
and 6 groups. Go back to the dendrogram and cut it at the corresponding dis-
tances. Do the groups obtained always make sense? Do you obtain enough groups 
containing a substantial number of sites?

Hint Observe how the function text() is used to print the number of 
groups  (clusters) directly on the graph.
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As it is obvious from the dendrograms and the graphs of the fusion levels, the 
four analyses tell different stories.

Now, if you want to set a common number of groups and compare the group 
contents among dendrograms, you can use the cutree() function and compute 
contingency tables:

After the graphs of fusion levels, let us examine two other methods to help iden-
tify an appropriate number of groups: silhouette widths and Mantel comparison.

4.7.3.2  Graphs of Silhouette Widths

The silhouette width is a measure of the degree of membership of an object to its 
cluster, based on the average distance between this object and all objects of the 
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cluster to which is belongs, compared to the same measure computed for the next 
closest cluster (see Sect. 4.7.3.4). Silhouette widths range from −1 to 1 and can be 
averaged over all objects of a partition.

We shall use the function silhouette() of the package cluster. The help 
file of this function provides a formal definition of a silhouette width. In short, the 
greater the value is, the better the object is clustered. Negative values mean that the 
corresponding objects have probably been placed in the wrong cluster.

Hint Observe how the repeated computation of the average silhouette widths 
is done by a for() loop.
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Fig. 4.8 Bar plot showing the average silhouette widths for k = 2–29 groups. The best partition by 
this criterion is the one with the largest average silhouette width
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At each fusion level, compute silhouette widths measuring the intensity of the link of 
the objects to their groups, and choose the level where the within-group mean intensity 
is highest, that is, the largest average silhouette width. A bar plot is drawn (Fig. 4.8).

4.7.3.3  Comparison Between the Distance Matrix and Binary Matrices 
Representing Partitions

This technique compares the original distance matrix to binary matrices computed 
from the dendrogram cut at various levels (and representing group allocations); it 
then chooses the level where the matrix (Mantel) correlation between the two is the 
highest. Here the Mantel correlation is meant in its simplest sense, i.e. the equivalent 
of a Pearson r correlation between the values in the distance matrices. Tests are 
impossible here since the matrices are not independent of one another (the matrices 
corresponding to the partitions are derived from the same original distance matrix).

To compute the binary dissimilarity matrices representing group membership, 
we use a small function to compute a binary distance matrix from a vector-defining 
group. The results are shown in Fig. 4.9.
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Hint Since the Mantel correlation coefficient is algebraically equivalent to 
the Pearson correlation coefficient and no tests can be done here, 
the matrix correlation can be computed using the function cor(). 
Mantel functions are also available in the vegan, ade4 and ape 
packages.
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Fig. 4.9 Bar plot showing the correlations between the original distance matrix and binary matrices 
computed from the dendrogram cut at various levels
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4.7.3.4  Silhouette Plot of the Final Partition

In our example, a number of groups that seems to be a good compromise between 
too few and too many is k = 4. Let us select this number for our final group diagnos-
tics. We can select the Ward clustering as our final choice, since this method 
 produced four reasonably well-balanced (not equal-sized, but without outliers) and 
well-delimited groups.

We can now proceed to examine if the group memberships are appropriate (i.e. no 
or few objects apparently misclassified). A silhouette plot is useful here (Fig. 4.10).
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Fig. 4.10 Silhouette plot of the final, four-group partition from the Ward clustering
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4.7.3.5  Final Dendrogram with Graphical Options

Now it is time to produce the final dendrogram, where we can represent the four 
groups and improve the overall appearance with several graphical options (Fig. 4.11). 
Try the code, compare the results with it, and use the help files to understand the 
arguments used. Note also the use of a homemade function, hcoplot().
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Hints  When using rect.hclust() to draw boxes around clusters, as in 
the hcoplot() function used here, one can specify a fusion level 
(argument h=) instead of a number of groups (argument k=).

 Another function called identify.hclust() allows the interac-
tive cut of a tree at any position where one left-clicks with the mouse. It 
makes it possible to extract a list of objects from any given subgroup.

 The argument hang = -1  specifies that the branches of the dendrogram 
will all reach the value 0 and the labels will hang below that value.
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Fig. 4.11 Final dendrogram with boxes around the four selected groups. Species data
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Let us conclude with several other representations of the clustering results 
obtained above. The usefulness of these representations depends on the context.

4.7.3.6  Spatial Plot of the Clustering Result

The code below allows one to plot the clusters on a map representing the river. This 
is a very useful way of representing results for spatially explicit data (Fig. 4.12).
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Fig. 4.12 The four Ward clusters on a map of the Doubs river
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4.7.3.7  Heat Map and Ordered Community Table

See how to represent the dendrogram in a square matrix of coloured pixels, where 
the colour intensity represents the similarity among the sites (Fig. 4.13):
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Fig. 4.13 Heat map of the distance matrix reordered according to the dendrogram
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Hint Note that the hclust object has been converted to an object of class 
 dendrogram. This allows many advanced graphical manipulations 
of tree-like structures. See the documentation of the as.dendro-
gram() function, where examples are found.
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Finally, it may be useful to explore the clusters’ species contents directly, i.e. to 
reorder the original data table according to the group memberships. In order to 
avoid large values to clog the picture, Jari Oksanen proposes vegemite(), a 
function of vegan that can use external information to reorder and display a site-
by-species data table where abundance values can be recoded in different ways. If 
no specific order is provided for the species, these are ordered by their weighted 
averages on the site scores. This way of ordering species can also be used in a heat 
map with colour intensities proportional to the species abundances (Fig. 4.14):

4.8  Non-hierarchical Clustering

Partitioning is looking for a single partition of a set of objects. The problem can be 
stated as follows: given n objects in a p-dimensional space, determine a partition of 
the objects into k groups, or clusters, such that the objects within each cluster are 
more similar to one another than to objects in the other clusters. The user deter-
mines the number of groups, k. The partitioning algorithms require an initial con-
figuration, i.e. an initial attribution of the objects to the k groups, which will be 
optimized in a recursive process. The initial configuration may be provided by 
theory, but it is often random. In that case, the analysis is run a large number of 
times with different initial configurations to find the best solution.

Here we shall present two related methods, k-means partitioning and  partitioning 
around medoids (PAM). An important note is that if the variables in the data table 
are not dimensionally homogeneous, they must be standardised prior to  partitioning. 
Otherwise, the total variance of the data has a dimension equal to the sum of the 
squared dimensions of the individual variables, which is meaningless.
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4.8.1  k-Means Partitioning

The k-means method uses the local structure of the data to delineate clusters: groups 
are formed by identifying high-density regions in the data. To achieve this, the 
method iteratively minimizes an objective function called the total error sum of 
squares ( 2

kE or TESS or SSE), which is the sum of the within-groups sums-of-
squares. This quantity is the sum, over the k groups, of the sums of the squared 

Fig. 4.14 Heat map of the doubly ordered community table, with dendrogram
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distances among the objects in the groups, each divided by the number of objects in 
the group. This is the same criterion as used in Ward’s agglomerative clustering.

If one has a pre-determined number of groups in mind, the recommended func-
tion to use is kmeans() of the stats package. The analysis can be automatically 
repeated a large number of times (argument nstart) using different random 
 initial configurations. The function finds the best solution (smallest SSE value) 
after repeating the analysis “nstart” times.

k-Means is a linear method, i.e. it is not appropriate for raw species abundance 
data with lots of zeros (see Sect. 3.2.2). A solution is to pre-transform the species 
data. To remain coherent with the previous sections, we can use our “normalized” 
species data. When applied in combination with the Euclidean distance implicit in 
k-means, the analysis preserves the chord distance among sites. To compare with the 
results of Ward’s clustering computed above, let us ask for k = 4 groups and compare 
the outcome with the four groups derived from the Ward hierarchical clustering.

To compute k-means partitioning from distance indices that cannot be obtained 
by a transformation of the raw data followed by calculation of the Euclidean dis-
tance, for example the Bray–Curtis dissimilarity, one has to compute first a rectan-
gular data table with n rows by principal coordinate analysis (PCoA, Chap. 5) of the 
distance matrix, then use that rectangular table as input to k-means partitioning. For 
the Bray–Curtis dissimilarity, one has to compute the PCoA on the square root of 
the Bray–Curtis dissimilarities to obtain a fully Euclidean solution, or use a PCoA 
function that provides a correction for negative eigenvalues. These points are dis-
cussed in Chap. 5.

A partitioning yields a single partition with a predefined number of groups. If 
you want to try several solutions with different k values, you must rerun the analy-
sis. But which is the best solution in terms of number of clusters? To answer this 
question, one has to state what “best” means. Many criteria exist; some of them are 
available in the function clustIndex() of the package cclust. Milligan and 
Cooper (1985) recommend maximizing the Calinski–Harabasz index (F-statistic 
comparing the among-group to the within-group sum of squares of the partition), 
although its value tends to be lower for unequal-sized partitions. The maximum of 
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“ssi” (“Simple Structure Index”, see the help file of clustIndex() for details) 
is another good indicator of the best partition in the least-squares sense.

Fortunately, one can avoid running kmeans() many times by hand. vegan’s 
function cascadeKM() is a wrapper for the kmeans() function, that is, a func-
tion that uses a basic function, adding new properties to it. It creates several partitions 
forming a cascade from small (argument inf.gr) to large values of k (argument 
sup.gr). Let us apply this function to our data set, asking for two to ten groups and 
the simple structure index criterion for clustering quality, followed by a plot of the 
results (Fig. 4.15).

Hint In the plot, sortg=TRUE reorders the objects in such a way as to put 
together, insofar as possible, the objects pertaining to each group.

The function cascadeKM() provides numeric results as well. Among them, 
the element “result” gives the TESS statistic and the value of the criterion 
 (calinski or ssi) for each value of k. The element “partition” contains a table 
showing the group attributed to each object. If the geographic coordinates of the 
objects are available, they can be used to plot a map of the objects, with symbols 
or colours representing the groups specified by one of the columns of this table.
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After defining site clusters, it is time to examine their contents. The simplest way 
is to define subgroups of sites on the basis of the typology retained and compute 
basic statistics. Here is an example based upon the k-means four-group partition.

Fig. 4.15 k-means cascade plot showing the group attributed to each object for each partition
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4.8.2  Partitioning Around Medoids

Partitioning around medoids (Chapter 2 in Kaufman and Rousseeuw 1990) 
“searches for k representative objects or medoids among the observations of the 
dataset. These observations should represent the structure of the data. After finding 
a set of k medoids, k clusters are constructed by assigning each observation to the 
nearest medoid. The goal is to find k representative objects which minimize the sum 
of the dissimilarities of the observations to their closest representative object” 
(excerpt from the pam help file). By comparison, k-means minimizes the sum of the 
squared Euclidean distances within the groups. k-means is thus a traditional least-
squares method, while PAM is not. As implemented in R, pam()(package clus-
ter) accepts raw data or dissimilarity matrices (an advantage over kmeans() 
since it broadens the choice of association measures) and allows the choice of an 
optimal number of groups using the silhouette criterion. The code below ends with 
a double silhouette plot comparing the k-means and PAM results (Fig. 4.16).
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Hint The PAM method is presented as “robust” because it minimizes a sum 
of dissimilarities instead of a sum of squared euclidean distances. It is 
also robust in that it tends to converge to the same solution with a wide 
array of starting medoids for a given k value; this does not guarantee, 
however, that the solution is the most appropriate for a given research 
purpose.

This example shows that even two methods that are devoted to the same goal and 
belong to the same general class (here non-hierarchical clustering) may provide 
diverging results. It is up to the user to choose the one that yields classifications that 
are bringing out more pertinent information or are more closely interpretable using 
environmental variables (next section).
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As a final bonus, you could create a map of the four k-means clusters similar to 
that created for the Ward clustering. The code is the same, except for the fact that 
the object containing the clustering information is now spe.kmeans$cluster 
for results obtained from kmeans(), or in object spe.KM.cascade$parti-
tion for calculations done with cascadeKM():

4.9  Comparison with Environmental Data

All the methods above have been presented with examples on species abundance 
data. They can be applied to any other type of data as well, particularly environ-
mental data tables. Of course, care must be taken with respect to the choice of the 
proper coding and transformation for each variable (Chap. 2) and of the association 
measure (Chap. 3).



88 4 Cluster Analysis

4.9.1  Comparing a Typology with External Data 
(ANOVA Approach)

We have seen that internal criteria, such as silhouette or other clustering quality 
indices, which rely on the species data only, were not always sufficient to select the 
“best” partition of the sites. The final choice of a typology should be based on the 
ecological interpretability of the groups. It could be seen as an external validation 
of the site typology.

Confronting clustering results (considered as response data) with external, inde-
pendent explanatory data could be done by discriminant analysis (Sect. 6.5). From 
a reversed point of view, the clusters obtained from the species data can be consid-
ered as a factor, or classification criterion, in the ANOVA sense. Here is a simplified 
example, showing how to perform quick assessments of the ANOVA assumptions 
(normality of residuals and homogeneity of variances) on several environmental 
variable separately, followed either by a classical ANOVA or by a non-parametric 
Kruskal–Wallis test. Boxplots of the environmental variables (after some simple 
transformations to improve normality) for the four k-means groups are also pro-
vided (Fig. 4.17).



894.9 Comparison with Environmental Data

Hints  Note the use of attach() and detach() to avoid the repetition of 
the name of the object in all analyses.

 The null hypothesis for the Shapiro test is that the variable is nor-
mally distributed; in the Bartlett test, H

0
 states that the variances are 

equal among the groups. Therefore, for each of these tests, the p-value 
should be larger than the significance level, i.e. P > 0.05, for the 
ANOVA assumptions to be fulfilled.
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Of course, the reverse procedure could be applied as well. One could cluster the 
environmental variables (to obtain a set of habitat types) and test if the species 
respond to these habitat types significantly through indicator species analysis 
(Sect. 4.10.4). In this approach, the species are tested one by one against the habitat 
types. Consider the question of multiple testing if several species are tested inde-
pendently. As an alternative, ordination-based multivariate approaches are proposed 
in Chap. 6 to directly describe and test the species–habitat relationships.
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Fig. 4.17 Boxplots of four environmental variables grouped according to the four species-based 
k-means groups
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4.9.2  Comparing Two Typologies (Contingency Table Approach)

If you simply want to compare a typology generated from the species data to one 
independently obtained from the environmental variables, you can generate a table 
crossing the two typologies and test the relationship using a chi-square test:

Such tables could also be generated using categorical explanatory variables, 
which can be directly compared with the species typology.

4.10  Species Assemblages

Many approaches exist to the problem of identifying species associations in a data 
set. Here are some examples.

4.10.1  Simple Statistics on Group Contents

The preceding sections immediately suggest a way to define crude assemblages: 
compute simple statistics (for instance mean abundances) from typologies obtained 
through a clustering method and look for species that are more present, abundant 
or specific in each cluster of sites.
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4.10.2  Kendall’s W Coefficient of Concordance

Legendre (2005) proposed to use Kendall’s W coefficient of concordance, together 
with permutation tests, to identify species assemblages in abundance data (this 
method cannot be applied to presence–absence data): “An overall test of indepen-
dence of all species is first carried out. If the null hypothesis is rejected, one looks for 
groups of correlated species and, within each group, tests the contribution of each 
species to the overall statistic, using a permutation test.” In this method, the search 
for species associations is done without any reference to a typology of the sites known 
a priori or computed from other data, for example, environmental. The method aims 
at finding the most encompassing assemblages, i.e. the smallest number of groups 
containing the largest number of positively and significantly associated species.

The package kendall.W has been written to make these computations. Its func-
tions are now part of vegan. The simulation results accompanying the Legendre 
(2005) paper show that “when the number of judges [= species] is small, which is 
the case in most real-life applications of Kendall’s test of concordance, the classical 
c2 test is overly conservative, whereas the permutation test has correct Type I error; 
power of the permutation test is thus also higher.” The kendall.global() 
 function also includes a parametric F-test which does not suffer from the problems 
of the c2 test and has correct Type I error (Legendre 2010).
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As a simple example, let us extract the most abundant species of the fish data 
set, classify them into several groups using k-means partitioning (Fig. 4.18), and 
run a global test (kendall.global()) to know if all groups of species (called 
“judges” in the original paper) are globally significantly associated. If it is the case, 
we shall run a posteriori tests (kendall.post()) on the species of each group 
to verify if all species within a group are concordant.

Look at the corrected permutational p-values. If all values are equal to or smaller 
than 0.05, you can consider that all groups are globally significant, i.e. on the 
whole, they contain species that are concordant; this does not mean that all species 
in a globally significant group are concordant, only that at least some species are. 
If the corrected p-values for some groups are not significant, it indicates that these 
groups have to be subdivided into smaller groups.
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Now let us run a posteriori tests to identify the significantly concordant species 
within each group:

Look at the mean Spearman correlation coefficients. Within each group, concor-
dant species must be positively associated with the others at a significant corrected 
p-value. Is it the case for all species? A species with a negative mean of its 
Spearman correlations with the other members of its cluster is incorrectly classi-
fied, suggesting that it should be left out of the group. If several species have nega-
tive mean Spearman correlations, the corresponding group should be split since not 
all members are belonging to the same association. Species whose corrected p- 
values are not significant are not contributing to the overall concordance of their 
group and should be left out.
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Ecological theory predicts nested structures in ecological relationships. Within 
communities, subgroups of species can be more or less loosely or densely associ-
ated. One can explore such avenues by investigating smaller species groups within 
the large species associations revealed by the Kendall W test results.

The groups of species defined here may be further interpreted ecologically by 
different means. For instance, mapping their abundances along the river and com-
puting summary statistics on the sites occupied by the species assemblages can help 
in assessing their ecological roles. Another avenue towards interpretation is to com-
pute an RDA (Sect. 6.3) of the significantly associated species with respect to a set 
of explanatory environmental variables.

In this example, we ran the Kendall W analysis on the basis of the two groups 
suggested by the k-means partitioning of the species. A two-group partition is the 
most parsimonious model in this example, but that is not always the case. If the 
result had shown several misclassified species, we would have had either to recon-
sider the species typology (for instance, by trying other clustering methods), or 
rerun the analysis for three groups or more.

4.10.3  Species Assemblages in Presence–Absence Data

For presence–absence data, a new method is under development (Clua et al. 2010). 
The method consists in computing the a component of Jaccard’s S

7
 coefficient (as 

a measure of co-occurrences among species) in R-mode and assessing its probabil-
ity by means of a permutation test in the spirit of the Raup and Crick (1979) coef-
ficient. The p-values act as distances: they have very small values for highly 
co-occurring species. We provide an R function called test.a() to compute this 
new coefficient. Readers are invited to apply it to the Doubs fish data transformed 
to presence–absences. A critical point is to specify enough permutations for the 
probabilities to survive a correction for multiple testing (see Sect. 7.2.6). In the 
Doubs data, there are 27 species, and thus 27 × 26/2 = 351 tests are run. A Bonferroni 
 correction requires a p-value of 0.05/351 = 0.0001425 to remain significant at the 
0.05 level. This requires 99999 permutations, since the smallest p-value would be 
1/(99999 + 1) = 0.00001. Beware: this can be long on some computers.
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4.10.4  IndVal: Species Indicator Values

Dufrêne and Legendre (1997) proposed an original way to compute indicator values 
of species within clusters of sites. Their IndVal index combines a species mean 
abundances and its frequencies of occurrence in the groups. A high indicator value 
is obtained by a combination of large mean abundance within a group compared to 
the other groups (specificity) and presence in most sites of that group (fidelity). 
Dave Roberts, the author of the package labdsv used below, summarized the 
concept as follows (pers. comm.): “The indval approach looks for species that are 
both necessary and sufficient, i.e. if you find that species you should be in that type, 
and if you are in that type you should find that species.”

The groups of sites can be defined in various ways. A simple, albeit a little cir-
cular way is to use the result of a cluster analysis based on the species data. The 
indicator species are then simply the most prominent members of these groups. 
Another approach, which is conceptually and statistically better, consists in cluster-
ing the sites on the basis of independent data (environmental variables, for instance). 
The indicator species can then be considered indicator in the true sense of the word, 
i.e. species closely related to the ecological conditions of their group. The a poste-
riori statistical significance of the indicator values (i.e. the probability of obtaining 
by chance as high an indicator value as observed) is assessed by means of a permu-
tation test.

The Dufrêne and Legendre index is available in function indval() of package 
labdsv. Let us apply it to our fish data. As an example of a search of indicator 
species related to one explanatory variable, we could for instance ask ourselves if 
the variable das (distance from the source), acting as a surrogate of the overall 
river gradient, could be divided into groups upon which indicator species could be 
looked for.
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In Sect. 4.11 you will find another application in relationship with the MRT 
method. Some detailed results are presented.

The search for indicator species has known some recent developments. De Cáceres 
and Legendre (2009) describe a series of 12 indices that can be used to identify 
indicator species. They belong to two groups: correlation indices, which should be 
used to determine the ecological preference of a given species among a set of alter-
native site groups, and indicator value indices, which are more useful for assessing 
the species predictive values, e.g. for field determination of community types or for 
ecological monitoring (De Cáceres and Legendre 2009, p. 3573). A new package 
indicspecies1 computes different indicator species indices, including IndVal 
(or, actually, the square root of IndVal).

Two especially interesting features of this package are the computation of boot-
strapped confidence intervals around indicator values (argument nboot of func-
tion strassoc()), and the (computer-intensive) possibility of pooling all groups 
of a typology in turn to look for species that may be indicators of pooled groups 
 (function multipatt()).

1 Available on http://www.bio.umontreal.ca/legendre/indexEn.html and http://sites.google.com/
site/miqueldecaceres/software.
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4.11  Multivariate Regression Trees: Constrained Clustering

4.11.1  Introduction

Multivariate regression trees (MRT; De’ath 2002) are an extension of univariate 
regression trees, a method allowing the recursive partitioning of a quantitative vari-
able under the control of a set of quantitative or categorical explanatory variables 
(Breiman et al. 1984). Such a procedure is sometimes called constrained or super-
vised clustering. The result is a tree whose “leaves” (terminal groups of sites) are 
composed of subsets of sites chosen to minimize the within-group sums of squares 
(as in a k-means clustering), but where each successive partition is defined by a 
threshold value or a state of one of the explanatory variables. Among the numerous 
potential solutions in terms of group composition and number of leaves, one usually 
retains the one that has the best predictive power. This stresses the fact that, con-
trary to most constrained ordination methods described in Chap. 6, where the selec-
tion of explanatory variables is made on the basis of explanatory power, MRT 
rather focuses on prediction, making it a very interesting tool for practical applica-
tions, as in environmental management. The focus on prediction is imbedded in the 
method, as becomes clear below.

MRT is a powerful and robust method that can handle a wide variety of situa-
tions, even those where some values are missing, and where the relationships 
between the response and explanatory variables are non-linear or high-order inter-
actions among explanatory variables are present.

4.11.2  Computation (Principle)

The computation of an MRT consists in two procedures running together: (1) con-
strained partitioning of the data and (2) cross-validation of the results. Let us first 
briefly explain the two procedures. After that, we see how they are applied together 
to produce a model that has the form of a decision tree.

4.11.2.1  Constrained Partitioning of the Data

For each explanatory variable, produce all possible partitions of the sites into •	
two groups. For a quantitative variable, this is done by sorting the sites 
according to the ordered values of the variable, and repeatedly splitting the 
series after the first, second… (n − 1)th object. For a categorical variable, 
 allocate the objects to two groups, screening all possible combinations of 
levels. In all cases, compute the resulting sum of within-group sum of squared 
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distances to the group mean (within-group SS) for the response data. Retain 
the solution minimizing this quantity, along with the identity and value of the 
explanatory variable or the level of the categorical variable producing the 
partition retained.
Repeat the same procedure within each of the two subgroups retained above; in •	
each group, retain the best partition along with the corresponding explanatory 
variable and its threshold value.
Continue within all partitions until all objects form their own group. When that •	
point is reached, select the tree with size (number of groups) appropriate to the 
aims of the study. For studies with a predictive objective, cross-validation, which 
is a procedure to identify the best predictive tree, is developed below.
Apart from the number and composition of the leaves, an important characteris-•	
tic of a tree is its relative error (RE), i.e. the sum of the within-group SS over all 
leaves divided by the overall SS of the data. In other words, this is the fraction 
of variance not explained by the tree. Without cross-validation, among the suc-
cessive partitioning levels, one would retain the solution minimizing the RE; this 
would be equivalent to retain the solution maximizing the R2. However, this 
would be an explanatory rather than predictive approach, De’ath (2002) states 
that “RE gives an over-optimistic estimate of how accurately a tree will predict 
for new data, and predictive accuracy is better estimated from the cross- 
validated relative error (CVRE).”

4.11.2.2  Cross-Validation of the Partitions and Pruning of the Tree

At which level should we prune a tree, i.e. cut each of its branches so as to retain 
the most sensible partition? To answer this question in a prediction-oriented man-
ner, one uses a subset of the objects (training set) to construct the tree, and the 
remaining objects (test set) to validate the result by allocating them to the 
 constructed groups. A good predictive tree assigns the objects of the test set 
 correctly, i.e. the true response variables of the objects newly assigned (on the basis 
of their explanatory variables) are close to the centroids of the response variables of 
the group where they are assigned (i.e. the predicted values). The performance  
of such a tree is assessed by its predictive error.

The measure of predictive error is CVRE. The function is:
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 is one observation of the test set k, ( )
ˆ

j ky is the predicted value of one 
observation in one leaf (centroid of the sites of that leaf), and the denominator 
represents the overall dispersion (sum of squares) of the response data.

The CVRE can thus be defined as the ratio between the dispersion unexplained 
by the tree (summed over the k test sets) divided by the overall dispersion of the 
response data. Of course, the numerator changes after every partitioning event. 
CVRE is 0 for perfect predictors and close to 1 for a poor set of predictors.

4.11.2.3  MRT Procedure

Now that we have both components of the methods, let us put them together to 
explain the sequence of events of a cross-validated MRT run:

Randomly split the data into •	 k (by default k = 10) groups.
Leave one of the •	 k groups out, and build a tree by constrained partitioning, the 
decisions being made on the basis of the minimal within-group SS.
Rerun the step above •	 k − 1 times, leaving out each of the test groups in turn.
In each of the •	 k solutions above, and for each possible partition size (number of 
groups) within these solutions, reallocate the test set. Compute the CVRE for all 
partition sizes of the k solutions (one CVRE value per size). Formula (4.1) 
encompasses the computation for one level of partitioning and all k solutions.
Pruning of the tree: retain the partition size for which the CVRE is smallest. An •	
alternative is to retain a smallest size for which the CVRE value is the minimal 
CVRE value plus one standard error of the CVRE values. This is called the 1 SE 
rule.
To obtain an estimate of the error of this process, run it a large number of times •	
(100 or 500 times) with other random assignations of the objects into k groups.
The final tree retained is the one showing most of the smallest CVRE values •	
over all permutations, or the one respecting most often the 1 SE rule.

In MRT analysis, the computations of sums-of-squares are done in Euclidean 
space. To account for special characteristics of the data, they can be pre- transformed 
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prior to being submitted to the procedure. Pre-transformations for species data prior 
to their analysis by Euclidean-based methods are presented in Sect. 2.2.4.

4.11.3  Application Using Packages mvpart and MVPARTwrap

Package mvpart has been written to compute MRT, using univariate regression 
trees computed by a function called rpart(). Its use requires that the response 
data belong to class “matrix” and the explanatory variables to class “data frame”. 
The relationship is written as a formula of the same type as those used in regression 
functions (see ?lm). The example below shows the simplest implementation, 
where one uses all the variables contained in the explanatory data frame.

Let us build a multivariate regression tree of the Doubs fish data constrained by 
the environmental variables. We use the fish species data with site vectors normal-
ized to length 1 (chord transformation in Sect. 2.2.4) so that the distance actually 
preserved is the chord distance. Among the arguments, we use xval= 29 cross-
validation groups (i.e. as many groups as rows in the data, instead of the usual 10, 
owing to the small number of observations), 100 iterations, and we allow ourselves 
to interactively pick a solution on a graph provided by mvpart() (Fig. 4.19). The 
graph displays the relative error , which is steadily decreasing when the number of 
groups increases, and CVRE, which usually drops first sharply and then goes to a 
minimum before increasing again. Prediction is optimal for a given number of 
clusters, but its quality decreases when the data are exaggeratedly fragmented into 
many small groups.

The best solution is not always obvious, however. Sometimes, it is the simple 
two-group solution which shows the smallest CVRE. The graph provides error bars 
representing one standard error for the CVRE, and an orange horizontal line located 
one standard error above the minimal CVRE solution (large red spot). According 
to De’ath (2002), one may select that tree as the best predictive tree or, following 
the rule proposed by Breiman et al. (1984) for univariate regression trees, one may 
select the smallest tree within one standard error of the best tree; this is the tree with 
k = 2 in our example, identified by “Min + 1 SE”. That tree is more parsimonious 
and only slightly worse than the best predictive tree.
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If argument xv="pick" has been used, which we recommend, one left-clicks 
on the point representing the desired number of groups. A tree is then drawn. Here, 
we decided to pick the four-group solution. While not the absolute best, it still ranks 
among the good ones and avoids producing too many small groups (Fig. 4.20).

Hint  Argument xv="pick" allows the interactive pick of a tree among 
those proposed. If one prefers that the tree with the minimum CVRE be 
automatically chosen, then xv="min".

Fig. 4.19 Graph of the (steadily decreasing) relative error RE and the cross-validated relative 
error CVRE. The solution with the smallest CVRE is indicated (red point), as well as CVRE error 
bars. The green bars indicate the number of times that the solution was selected as the best during 
the cross-validation iterations
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The tree produced by this analysis is rich in information. Apart from the general 
statistics appearing at the bottom of the plot (residual error, i.e. the reciprocal of the 
R2 of the model; cross-validated error; standard error), the following features are 
important:

Each node is characterized by a threshold value of an explanatory variable. For •	
instance, the first node splits the data into two groups of 16 and 13 sites on the 
basis of altitude. The critical value (here 340 m) is often not found among the 
data; it is the mean of the two values delimiting the split. If two or more 
 explanatory variables lead to equal results, an arbitrary choice is made among 
them. In this example, for instance, variable das with value 204.8 km would 
yield the same split.

Fig. 4.20 Multivariate regression tree of the Doubs fish species explained by their environmental 
variables. Interpretation: see text

alt>=340

amm< 0.11 amm>=0.45

alt< 340

amm>=0.11 amm< 0.45

3.08 : n=13 0.95 : n=3 0.356 : n=3 1.27 : n=10

Error :  0.37   CV Error :  0.701   SE :  0.102
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Each leaf (terminal group) is characterized by its number of sites and its RE as •	
well as by a small bar plot representing the abundances of the species (in the 
same order as is the response data matrix). Although difficult to read if there are 
many species, these plots show that the different groups are indeed characterized 
by different species. A more statistical approach is to search for characteristic or 
indicator species using indval() (Sect. 4.9). See below for an example.
The tree can be used to allocate a new observation to one of the groups on the •	
basis of the values of the relevant environmental variables. “Relevant” means 
here that the variables needed to allocate an object may differ depending on the 
branch of the tree. Observe that a given variable may be used several times along 
the course of the successive binary partitions.

As proposed in the code below, apart from the residuals, one can retrieve the 
objects of each node and examine the node’s characteristics at will:
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Unfortunately, extracting other numerical results from an mvpart() object is 
no easy task. This is why Marie-Hélène Ouellette wrote a wrapper doing just that 
and providing a wealth of additional, useful information. The package is called 
MVPARTwrap and the function is MRT(). Its output comprises two graphs and a 
lot of numerical results. Let us apply it to our previous result.

Hint Argument percent indicates the smallest percentage of variance 
explained by a species at a node that one considers interesting. No test 
is made here, it is an arbitrarily chosen value.

The function displays some results on-screen during execution. These are pre-
sented in a form close to canonical ordination results (see Chap. 6) because the 
function indeed runs a redundancy analysis on the species data, explained by the 
variables retained by the MRT analysis, and recoded following the threshold values 
of the tree nodes. Among the results, let us mention the R2, which is the reciprocal of 
the tree RE. In our example, Fig. 4.20 gives an error of 0.37 for the tree, therefore 
the R2 is equal to 0.63.

The summary of the result object provides information about the contribution of 
each node to the explained variance (“Complexity”). The sum of these values gives 
the overall R2. Furthermore, it identifies “discriminant” species at each node, selecting 
the species that contribute most to the explained variance (down to a minimum 
arbitrarily set by the user with the argument percent). The mean (transformed) 
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abundances are given for both branches of the nodes, so one can see the branch for 
which the species are discriminant. For instance, our example analysis shows TRU,  
VAI and LOC  for the left branch (higher altitude), and ABL for the right one. The 
summary lists the sites present in each leaf. The result object itself contains the 
complete results from which the summary is drawn.

4.11.4  Combining MRT and IndVal

As suggested in the previous section, one could submit the MRT partition to a 
search for indicator species (IndVal, Sect. 4.10.4). This is better than visual exami-
nation of the results for the identification of “discriminant” species: one can test the 
significance of the indicator values.

Among other results, one finds here the permutation test results showing which 
species are significant indicators of the leaves. The following list gives the leaf 
number for the significant indicator species, followed by the list of the indicator 
values:

One sees that not all groups harbour indicator species, and that most of these are 
in the fourth (rightmost) group. Individually, the result for the brown trout (TRU), 
for instance, shows a significant indicator value of 0.7900 in the first leaf.
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4.11.5  MRT as a “Chronological” Clustering Method

In cases where the data present themselves in a spatial or temporal sequence, the 
contiguity information can be taken into account when looking for groups (and 
discontinuities) along the series. Several methods have been proposed for that pur-
pose in the temporal (e.g. Gordon and Birks 1972, 1974; Gordon 1973, Legendre 
et al. 1985) and spatial (Legendre et al. 1990) contexts. We suggest that MRT can 
be easily applied to such situations. The trick is simple: use a vector describing the 
sequence as the only explanatory variable. In our example data, the one-dimension 
position variable is das (distance from the source). One proceeds as previously. 
When interpreting the result, be aware that in the output object the site groups do 
not always follow the true order of the sequence. The result is displayed in 
Fig. 4.21.
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Fig. 4.21 Clustering with contiguity constraint using MRT
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4.12  A Very Different Approach: Fuzzy Clustering

At the beginning of this chapter, we defined clusters produced by clustering methods 
as non-overlapping entities. This definition is a natural consequence of the focus of 
most methods on discontinuities. However, there is another approach to clustering 
that recognizes that, sometimes, cluster limits may not be so clear-cut as one would 
like them to be. Consequently, a different family of hierarchical and non-hierarchical 
methods has been developed, namely, fuzzy clustering. We do not develop this family 
in detail, but briefly show one approach that is akin to non-hierarchical k-means 
partitioning. Its name is c-means clustering (Kaufman and Rousseeuw 1990).

4.12.1  Fuzzy c-Means Clustering Using cluster’s  
Function fanny()

Instead of a classification where a given object belongs to one and only one cluster, 
c-means clustering associates to all objects a series of membership values  measuring 
the strength of their memberships in the various clusters. An object that is clearly 
linked to a given cluster has a strong membership value for that cluster and weak 
(or null) values for the other clusters. The membership values add up to 1 for each 
object.

Fuzzy c-means clustering is implemented in several packages, e.g. cluster 
(function fanny()) and e1071 (function cmeans()). The short example below 
uses the former.

Function fanny() accepts either site-by-species or distance matrices. In the 
former case, the default metric is euclidean. Here, we directly use as input the 
chord distance matrix previously computed from the fish species data. An equiva-
lent result would be obtained by running the chord-transformed species data “spe.
norm” with the metric="euclidean" option.

The plot function can return two diagrams: an ordination (see Chap. 5) of the 
clusters and a silhouette plot. Here, we present the latter (Fig. 4.22) and we replace 
the original ordination diagram by a PCoA combined with star plots of the objects 
(Fig. 4.23). Each object is associated with a small “star” whose segment radiuses 
are proportional to its membership coefficient.
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Hints Argument memb.exp is a kind of “fuzziness exponent” with values 
ranging from 1 (close to non-fuzzy clustering) to any large value.

 In the legend() function, argument locator(1) allows users to 
position the legend on the graph interactively, by clicking on the 
desired position.
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The silhouette plot (Fig. 4.22) shows, in particular, that cluster 2 is not well 
defined. On the ordination diagram (Fig. 4.23), the star plots of the ill-classified 
objects (10, 15, 19) also illustrate that their membership is unclear.

Fig. 4.22 Silhouette plot of the c-means fuzzy clustering of the fish data preserving the chord 
distance
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The numerical results give the membership coefficients of the objects. The sum of 
each row is equal to 1. Objects belonging unambiguously to one cluster, like sites 2, 
21 or 23, have a high membership value for that cluster and correspondingly low 
values for the other clusters. Conversely, one can easily locate objects that are difficult 
to classify: their coefficients have similar values in most if not all clusters. Sites 5, 9 

Fig. 4.23 c-Means fuzzy clustering of the fish data preserving the chord distance. Principal coor-
dinate ordination associated with star plots showing the memberships of the sites. Cluster shadings 
as in Fig. 4.22
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and 19 are good examples. An additional result is the nearest crisp clustering, i.e. the 
cluster to which each object has the highest membership coefficient.

While “hard” clustering may appear somewhat unrealistic in ecology, its appli-
cation is of great help as soon as one needs a typology or a decision-making tool 
requiring unambiguous allocation of sites. Fuzzy clustering is a more nuanced, and 
therefore more realistic approach in most ecological situations if its purpose is to 
describe relationships among sites. Other very powerful methods exist that are 
designed to reveal the structure of continuous data. These methods, simple and 
constrained ordination, are explored in the following chapters.

4.13 Conclusion

This chapter has not covered all the possibilities offered by the large family of 
cluster analyses, but you have explored its main avenues and seen how flexible this 
approach can be. Every ecological research project has its own features and 
 constraints; in many cases, cluster analysis can provide very rich insights into the 
data. The clustering techniques themselves are numerous, as are also the ways of 
interpreting the results. It is up to you to exploit this lore to optimize the output of 
your research.
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5.1  Objectives

While cluster analysis looks for discontinuities in a dataset, ordination extracts the 
main trends in the form of continuous axes. It is therefore particularly well adapted 
to analyse data from natural ecological communities, which are generally struc-
tured in gradients.

Practically, you will:

Learn how to choose among various ordination techniques (PCA, CA, PCoA •	
and NMDS), compute them using the correct options, and properly interpret the 
ordination diagrams
Apply these techniques to the Doubs river data•	
Overlay the result of a cluster analysis on an ordination diagram to improve the •	
interpretation of the clustering results
Interpret the structures in the species data using the environmental variables •	
from a second dataset
Write your own PCA function•	

5.2  Ordination Overview

5.2.1  Multidimensional Space

A multivariate data set can be viewed as a collection of sites positioned in a space 
where each variable defines one dimension. There are thus as many dimensions as 
variables. To reveal the structure of the data, it would be interesting to represent the 
main trends in the form of scatterplots of the sites. Since ecological data generally 
contain more than two variables, it is tedious and not very informative to draw the 
objects in a series of planes defined by all possible pairs of descriptors. For 
instance, if the matrix contains ten descriptors, the number of planes to draw would 

Chapter 5
Unconstrained Ordination



116 5 Unconstrained Ordination

be equal to (10 × 9)/2 = 45. Such a series of scatterplots would allow neither to bring 
out the most important structures of the data, nor to visualize the relationships 
among descriptors (which, in general, are not linearly independent of one another). 
The aim of ordination methods is to represent the data along a reduced number of 
orthogonal axes, constructed in such a way that they represent, in decreasing order, 
the main trends of the data. These trends can then be interpreted visually or in 
association with other methods such as clustering or regression. Here, we shall 
address four basic techniques. All these methods are descriptive: no statistical test 
is provided to assess the significance of the structures detected. That is the role of 
constrained ordination, a family of methods that are presented in Chap. 6.

5.2.2  Ordination in Reduced Space

Most ordination methods (except NMDS) are based on the extraction of the eigen-
vectors of an association matrix. They can be classified according to the distance 
preserved among sites and to the type of variables that they can handle. Legendre 
and Legendre (1998, Table 9.1, p. 388) provide a table showing their domains of 
application.

The basic principle of ordination in reduced space is the following. Imagine an 
n × p data set containing n objects and p variables. The n objects can be represented 
as a cluster of points in the p-dimensional space. Now, this cluster is generally not 
spheroid: it is elongated in some directions and flattened in others. These directions 
are not necessarily aligned with a single dimension (= a single variable) of the 
multidimensional space. The direction where the cluster is most elongated corre-
sponds to the direction of largest variance of the cluster. This is the first axis that 
an ordination will extract. The next axis to be extracted is the second most impor-
tant in variance, provided that it is orthogonal (linearly independent, uncorrelated) 
to the first one. The process continues until all axes have been computed.

When there are a few major structures in the data (gradients or groups) and the 
method has been efficient at extracting them, then the few first axes contain most 
of the useful information, i.e. they have extracted most of the variance of the data. 
In that case, the distances among sites in the projection in reduced space (most 
often two-dimensional) are relatively similar to the distances among objects in the 
multidimensional space. Note, however, that an ordination can be useful even when 
the first axes account for small proportions of the variance. This may happen when 
there are some interesting structures in an otherwise noisy data set. The question 
arising is then: how many axes should one retain and interpret? In other words, how 
many axes represent interpretable structures? The answer depends on the method; 
several helping procedures are explained in due course to answer this question.
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The methods that are presented in this chapter are:

•	 Principal component analysis (PCA): the main eigenvector-based method. 
Works on raw, quantitative data. Preserves the Euclidean distance among sites.

•	 Correspondence analysis (CA): works on data that must be frequencies or 
 frequency-like, dimensionally homogeneous, and non-negative. Preserves the c2 
distance among rows or columns. Mainly used in ecology to analyse species data 
tables.

•	 Principal coordinate analysis (PCoA): devoted to the ordination of distance 
matrices, most often in the Q mode, instead of site-by-variables tables. Hence, 
great flexibility in the choice of association measures.

•	 Nonmetric multidimensional scaling (NMDS): unlike the three others, this is 
not an eigenvector-based method. NMDS tries to represent the set of objects 
along a predetermined number of axes while preserving the ordering relation-
ships among them.

PCoA and NMDS can produce ordinations from any square distance matrix.

5.3  Principal Component Analysis

5.3.1  Overview

Imagine a data set whose variables are normally distributed. This data set is said 
to show a multinormal distribution. The first principal axis (or principal-compo-
nent axis) of a PCA of this data set is the line that goes through the greatest dimen-
sion of the concentration ellipsoid describing this multinormal distribution. The 
following axes, which are orthogonal to one another and successively shorter, go 
through the following greatest dimensions of the ellipsoid (Legendre and Legendre 
1998). One can derive a maximum of p principal axes from a data set containing 
p variables.

Stated otherwise, PCA carries out a rotation of the original system of axes 
defined by the variables, such that the successive new axes (called principal com-
ponents) are orthogonal to one another, and correspond to the successive dimen-
sions of maximum variance of the scatter of points. The principal components give 
the positions of the objects in the new system of coordinates. PCA works on a dis-
persion matrix S, i.e. an association matrix among variables containing the vari-
ances and covariances of the variables, or the correlations computed from 
dimensionally heterogeneous variables. It is exclusively devoted to the analysis of 
quantitative variables. The distance preserved is the Euclidean distance and the 
relationships detected are linear. Therefore, it is not generally appropriate to the 
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analysis of raw species abundance data. These can, however, be subjected to PCA 
after an appropriate pre-transformation (Sects. 2.2.4 and 5.3.3).

In a PCA ordination diagram, following the tradition of scatter diagrams in 
Cartesian coordinate systems, objects are represented as points and variables are 
displayed as arrows.

Later in this chapter, we show how to program a PCA in R using matrix equa-
tions. But for everyday users, PCA is available in several R packages. A convenient 
function for ecologists is rda() in package vegan. The name of the function 
refers to redundancy analysis, a method that is presented in Chap. 6. Other possible 
functions (not detailed here) are dudi.pca() (package ade4) and prcomp() 
(package stats).

5.3.2  PCA on the Environmental Variables of the Doubs  
Data Set Using rda()

Let us work again on the Doubs data. We have 11 quantitative environmental 
 variables at our disposal. How are they correlated? What can we learn from the 
ordination of the sites?

Since the variables are expressed in different measurement scales, we compute 
a PCA on the correlation matrix. Correlations are the covariances of standardized 
variables.

5.3.2.1  Preparation of the Data



1195.3 Principal Component Analysis

5.3.2.2  PCA on a Correlation Matrix

The “summary” output is presented as follows for scaling 2 (some results have 
been deleted):
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The ordination output uses some vocabulary that requires explanations.

•	 Inertia: in vegan’s language, this is the general term for “variation” in the 
data. This term comes from the world of CA (Sect. 5.4). In PCA, the “inertia” is 
either the sum of the variances of the variables (PCA on a covariance matrix) or, 
as in this case (PCA on a correlation matrix), the sum of the diagonal values of 
the correlation matrix, i.e. the sum of all correlations of the variables with them-
selves, which corresponds to the number of variables (11 in this example).

•	 Constrained and unconstrained: see Chap. 6 (canonical ordination). In PCA, 
the analysis is unconstrained, and so are the results.

•	 Eigenvalues: symbolized l
j
, these are measures of the importance (variance) of 

the axes. They can be expressed as Proportions Explained, or proportions of 
variation accounted for, by dividing them by the total inertia.

•	 Scaling: not to be confused with the argument scale calling for standardiza-
tion of variables. “Scaling” refers to the way ordination results are projected in 
the reduced space for graphical display. There is no single way to optimally 
display objects and variables together in a PCA biplot, i.e. a plot showing two 
types of results, here the sites and the variables. Two main types of scaling are 
generally used. Each of them has properties that must be kept in mind for proper 
interpretation of the biplots. Here, we give the essential features of each scaling. 
Please refer to Legendre and Legendre (1998, pp. 403–404) for a complete 
account.

 – Scaling 1 = distance biplot: the eigenvectors are scaled to unit length. (1) 
Distances among objects in the biplot are approximations of their 
Euclidean distances in multidimensional space. (2) The angles among 
descriptor vectors are meaningless.
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 – Scaling 2 = correlation biplot: each eigenvector is scaled to the square root of 
its eigenvalue. (1) Distances among objects in the biplot are not approxima-
tions of their Euclidean distances in multidimensional space. (2) The angles 
between descriptors in the biplot reflect their correlations.
In both cases, projecting an object at right angle on a descriptor approximates  –
the position of the object along that descriptor.
Bottom line: if the main interest of the analysis is to interpret the relationships  –
among objects, choose scaling 1. If the main interest focuses on the relation-
ships among descriptors, choose scaling 2.

•	 Species scores: coordinates of the arrow heads of the variables. For historical 
reasons, response variables are always called “species” in vegan, no matter 
what they represent.

•	 Site scores: coordinates of the sites in the ordination diagram. Objects are 
always called “Sites” in vegan output files.

5.3.2.3  Extracting, Interpreting and Plotting Results from a vegan 
Ordination Output Object

vegan output objects are complex entities, and extraction of their elements does 
not follow the basic rules of R. Type ?cca.object in the R console. This calls 
for a help file explaining all features of an rda() or cca() output object. The 
examples at the end of that help file show how to access some of the ordination 
results directly. Here, we access some important results as examples. Further results 
are examined later when useful.

 Eigenvalues

First, let us examine the eigenvalues. Are the first few clearly larger than the fol-
lowing ones? Here, a question arises: how many ordination axes are meaningful to 
display and interpret?

PCA is not a statistical test, but a heuristic procedure: it aims at representing the 
major features of the data along a reduced number of axes (hence, the expression 
“ordination in reduced space”). Usually, the user examines the eigenvalues, and 
decides how many axes are worth representing and displaying on the basis of the 
amount of variance explained. The decision can be completely arbitrary (for 
instance, interpret the number of axes necessary to represent 75% of the variance 
of the data), or assisted by one of several procedures proposed to set a limit 
between the axes that represent interesting variation of the data and axes that 
merely display the remaining, essentially random variance. One of these  procedures 
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(called the Kaiser–Guttman criterion) consists in computing the mean of all 
 eigenvalues and interpreting only the axes whose eigenvalues are larger than that 
mean. Another is to compute a broken stick model, which randomly divides a stick 
of unit length into the same number of pieces as there are PCA axes. The theoretical 
equation for the broken stick model is known. The pieces are then put in order of 
decreasing length and compared to the eigenvalues. One interprets only the axes 
whose eigenvalues are larger than the length of the corresponding piece of the stick, 
or, alternately, one may compare the sum of eigenvalues, from 1 to k, to the sum of 
the values from 1 to k predicted by the broken stick model. One can compute these 
two procedures by hand as follows (Fig. 5.1)1:

1 Comparison of a PCA result with the broken stick model can also be done by using function 
PCAsignificance() of package BiodiversityR.
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in PCA. Application to the Doubs environmental data
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To make things easier, the code above has been framed in a function called 
evplot(), which is used as follows:

Biplots of Sites and Variables

To plot PCA results in a proper manner, one has to show objects as points and 
variables as arrows. Two plots are produced here, the first in scaling 1 (optimal 
display of objects), the second in scaling 2 (optimal display of variables) (Fig. 5.2). 
We present two functions: vegan’s biplot.rda() and a function directly 
drawing scaling 1 and 2 biplots from vegan results: cleanplot.pca().

Hint Check in the cleanplot.pca() function how the plots are pro-
gressively built. First, one extracts two data tables (scaling 1 and 2, 
site scores and species scores) from the rda output object by means of 
the scores() function. Then an empty plot is produced using a spe-
cial vegan plotting function called plot.cca(). Site points (func-
tion points()) and site labels (function text()) are added 
afterwards. Finally, species arrows and their labels are drawn, and a 
circle (see below) is added to the  scaling 1 biplot.



1255.3 Principal Component Analysis

Now, it is time to interpret the two biplots. First, the proportion of variance 
accounted for by the first two axes is 0.751 or 75.1%. This high value makes us 
confident that our interpretation of the first pair of axes extracts most relevant infor-
mation from the data. Here is an example of how such a biplot can be interpreted.

First, the scaling 1 biplot displays a feature that must be explained. The circle is 
called a circle of equilibrium contribution. Its radius is equal to /d p , where d is 
the number of axes represented in the biplot (usually d = 2) and p is the number of 
dimensions of the PCA space (i.e. usually the number of variables of the data 
matrix).2 The radius of this circle represents the length of the vector representing a 
variable that would contribute equally to all the dimensions of the PCA space. 
Therefore, for any given pair of axes, the variables that have vectors longer than this 
radius make a higher contribution than average and can be interpreted with 
confidence.

The scaling 1 biplot shows a gradient from left to right, starting with a group 
formed by sites 1–10 which display the highest values of altitude (alt) and slope 
(pen), and the lowest values in river discharge (deb) and distance from the source 
(das); hardness (dur), which increases in the downstream direction, is also correlated 

2 Note, however, that vegan uses an internal constant to rescale its results, so that the vectors and 
the circle represented here are not equal but proportional to their original values. See the code of 
the cleanplot.pca() function.

Fig. 5.2 PCA biplots of the Doubs environmental data, drawn with function cleanplot.pca()
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to these variables. The second group of sites (11–16), has the highest values in oxygen 
content (oxy) and the lowest in nitrate concentration (nit). A third group of very 
similar sites (17–22) shows  intermediate values in almost all the measured variables; 
they are not spread out by the  variables contributing to axes 1 and 2. Phosphate (pho) 
and ammonium (amm) concentrations, as well as biological oxygen demand (dbo) 
show their maximum values around sites 23–25; the values decrease afterwards. 
Overall, the progression from oligotrophic, oxygen-rich to eutrophic, oxygen-deprived 
water is clear.

The scaling 2 biplot shows that the variables are organized in groups. The lower 
left part of the biplot shows that altitude and slope are very highly, positively cor-
related, and that these two variables are very highly, negatively correlated with 
another group comprising distance from the source, river discharge and calcium 
concentration. Oxygen content is positively correlated with slope (pen) and alti-
tude, but very negatively with phosphate and ammonium concentration and, of 
course, with biological oxygen demand. The right part of the diagram shows the 
variables associated with the lower section of the river, i.e. the group discharge 
(deb) and hardness (dur), highly correlated with the distance from the source, and 
the group of variables linked to eutrophication, i.e. phosphate and ammonium con-
centration and biological oxygen demand. Positively correlated with these two 
groups is nitrate concentration (nit). Nitrate and pH have nearly orthogonal 
arrows, indicating a correlation close to 0. pH displays a shorter arrow, showing its 
lesser importance for the ordination of the sites in the ordination plane. A plot of 
axes 1 and 3 would emphasize its contribution to axis 3.

This example shows how useful a biplot representation can be in summarizing 
the main features of a data set. Clusters and gradients of sites are obvious, as are 
the correlations among the variables. The correlation biplot (scaling 2) is far more 
informative than the visual examination of a correlation matrix among variables; 
the latter can be obtained by typing cor(env).

Technical remark: vegan provides a simple plotting function for ordination 
results, called plot.cca(). However, the basic use of this function provides 
PCA plots where sites as well as variables are represented by points. This is mis-
leading, since the points representing the variables are actually the apices (tips) of 
vectors that must be drawn for the plot to be interpreted correctly.

Supplementary sites and species can be added to a PCA plot through the func-
tion predict.cca(). Explanatory variables can be added through the function 
envfit().
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Hint See how the coding of the symbols and colours is conditioned on the 
 number of groups automatically: object grl has been set to contain 
numbers from 1 to the number of groups.

5.3.2.4  Combining Clustering and Ordination Results

Comparing a cluster analysis and an ordination can be fruitful to explain or confirm 
the differences between groups of sites. Here, you will see two ways of combining 
these results. The first differentiates clusters of sites by colours on the ordination 
plot, the second overlays a dendrogram on the plot. Both are done on a single PCA 
plot here (Fig. 5.3), but they can be drawn separately, of course.
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5.3.3  PCA on Transformed Species Data

PCA being a linear method preserving the Euclidean distance among sites, it is not 
naturally adapted to the analysis of species abundance data. However, transforming 
these after Legendre and Gallagher (2001) alleviates this problem (Sect. 2.2.4). 
Here is a quick application with a Hellinger pre-transformation on the fish data 
(Fig. 5.4).

Fig. 5.3 PCA biplot (scaling 1) of the Doubs environmental data with overlaid clustering results
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For comparison, repeat the PCA on the original file spe without transformation. 
Which ordination shows better the gradient of species contributions along the course 
of the river?

Although PCA has a long history as a method devoted to tables of physical and 
chemical variables, the recent introduction of species data pre-transformations has 
opened up this powerful technique to the analysis of community data. Although 
PCA itself is not modified and remains a linear ordination model, the pre-transfor-
mations ensure that the species data are treated according to their specificity, i.e. 
without undue importance being given to double zeros. A scaling 1 PCA biplot thus 
reveals the underlying gradients structuring the community; the sites are ordered 
along the axes according to their positions along these gradients. The circle of 
equilibrium contribution allows the identification of the species contributing most 
to the plotted pair of axes. A scaling 2 biplot reveals the relationships among spe-
cies in a correlation-like fashion; since the data have been transformed, the correla-
tions are not completely equivalent to Pearson’s r computed on raw data.

The chi-square transformation can also be applied to species data prior to PCA. 
In that case, the PCA solution is very similar, but not identical to a CA of the spe-
cies data. Although the two methods preserve the chi-square distance among the 
sites, the calculation of the eigen-decomposition is not done in exactly the same 
way and leads to different sets of eigenvalues and eigenvectors.

5.3.4  Domain of Application of PCA

Principal component analysis is a very powerful technique, but it has its limits. The 
main application of PCA in ecology is the ordination of sites on the basis of 
 quantitative environmental variables or, after an appropriate transformation,  
of community composition data. PCA has originally been defined for data with 
multinormal distributions. In its applications in ecology, however, PCA is not very 
sensitive to departure from multinormality, as long as the distributions are not exag-
geratedly skewed. The main computational step of PCA is the eigen-decomposition 
of a dispersion matrix (linear covariances or correlations). Covariances must in turn 
be computed on quantitative data – but see below for binary data. Here are, in more 
detail, the conditions of application of PCA:

PCA must be computed on a table of dimensionally homogeneous variables. The •	
reason is that it is the sum of the variances of the variables that is partitioned into 
eigenvalues. Variables must be in the same physical units to produce a meaning-
ful sum of variances (the units of a variance is the square of the units of the 
variable from which it was computed), or they must be dimensionless, which is 
the case for standardized or log-transformed variables.
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The data matrix must not be transposed since covariances or correlations among •	
objects are meaningless.
Covariances and correlations are defined for quantitative variables. However, •	
PCA is very robust to variations in the precision of data. Since a Pearson correla-
tion coefficient on semi-quantitative data is equivalent to a Spearman’s correla-
tion, a PCA on such variables yields an ordination where the relationship among 
variables is estimated using that measure.
PCA can be applied to binary data. Gower (1966, •	 in Legendre and Legendre 
1998) has shown that, with binary descriptors, PCA positions the objects, in the 
multidimensional space, at distances that are the square roots of complements of 
simple matching coefficients S

1
 (i.e. 11 S− ) times a constant which is the 

square root of the number of binary variables.
Species presence–absence data can be subjected to a Hellinger or chord •	
 transformation prior to PCA. The justification is that the Hellinger and chord dis-
tances computed on presence–absence data are both equal to 

−2 1 Ochiai similarity , so PCA after Hellinger or chord transformation pre-
serves the Ochiai distance among objects in scaling type 1 plots. We also know 
that −1 Ochiai similarity  is a metric distance (Legendre and Legendre 1998, 
Table 7.2) which is appropriate for the analysis of community composition 
presence–absence data.
Avoid the mistake of interpreting the relationships among variables based on the •	
proximities of the apices (tips) of the vector arrows instead of their angles in 
biplots.

5.3.5  PCA Using Function PCA()

For someone who wants a quick assessment of the structure of his or her data, a 
quick way is to use functions PCA() and biplot.PCA(). Here is how they work 
(example on the Doubs environmental data).
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5.4  Correspondence Analysis

5.4.1  Introduction

For a long time, CA has been one of the favourite tools for the analysis of species 
presence–absence or abundance data. The raw data are first transformed into a 
matrix Q  of cell-by-cell contributions to the Pearson c2 statistic, and the resulting 
table is submitted to a singular value decomposition to compute its eigenvalues and 
eigenvectors. The result is an ordination, where it is the c2 distance (D

16
) that is 

preserved among sites instead of the Euclidean distance D
1
. The c2 distance is not 

influenced by the double zeros. Therefore, CA is a method adapted to the analysis 
of species abundance data without pre-transformation. Note that the data submitted 
to CA must be frequencies or frequency-like, dimensionally homogeneous and 
non-negative; that is the case of species counts or presence–absence data.

For technical reasons not developed here, CA ordination produces one axis 
fewer than min[n,p]. As in PCA, the orthogonal axes are ranked in decreasing order 
of the variation they represent, but instead of the total variance of the data, the 
variation is measured by a quantity called the total inertia (sum of squares of all 
values in matrix Q, see Legendre and Legendre 1998, eq. 9.32). Individual eigen-
values are always smaller than 1. To know the amount of variation represented 
along an axis, one divides the eigenvalue of this axis by the total inertia of the spe-
cies data matrix.

In CA, both the objects and the species are generally represented as points in the 
same joint plot. As in PCA, two scalings of the results are most useful in ecology. 
They are explained here for data matrices where objects are rows and species are 
columns:

•	 CA scaling 1: rows are at the centroids of columns. This scaling is the most 
appropriate if one is primarily interested in the ordination of objects (sites). 
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In the multidimensional space, the c2 distance is preserved among objects. 
Interpretation: (1) the distances among objects in the reduced space approximate 
their c2 distances. Thus, object points that are close to one another are likely to 
be relatively similar in their species relative frequencies. (2) Any object found 
near the point representing a species is likely to contain a high contribution of 
that species. For presence–absence data, the object is more likely to possess the 
state “1” for that species.

•	 CA scaling 2: columns are at the centroids of rows. This scaling is the most 
appropriate if one is primarily interested in the ordination of species. In the 
multidimensional space, the c2 distance is preserved among species. Interpretation: 
(1) the distances among species in the reduced space approximate their c2 dis-
tances. Thus, species points that are close to one another are likely to have rela-
tively similar relative frequencies along the objects. (2) Any species that lies 
close to the point representing an object is more likely to be found in that object, 
or to have a higher frequency there than in objects that are further away in the 
joint plot.

The Kaiser–Guttman criterion and the broken stick model, explained in 
Sect. 5.3.2.3, can be applied to CA axes for guidance as to the number of axes to 
retain. Our application below deals with the raw fish abundance data.

5.4.2  CA Using Function cca() of Package vegan

5.4.2.1  Running the Analysis and Drawing the Biplots

The procedure below closely resembles the one applied for PCA. First, let us run 
the analysis and draw the Kaiser–Guttman and broken stick plots (Fig. 5.5):
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It is time to draw the CA biplots of this analysis. Let us compare the two scalings 
(Fig. 5.6).
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in CA. Application to the Doubs fish raw abundance data
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The first axis opposes the lower section of the stream (sites 19–30) to the upper 
portion. This is clearly a strong contrast, which explains why the first eigenvalue is 
so high. Many species appear close to sites 19–30, indicating that they are more 
abundant downstream. Many of them are actually absent from the upper part of the 
river. The second axis contrasts the ten upstream sites to the intermediate ones. 
Both groups of sites, which display short gradients on their own, are associated 
with characteristic species. The scaling 2 plot shows how small groups of species 
are distributed among the sites. One can see that the grayling (OMB), the bullhead 
(CHA) and the varione (BLA) are found in the intermediate group of sites (11–18), 

Hint Here you could also produce a clustering and overlay its result on the  
CA plot.
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while the brown trout (TRU), the Eurasian minnow (VAI) and the stone loach 
(LOC) are found in a longer portion of the stream (approximately sites 1–18).

Observe how scalings 1 and 2 produce different plots. Scaling 1 shows the sites 
at the (weighted) centre of mass of the species. This is appropriate to interpret site 
proximities and find gradients or groups of sites. The converse is true for the scaling 
2 biplot, where one can look for groups or replacement series of species. In both 
cases, care should be taken for the interpretation of species close to the origin of the 
graph. This proximity could mean either that the species is at its optimum in the 
mid-range of the ecological gradients represented by the axes, or that it is present 
everywhere along the gradient.

5.4.2.2  Passive (Post Hoc) Explanation of Axes Using  
Environmental Variables

Although there are means of incorporating explanatory variables directly in the 
ordination process (canonical ordination, see Chap. 6), one may be interested in 
interpreting a simple ordination by means of external variables. This can be done 
in vegan by means of the function envfit(). According to its author, Jari 
Oksanen, “envfit finds vectors or factor averages of environmental variables. 
[...] The projections of points onto vectors have maximum correlation with 
 corresponding environmental variables, and the factors show the averages of factor 
levels”.

The result is an object containing coordinates of factor levels (points) or arrow-
heads (quantitative variables) that can be used to project these variables into the 
ordination diagram (Fig. 5.7):

 

Hint This is a post hoc interpretation of ordination axes. Compare with Chap. 6.
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envfit() also proposes permutation tests to assess the significance of the r2 
of each explanatory variable regressed on the two axes of the biplot. But this is not, 
by far, the best way to test the effect of explanatory variables on a table of response 
variables. We explore this topic in Chap. 6.
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Fig. 5.7 CA biplot (scaling 2) of the Doubs fish abundance data with a posteriori projection of 
environmental variables
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5.4.2.3  Reordering the Data Table on the Basis of an Ordination Axis

A CA result is sometimes used to reorder the data table according to the first ordi-
nation axis. A compact form of ordered table is provided by the vegan function 
vegemite() already used in Chap. 4, which can use the information provided by 
an ordination computed in vegan:

5.4.3  CA Using Function CA()

As in the case of PCA, we propose a simple CA function: CA(). Here is how to 
use it on the fish data.

Hints The use of matrices F and V to reorder the table relates to the symbol-
ism used by Legendre and Legendre (1998, Section 9.4) to explain the 
mathematics of correspondence analysis. Using Vhat instead of F 
and Fhat instead of V (i.e. using the scaling 2 projection) would have 
produced the same ordered table.

Argument cex of the biplot() function is here to adapt the size 
of the symbols and the site and species names to the plot. The default 
is cex=2. Smaller values produce smaller symbols and characters. 
They may be  useful for plots containing many sites and species.
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5.4.4  Arch Effect and Detrended Correspondence Analysis

Long environmental gradients often support a succession of species. Since the spe-
cies that are controlled by environmental factors tend to have unimodal distribu-
tions, a long gradient may encompass sites that, at both ends of the gradient, have 
no species in common; thus, their distance reaches a maximum value (or their simi-
larity is 0). But if one looks at either side of the succession, contiguous sites con-
tinue to grow more different from each other. Therefore, instead of a linear trend, 
the gradient is represented on a pair of CA axes as an arch. Several detrending 
techniques have been proposed to counter this effect and straighten up gradients in 
ordination diagrams, leading to detrended correspondence analysis (DCA):

Detrending by segments combined with nonlinear rescaling: axis I is divided •	
into an arbitrary number of segments and, within each one, the mean of the 
object scores along axis 2 is made equal to zero. The number of segments has a 
large influence on the result. The DCA results presented in the literature suggest 
that the scores along the second axis are essentially meaningless. The authors of 
this book strongly warn against the use of this form of DCA as an ordination 
technique; however, it may be used to estimate the “gradient length” of the first 
ordination axis, expressed in standard deviation units of species turnover. A gra-
dient length larger than 4 indicates that some species have a unimodal response 
along the axis (ter Braak and Šmilauer 2002).
Detrending by polynomials: another line of reasoning about the origin of the •	
arch effect leads to the observation that when an arch occurs, the second axis can 
be seen as quadratically related to the first (i.e. it is the first axis to the power 2). 
This explains for the parabolic shape of the scatter of points. Hence, a solution 
is to make the second axis not only linearly, but also quadratically independent 
from the first. Although intuitively attractive, this method of detrending has to 
be applied with caution because it actually imposes a constraining model on the 
data.

DCA by segments is available in package vegan (function decorana()). 
In the output of this function, the gradient length of the axes is called “Axis 
lengths”.

Given all its problems (see discussion in Legendre and Legendre 1998,  
pp. 465–472), we do not describe this method further here.
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An even more extreme effect of the same kind exists in PCA. It is called the 
horseshoe effect because, in the case of strong gradients, the sites of both ends bend 
inwards and appear closer than other pairs. This is due to the fact that PCA 
 considers double zeros as resemblances. Consequently, sites located at opposite 
ends of an ecological gradient, having many double zeros, “resemble” each other 
on this respect. The Hellinger or chord transformation of the species data partly 
alleviates this problem.

5.4.5  Multiple Correspondence Analysis

Multiple correspondence analysis (MCA) is the counterpart of PCA for the ordina-
tion of a table of categorical variables, i.e. a data frame in which all variables are 
factors. It is implemented in the function mca() of the package MASS and, with 
more options, in the function MCA() of the package FactoMineR.

5.5  Principal Coordinate Analysis

5.5.1  Introduction

PCA as well as CA impose the distance preserved among objects: the Euclidean 
distance (and several others with pre-transformations) for PCA and the c2 distance 
for CA. If one wishes to ordinate objects on the basis of another distance measure, 
more appropriate to the problem at hand, then PCoA is the method of choice. It pro-
vides a Euclidean representation of a set of objects whose relationships are mea-
sured by any similarity or distance measure chosen by the user. For example, if the 
coefficient is Gower’s index S

15
, which can combine descriptors of many mathemat-

ical types into a single measure of resemblance, then the ordination represents the 
relationships among the objects based upon these many different variables. This 
would not be possible with PCA or CA.

Like PCA and CA, PCoA produces a set of orthogonal axes whose importance 
is measured by eigenvalues. Since it is based on an association matrix, it can 
directly represent the relationships either among objects (if the association matrix 
was in Q mode) or variables (if the association matrix was in R mode). If it is neces-
sary to project variables, e.g. species, on a PCoA ordination of the objects, the 
variables can be related a posteriori to the ordination axes using correlations or 
weighted averages and drawn on the ordination plot. In the case of Euclidean asso-
ciation measures, PCoA behaves in a Euclidean manner. For instance, computing a 
Euclidean distance among sites and running a PCoA yields the same results as 
 running a PCA on a covariance matrix of the same data and looking at the scaling 1 
ordination results. But if the association coefficient used is non-Euclidean, then 



1415.5 Principal Coordinate Analysis

PCoA may react by producing several negative eigenvalues in addition to the 
 positive ones (and a null eigenvalue in-between). The axes corresponding to nega-
tive eigenvalues cannot be represented on real ordination axes since they are com-
plex. In most applications, this does not affect the representation of the objects on 
the several first principal axes, but it can lead to problems if the largest negative 
eigenvalues are of the same magnitude in absolute value as the first positive ones.

There are technical solutions to this problem, which consist in adding a constant 
to either the squared distances among objects (Lingoes correction) or to the dis-
tances themselves (Cailliez correction) (Gower and Legendre 1986). In the function 
cmdscale() presented below, the Cailliez correction is obtained with the argu-
ment add=TRUE.

One can avoid complex axes by keeping the eigenvectors with their original 
Euclidean norm (vector length = 1) instead of dividing each one by the square root 
of its eigenvalue, as is usual in the PCoA procedure. This workaround is used in the 
MEM spatial analysis presented in Chap. 7. It should not be used for routine ordina-
tion by PCoA since eigenvectors that have not been rescaled to eigenvalue cannot 
be used to produce plots that preserve the original distances among the objects.

The ordination axes of a PCoA can be interpreted like those of a PCA or CA: 
proximity of objects represents similarity in the sense of the association measure 
used.

5.5.2  Application to the Doubs Data Set Using  
cmdscale and vegan

As an example, let us compute a matrix of Bray–Curtis dissimilarities among sites, 
and subject this matrix to PCoA. In vegan, there is a way to project weighted aver-
ages of species abundances on a PCoA plot, by means of function wascores() 
(Fig. 5.8). Since species are projected as weighted averages of their contributions to 
the sites, their interpretation with respect to the sites is done as in CA.
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Hint Observe the use of two vegan functions, ordiplot() and 
scores(), to produce the ordination plot. vegan is a world in itself 
and often requires special functions to handle its own results.
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5.5.3  Application to the Doubs Data Set Using pcoa()

There is another way to achieve double projection. It is based on correlations of the 
environmental variables with the PCoA ordination axes (see Legendre and Legendre 
1998, p. 431). If a PCoA of a matrix of Euclidean distances and scaling 1 is 
 computed, this method produces vectors corresponding to what would be obtained 
in a scaling 1 PCA biplot of the same data. This representation is available in 
 functions pcoa() and biplot.pcoa(), both available in packages ape and 
PCNM.

Here is how these functions work. In our example, PCoA is run on a Euclidean 
distance matrix computed on a Hellinger-transformed species abundance matrix; 
the result of these two operations is a Hellinger distance matrix. In such a case, it 
is actually better (simpler and faster) to run a PCA directly on the transformed spe-
cies data, but here the idea is to allow a comparison with the PCA run presented in 
Sect. 5.3.3. Two biplots are proposed, with projection of the raw and standardized 
species abundances. Compare the result below (Fig. 5.9) with the biplot of the PCA 
scaling 1 result.

Hints For projection of species data onto a PCoA plot, it is important to use 
the species data with the same transformation (if any) as the one used 
to compute the dissimilarity matrix. The standardization proposed 
here as an alternative may help better visualize the variables if they 
have very different variances.

The argument dir.axis2=−1 reverses axis 2 to make the result 
directly comparable with the PCA result in Fig. 5.4, scaling 1. 
Remember that the signs of ordination axes are arbitrary.
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Fig. 5.9 PCoA biplots of the fish data obtained with functions pcoa() and biplot.pcoa(). 
Left: Hellinger-transformed raw species variables. Right: standardized Hellinger-transformed species. 
The bottom and left-hand scales are for the objects, the top and right-hand scales are for the  species

As mentioned above, PCoA should actually be reserved to situations where no 
Euclidean measure is available or selected. With Jaccard and Sørensen dissimilarity 
matrices computed by ade4, for example, the ordination is fully Euclidean. In 
other cases, however, such as Bray–Curtis dissimilarities computed with vegan, 
the dissimilarity matrices may not be Euclidean (see Sect. 3.3.5). This results in 
PCoA producing some negative eigenvalues. Lingoes and Cailliez corrections are 
available in the function pcoa(). This function provides the eigenvalues along 
with a broken stick comparison in its output. Compare the examples below:
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5.6  Nonmetric Multidimensional Scaling

5.6.1  Introduction

If the researcher’s priority is not to preserve the exact distances among objects in 
an ordination plot, but rather to represent as well as possible the ordering relation-
ships among objects in a small and specified number of axes, nonmetric multidi-
mensional scaling (NMDS) may be the solution. Like PCoA, NMDS can produce 
ordinations of objects from any distance matrix. The method can cope with missing 
distances, as long as there are enough measures left to position each object with 
respect to a few others. NMDS is not an eigenvalue technique, and it does not maxi-
mize the variability associated with individual axes of the ordination. As a result, 
plots may arbitrarily be rotated, centred or inverted. The procedure goes as follows 
(very schematically; for details see Legendre and Legendre 1998, p. 445 et seq.):

Specify the number •	 m of axes (dimensions) sought.
Construct an initial configuration of the objects in the •	 m dimensions, to be used 
as a starting point of an iterative adjustment process. This is a tricky step, since 
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the end-result may depend on the starting configuration. A PCoA ordination 
may be a good starting point. Otherwise, try many independent runs with ran-
dom initial configurations.
An iterative procedure tries to position the objects in the requested number of •	
dimensions in such a way as to minimize a stress function (scaled from 0 to 1), 
which measures how far the distances in the reduced-space configuration are 
from being monotonic to the original distances in the association matrix.
The adjustment goes on until the stress value can no more be lowered, or until it •	
reaches a predetermined value (tolerated lack-of-fit).
Most NMDS programs rotate the final solution using PCA for easier •	
interpretation.

For a given and small number of axes (e.g. m = 2 or 3), NMDS often achieves a 
less deformed representation of the distance relationships among objects than a 
PCoA in the same number of dimensions. But NMDS is a computer-intensive tech-
nique exposed to the risk of suboptimal solutions in the iterative process. Indeed, 
the objective stress function to minimize often reaches a local minimum larger than 
the true minimum.

5.6.2  Application to the Fish Data

NMDS can be performed in R with the elegant function metaMDS() from the 
vegan package. metaMDS() accepts raw data or distance matrices. Let us apply 
it to the fish abundances using the Bray–Curtis index. metaMDS() uses random 
starts and iteratively tries to find the best possible solution. Species points are added 
to the ordination plot using wascores(). See Fig. 5.10.

If one must use a distance matrix with missing values, NMDS can be computed 
with the function isoMDS(). An initial configuration must be provided in the 
form of a matrix positioning the sites (argument y) in the number of dimensions 
specified for the analysis (argument k). To reduce the risk of reaching a local 
minimum, we suggest to use the function bestnmds() of the package labdsv. 
This function, which is a wrapper for isoMDS(), computes the analysis a 
user-specified number of times (argument itr) with internally produced random 
initial configurations. The solution with the smallest stress value is retained by the 
function.
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NMDS/Bray - Stress = 8.835
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Fig. 5.10 NMDS biplot of a Bray–Curtis dissimilarity matrix of the fish abundance data. 
Species added using weighted averages. The relationships between species and sites are 
interpreted as in CA

A useful way to assess the appropriateness of an NMDS result is to compare, in 
a Shepard diagram, the distances among objects in the ordination plot with the origi-
nal distances. In addition, the goodness-of-fit of the ordination is measured as the R2 
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of either a linear or a non-linear regression of the NMDS distances on the original 
ones. All this is possible in R using vegan’s functions stressplot() and 
goodness()(Fig. 5.11):

Hint See how the goodness-of-fit of individual sites is represented using the 
results of the goodness() analysis by way of the cex argument of 
the points() function. Poorly fitted sites have larger bubbles.
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Fig. 5.11 Shepard and goodness-of-fit diagrams of the NMDS result presented in Fig. 5.10

As with the other ordination methods, it is possible to add information coming 
from a clustering result to an NMDS ordination plot. For instance, compute a Ward 
clustering of the Bray–Curtis matrix, extract four groups and colourize the sites 
according to them:



1495.7 Handwritten Ordination Function

5.7  Handwritten Ordination Function

To conclude this chapter, let us dive into the bowels of an ordination method…

The Code It Yourself corner #3

Legendre and Legendre (1998) provide the algebra necessary to program the 
 ordination methods seen above directly “from scratch”, i.e., using the matrix 
algebra functions implemented in R. While it is not the purpose of this book 
to do this for all methods, we provide an example that could stimulate the 
interest among users. After all, numerical ecology is a living science, and 
anybody could one day stumble upon a situation for which no ready-made 
function exists. The researcher may then be interested in developing his or 
her own method and write the functions to implement it.

The example below is based on the algebraic development presented in 
Legendre and Legendre (1998), Section 9.1. It is presented in the form of a 
function, the kind that any user could write for her or his own use. The steps 
are the following for a PCA on a covariance matrix. To obtain a PCA on a 
correlation matrix, one has to standardize the data before using the function, 
or implement this as an option in the function itself.

1. Compute the covariance matrix S of the original or centred data matrix.
2. Compute the eigenvectors and eigenvalues of S (eqs. 9.1 and 9.2).
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3. Extract matrix U of the eigenvectors and compute matrix F of the principal 
 components (eq. 9.4) for the scaling 1 biplot.

4. Computation of matrices U2 and G for the scaling 2 biplot.
5. Output of the results.
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This function should give exactly the same results as the function PCA() 
used in Section 5.3.5. Now try it on the Hellinger-transformed fish species 
data and compare the results.

To make your function active, either save it in a file (called for instance 
myPCA.R) and source it, or (less elegant) copy the whole code directly into 
your R console.

Now you could plot other pairs of axes, for instance axes 1 and 3.
Compared to CA or PCoA, the code above is rather straightforward. But 
nothing prevents you from trying to program another method. You can also 
display the code of the CA() and pcoa() functions and interpret them with 
the manual in hand.
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6.1  Objectives

Simple (unconstrained) ordination analyses one data matrix and reveals its major 
structure in a graph constructed from a reduced set of orthogonal axes. It is there-
fore a passive form of analysis, and the user interprets the ordination results a 
posteriori, as described in Chap. 5. Canonical ordination, on the contrary, associ-
ates two or more data sets in the ordination process itself. Consequently, if one 
wishes to extract structures of a data set that are related to structures in other data 
sets, and/or formally test statistical hypotheses about the significance of these rela-
tionships, canonical ordination is the way to go.

Canonical ordination methods can be classified into two groups: symmetrical 
and asymmetrical.

Practically, you will:

Learn how to choose among various canonical ordination techniques: redun-•	
dancy analysis (RDA), distance-based redundancy analysis (db-RDA), canoni-
cal correspondence analysis (CCA), linear discriminant analysis (LDA), 
canonical correlation analysis (CCorA), co-inertia analysis (CoIA) and multiple 
factor analysis (MFA)
Compute them using the correct options and properly interpret the results•	
Apply these techniques to the Doubs River data•	
Explore particular applications of some canonical ordination methods, for •	
instance, variation partitioning and multivariate analysis of variance (MANOVA) 
by RDA
Write your own RDA function•	

Chapter 6
Canonical Ordination
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6.2  Canonical Ordination Overview

In the methods explored in Chap. 5, the ordination procedure itself is not influenced 
by external variables; these may be only considered after the computation of the 
ordination. One lets the data matrix express the relationships among objects and 
variables without constraint. This is an exploratory, descriptive approach. Canonical 
ordination, on the contrary, explicitly explores the relationships between two matri-
ces: a response matrix and an explanatory matrix in some cases (asymmetrical 
analysis), and two matrices with symmetrical roles in other cases. Both matrices are 
used in the production of the ordination.

The way to combine the information of two (or, in some cases, more) data matri-
ces depends on the method of analysis. We first explore the two asymmetrical 
methods that are mostly used in ecology nowadays, i.e. redundancy analysis (RDA) 
and canonical correspondence analysis (CCA). Both combine multiple regression 
with classical ordination (PCA or CA). Partial RDA is also explored, as well as a 
procedure of variation partitioning based on this method. The significance of 
canonical ordinations are tested by means of permutations. After that, we devote 
short sections to linear discriminant analysis (LDA), which looks for a combination 
of quantitative variables to explain a predefined grouping of the objects, and to 
canonical correlation analysis (CCorA), co-inertia analysis (CoIA) and multiple 
factor analysis (MFA), three symmetrical methods that compute eigenvectors 
describing the common structure of two or several data sets.

6.3  Redundancy Analysis

6.3.1  Introduction

RDA is a method combining regression and principal component analysis (PCA). 
It is a direct extension of regression analysis to model multivariate response data. 
RDA is an extremely powerful tool in the hands of ecologists, especially since the 
introduction of the Legendre and Gallagher (2001) transformations that open RDA 
to the analysis of community composition data tables (transformation-based RDA 
or tb-RDA).

Conceptually, RDA is a multivariate (meaning multiresponse) multiple linear 
regression followed by a PCA of the table of fitted values. It works as follows, on 
a matrix Y of centred response data and a matrix X of centred (or, more generally, 
standardized) explanatory variables:
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Regress each (centred) •	 y variable on explanatory table X and compute the fitted 
(ŷ) (this is the only required matrix in most analyses) and residual (y

res
) vectors 

(if needed). Assemble all vectors ŷ into a matrix Ŷ of fitted values
Compute a PCA of the matrix •	 Ŷ of fitted values; this analysis produces a vector 
of canonical eigenvalues and a matrix U of canonical eigenvectors
Use matrix •	 U to compute two types of ordination site scores: use either the origi-
nal centred matrix Y to obtain an ordination in the space of the original variables 
Y (i.e. compute YU, obtaining site scores called “Site scores (weighted sums of 
site scores)” in vegan), or use the matrix Ŷ of fitted values to obtain an ordina-
tion in the space of variables X (i.e. compute ŶU, which produces fitted site 
scores called “Site constraints (linear combinations of constraining variables)” 
in vegan)
The residual values from the multiple regressions (i.e. •	 Yres = Y − Ŷ) may also be 
submitted to a PCA to obtain an unconstrained ordination of the residuals. This 
partial PCA, which is not strictly speaking part of the RDA, is computed by 
vegan’s rda() function

Additional information on the algebra of RDA is presented in the Code it your-
self corner at the end of this section.

As can be seen from the conceptual steps presented above, RDA computes axes 
that are linear combinations of the explanatory variables. In other words, this 
method seeks, in successive order, a series of linear combinations of the explana-
tory variables that best explain the variation of the response matrix. The axes 
defined in the space of the explanatory variables are orthogonal to one another. 
RDA is therefore a constrained ordination procedure. The difference with uncon-
strained ordination is important: the matrix of explanatory variables conditions the 
“weights” (eigenvalues), the orthogonality and the direction of the ordination axes. 
In RDA, one can truly say that the axes explain or model (in the statistical sense) 
the variation of the dependent matrix. Furthermore, a hypothesis (H

0
) of absence of 

linear relationship between Y and X can be tested in RDA; this is not the case in 
PCA.

An RDA produces min[p, m, n − 1] canonical axes, where n is the number of 
objects and m is the number of degrees of freedom of the model (number of numeric 
explanatory variables, including levels of factors if qualitative explanatory variables 
are included; a factor with k classes requires (k − 1) dummy variables for coding, so 
there are (k − 1) degrees of freedom for this factor). Each of the canonical axes is a 
linear combination (i.e. a multiple regression model) of all explanatory variables. 
RDA is usually computed, for convenience, on standardized explanatory variables; the 
fitted values of the regressions, as well as the canonical analysis results, are unchanged 
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by standardization of the X variables.1 In vegan’s rda() function, the variation of 
the data matrix that cannot be explained by the environmental variables (i.e. the 
residuals of the regressions) is expressed by the unconstrained PCA eigenvalues, 
which are given after the canonical eigenvalues.

For the reasons explained in Chap. 5 about PCA, an RDA can be computed on 
a covariance or a correlation response matrix. To obtain an analysis on the correla-
tion response matrix, standardization of the response data is done by the option 
scale=TRUE in vegan’s rda().

The statistical significance of an RDA (global model) and that of individual 
canonical axes can be tested by permutations. These tests are introduced in due 
course.

6.3.2  RDA of the Doubs River Data

You will now explore various aspects of RDA. To achieve this, you will first pre-
pare not only the data sets as usual, but also transform a variable and divide the 
explanatory variables into two subsets.

6.3.2.1  Preparation of the Data

1 Note also that in many cases the explanatory variables are not dimensionally homogeneous. 
In such cases an effect of standardization is that the absolute values of the canonical coefficients 
(i.e. the regression coefficients of the models) measure which variable(s) is or are most important 
to explain each canonical axis.



1576.3 Redundancy Analysis

6.3.2.2  RDA Using vegan

vegan allows the computation of an RDA in two different ways. The simplest 
syntax is to list the names of the objects involved separated by commas:

simpleRDA <- rda(Y,X,W)
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where Y is the response matrix, X is the matrix of explanatory variables and W is 
an optional matrix of covariables (variables whose variation is to be controlled for 
in a partial analysis).

This call, although simple, has some limitations. Its main drawback is that it 
does not allow factors (qualitative variables) to be included in the explanatory and 
covariable matrices. Therefore, in all but the simplest applications, it is better to use 
the formula interface:

formulaRDA <- rda(Y ~ var1 + factorA + var2*var3 + 
Condition(var4), data=XWdata)

In this example, Y is the response matrix; the constraint includes a quantitative 
variable (var1), a factor (factorA), an interaction term between variables 2 and 
3, whereas the effect of var4 is partialled out. The explanatory variables and the 
covariable are in object XWdata, which must have the class data.frame.

This is the same kind of formula as used in lm() and other R functions devoted 
to regression. We use it in the example below. For more information about this 
topic, consult the rda() help file.

Hint See the shortcut to use all variables present in object env2, without 
having to name them.

Here is an excerpt of the output:
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As was the case in PCA, this output requires some explanations. Some of the 
results are similar to those of a PCA, but additional items are provided.

•	 Partitioning of variance: the overall variance is partitioned into constrained and 
unconstrained fractions. The constrained fraction is the amount of variance of 
the Y matrix explained by the explanatory variables. Expressed as a proportion, 
it is equivalent to an R2 in multiple regression; in RDA this quantity is also called 
the bimultivariate redundancy statistic. However, this R2 is biased, like the unad-
justed R2 of multiple regression. We present the computation of an adjusted, 
unbiased R2 below.

•	 Eigenvalues and their contribution to the variance: this analysis yielded 12 
canonical axes (with eigenvalues labelled RDA1 to RDA12) and 16 additional, 
unconstrained axes for the residuals (with eigenvalues labelled PC1 to PC16). 
The results give the eigenvalues themselves, as well as the cumulative propor-
tion of variance explained (for the RDA axes) or represented (for the residual 
axes). The last cumulative value is therefore 1. The cumulative contribution to 
the variance obtained by the 12 canonical axes is the proportion of the total vari-
ance of the response data explained by the RDA. It is the same value as the 
“Proportion constrained” presented above; it is 0.7271 in this example.
One feature of the eigenvalues is worth mentioning. Observe that the canonical •	
eigenvalues RDA1 to RDA12 are (of course) decreasing in value; the first 
residual eigenvalue (PC1), on the contrary, is larger than the last canonical 
eigenvalue (in this example, it is actually larger than most RDA eigenvalues). 
This means that the first residual structure (axis) of the data has more variance 
than some of the structures that can be explained by the explanatory variables 
in X. It is up to the user to exploit this information, for example, by plotting the 
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first pair of residual axes and making hypotheses about the causes of the features 
revealed. These causes should not, however, involve variables that have already 
been used in the model, except if one suspects that products (interactions) or 
higher-order combinations (e.g. squared variables) may be required.
An important distinction must be made: the canonical (RDAx) eigenvalues mea-•	
sure amounts of variance explained by the RDA model, whereas the residual 
(PCx) eigenvalues measure amounts of variance represented by the residual 
axes, but not explained by the RDA model.

•	 Accumulated constrained eigenvalues: these are cumulative amounts of variance 
expressed as proportions of the total explained variance, as opposed to their 
contribution to the total variance described above.
Species scores•	  are the coordinates of the tips of the vectors representing the 
response variables in the bi- or triplots. As in PCA, they depend on the scaling 
chosen.

•	 Site scores (weighted sums of species scores): coordinates of the sites as 
expressed in the space of the response variables Y.

•	 Site constraints (linear combinations of constraining variables): coordinates of 
the sites in the space of the explanatory variables X. These are the fitted site 
scores.

•	 Biplot scores for constraining variables: coordinates of the tips of the vectors 
representing the explanatory variables. These coordinates are obtained as fol-
lows: correlations are computed between the explanatory variables and the fitted 
site scores, and then these correlations are transformed to produce the biplot 
scores. All variables, including k − 1 levels of factors with k levels, are repre-
sented in this table. For factors, however, a representation of the centroids of the 
levels is preferable. See below.

•	 Centroids for factor constraints: coordinates of centroids of levels of factor 
variables, i.e. means of the scores of the sites possessing state “1” for a given 
level.

In the rda() output, an interesting information is missing: the canonical coef-
ficients, i.e. the equivalent of regression coefficients for each explanatory variable 
on each canonical axis. These coefficients can be retrieved by typing coef():
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Hint Type ?coef.cca and see how to obtain fitted and residual values. 
There is also a calibrate() function allowing the projection of 
new sites into a canonical ordination result for bioindication purposes, 
although with some conditions.

6.3.2.3  Retrieving, Interpreting and Plotting Results from  
a vegan RDA Output Object

The various elements making up the rda() output object can be retrieved in the 
same way as for a PCA. This is useful when you want to use the results outside the 
functions provided by vegan to handle them.

As mentioned above, the R2 of a RDA is biased like the ordinary R2 of  multiple 
regression, and for the same reason (Peres-Neto et al. 2006). On the one hand, any 
variable included in explanatory matrix X increases the R2,  irrespective of it being 
related, or not, to the response data. On the other hand, the accumulation of explan-
atory variables inflates the apparent amount of explained variance because of ran-
dom correlations. This problem can be cured by adjusting the R2 using Ezekiel’s 
formula (Ezekiel 1930), which is also valid in the multivariate case:

 2 2
adj

1
1 (1 )

1

n
R R

n m

−= − −
− −

 (6.1)

where n is the number of objects and m is the number of explanatory variables (or, 
more precisely, the number of degrees of freedom of the model). Ezekiel’s adjust-
ment can be used as long as the number of degrees of freedom of the model is not 
overly large with respect to the number of observations. As a rule of thumb, this 
adjustment may be overly conservative when m > n/2. An adjusted R2 near 0 indi-
cates that X does not explain more of the variation of Y than random normal 
 variables would do. Adjusted R2 values can be negative, indicating that the explana-
tory variables X do worse than random normal variables would.

In our example, n = 29 and m = 12 (remember that one of the ten variables is a 
factor with k = 4 levels, so it occupies 3 degrees of freedom). The R2 and adjusted 
R2 can be computed using vegan’s function RsquareAdj().



1636.3 Redundancy Analysis

Hint In the scores() function argument choices= indicates which axes 
are to be selected. Be careful to specify the scaling if it is different from 2.

Let us now plot the results of our RDA (Fig. 6.1). We can call this a triplot since 
there are three different entities in the plot: sites, response variables and explana-
tory variables. To differentiate the latter two, we draw arrowheads only on the vec-
tors of the quantitative explanatory variables, not on the response variable vectors.

The two RDA triplots use the site scores that are weighted sums of species (abbrevi-
ated “wa” in vegan). The choice between these and the fitted site scores (abbreviated 
“lc”) for the triplots is still controversial. On the one hand, the fitted site scores are 
strictly orthogonal linear combinations of the explanatory variables; but they never-
theless represent clearly and exclusively what can be modelled using the explanatory 
variables at hand. On the other hand, the site scores that are weighted sums of species 
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appear more robust to noise in the environmental  variables: McCune (1997) showed 
that if the latter contain much random error, the resulting lc plots may be completely 
scrambled. However, weighted sums of  species (wa) scores are “contaminated” 
scores, halfway between the model fitted by the RDA procedure and the original data, 
and as such it is not entirely clear how they should be interpreted. When RDA is used 
as a form of analysis of variance (Sect. 6.3.2.8), all replicate sites with the same com-
bination of factor levels are represented on top of one another in the fitted site scores 
(lc) triplot; the weighted sums of species (wa) triplot is preferable in that case because 
the sites are separated in the plot and their labels can be read.
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Fig. 6.1 (a) RDA triplot of the Hellinger-transformed Doubs fish abundance data constrained by 
all environmental variables, scaling 1. The bottom and left-hand scales are for the objects and the 
response variables, the top and right-hand scales are for the explanatory variables 
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Independently of the choice of site scores, the interpretation of the constrained 
triplots must be preceded by a test of statistical significance (see below). As in 
multiple regression, a non-significant result must not be interpreted and must be 
discarded.

Since the wa–lc issue is open, let us also represent our triplots using the fitted 
site scores.

Fig. 6.1 (continued) (b) RDA triplot of the Hellinger-transformed Doubs fish abundance data 
constrained by all environmental variables, scaling 2. The bottom and left-hand scales are for the 
objects and the response variables, the top and right-hand scales are for the explanatory 
 variables
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For the species and sites, the interpretation of the two scalings is the same as in 
PCA. However, the presence of vectors and centroids of explanatory variables calls 
for additional interpretation rules. Here are the essential ones (see Legendre and 
Legendre 1998, pp. 586–587):

•	 Scaling 1 – distance biplot: (1) Projecting an object at right angle on a response 
variable or a quantitative explanatory variable approximates the position of 
the object along that variable. (2) The angles between response and explana-
tory variables in the biplot reflect their correlations (but not the angles among 
response variables). (3) The relationship between the centroid of a qualitative 
explanatory variable and a response variable (species) is found by projecting the 
centroid at right angle on the species variable, as for individual objects, since we 
are projecting the centroid of a group of objects. (4) Distances among centroids, 
and between centroids and individual objects, approximate their Euclidean 
distances.

•	 Scaling 2 – correlation biplot: (1) Projecting an object at right angle on a 
response or a quantitative explanatory variable approximates the value of the 
object along that variable. (2) The angles in the biplot between response and 
explanatory variables, and between response variables themselves or explana-
tory variables themselves, reflect their correlations. (3) The relationship 
between the centroid of a qualitative explanatory variable and a response vari-
able (species) is found by projecting the centroid at right angle on the species 

Hint See how to choose the elements to be plotted, using the argument 
display=c(...). In this argument, “sp” stands for species, “wa” 
for site scores in the species space (weighted averages), “lc” for fit-
ted site scores (linear combinations of explanatory variables), and 
“cn” for constraints (i.e. the explanatory variables).
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variable (as for individual objects). (4) Distances among centroids, and between 
centroids and individual objects, do not approximate their Euclidean 
distances.

On these bases, it is now possible to interpret the triplots. Let us take as exam-
ples the pair of plots representing the fitted site scores (Fig. 6.2). The numerical 
output shows that the first two canonical axes explain together 56.1% of the total 
variance of the data, the first axis alone explaining 45.4%. These are unadjusted 
values, however. Since 2

adj 0.5224R =  , the percentages of accumulated constrained 
eigenvalues show that the first axis alone explains 0.5224  ×  0.6242 = 0.326 or 
32.6% variance, and the two first 0.5224  ×  0.7712 = 0.4029 or 40.3% variance. We 
can be confident that the major trends have been modelled in this analysis. Because 
 ecological data are generally quite noisy, one should never expect to obtain a very 
high value of 2

adjR . Furthermore, the first unconstrained eigenvalue (PC1) is com-
paratively small, which means that it does not display any important residual struc-
ture of the response data.

Fig. 6.2 (a) Triplot of the RDA with fitted site scores and all environmental variables. Scaling 1 
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These triplots show that oxygen (oxy), altitude (alt), nitrates (nit) and 
 discharge (deb), as well as slope (mainly the level penvery_steep) play an 
important role in the dispersion of the sites along the first axis. Both triplots oppose 
the upper and lower parts of the river along the first axis. The scaling 2 triplot 
shows three groups of fish species correlated with different sets of explanatory 
variables: the brown trout (TRU), Eurasian minnow (VAI) and stone loach (LOC) 
are found in the first half of the sites, and are correlated with high oxygen content 
and slope as well as higher altitude. The bleak (ABL), roach (GAR) and European 
chub (CHE), on the opposite, are related to sites 23, 24 and 25 characterized by high 
phosphates (pho), ammonium (amm) and biological oxygen demand (dbo) levels. 
Most other species are bunched together away from these extremes. They show 
mostly shorter projections, indicating that they are either present over most por-
tions of the river or related to intermediate ecological conditions.
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6.3.2.4  Permutation Tests of RDA Results

Due to widespread problems of non-normal distributions in ecological data, classical 
parametric tests are often not appropriate in this field. This is why most methods of 
ecological data analysis nowadays resort to permutation tests whenever possible. 
The principle of a permutation test is to generate a reference distribution of the 
chosen statistic under the null hypothesis H

0
 by randomly permuting appropriate 

elements of the data a large number of times and recomputing the statistic each 
time. Then, one compares the true value of the statistic to this reference distribu-
tion. The p value is computed as the proportion of the permuted values equal to or 
larger than the true (unpermuted) value of the statistic for a one-tailed test in the 
upper tail, like the F test used in RDA. The true value is included in this count. The 
null hypothesis is rejected if this p value is equal to or smaller than the predefined 
significance level a.

Three elements are critical in the construction of a permutation test: (1) the 
choice of the permutable units, (2) the choice of the statistic and (3) the permutation 
scheme.

The permutable units are often the response data (random permutation of the 
rows of the Y data matrix), but sometimes other permutable units must be defined. 
See Legendre and Legendre (1998, pp. 606 et sq. and especially Table 11.7, p. 612). 
In the simple case presented here, the null hypothesis H

0
 states (loosely) that no 

(linear) relationship exists between the response data Y and the explanatory vari-
ables X. In terms of permutation tests, this means that the sites in either matrix can 
be permuted randomly to produce realizations of this H

0
, thereby destroying the 

possible relationship between a given fish assemblage and the ecological condition 
of its site. A permutation test does this 100, 1000 or 10000 times to produce a large 
sample of test statistics to which the true value is compared.

In RDA, the use of parametric tests is possible only when the response variables 
are standardized (Miller 1975; Legendre et al. 2011), which is inappropriate for 
community composition data for example. So all RDA programs for ecologists 
implement permutation tests. The test statistic (often called pseudo-F) is defined as 
follows:

 =
− −

ˆSS( ) /

RSS/( 1)

m
F

n m

Y
 (6.2)

where m is the number of canonical eigenvalues (or degrees of freedom of the 
model), SS(Ŷ) (explained variation) is the sum of squares of the table of fitted 
values and residual sum of squares (RSS) is the total sum-of-squares of Y, SS(Y), 
minus the explained variation SS(Ŷ).
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The test of significance of individual axes is based on the same principle. The first 
canonical eigenvalue is tested as follows: that eigenvalue is the numerator of the 
F statistic, whereas the SS(Y) minus that eigenvalue/(n − 1 − 1) is the denominator 
(since m = 1 in this case). The test of the subsequent canonical axes is more compli-
cated: the previously tested canonical axes have to be included as covariables in 
the analysis, as in Sect. 6.3.2.5, and the RDA is recomputed; see Legendre et al. 
2011 for details.

The permutation scheme describes how the units are permuted. In most cases, 
the permutations are free, i.e. all units are considered equivalent and fully exchange-
able, and the data rows of Y are permuted. In partial canonical analysis (next sub-
section), however, it is the residuals of some regression model that are permuted. 
Finally in some situations, permutations may be restricted within subgroups of 
data, for instance, when a multistate covariable or a multilevel experimental factor 
is included in the analysis.

With this in mind, we can now test our RDA results. Let us run a global test first, 
followed by a test of the canonical axes. The test function is called anova(). This 
name is unfortunate, since it leads to confusion with the classical ANOVA test, 
which it is not.

Of course, given that these tests are available, it is useless to apply other criteria 
like the broken-stick or Kaiser–Guttman’s criterion to canonical axes. These could 
be applied to the residual, unconstrained axes, however. Let us apply the Kaiser–
Guttman criterion:

Hint Argument "step" gives the minimal number of permutations requested 
to assess if the F value of a test is obviously significant or not.
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6.3.2.5  Partial RDA

Partial canonical ordination is the multivariate equivalent of partial linear regression. 
For instance, it is possible to run an RDA of a (transformed) plant species data 
matrix Y, explained by a matrix of climatic variables X, in the presence of soil 
covariables W. Such an analysis would allow the user to display the patterns of the 
species data uniquely explained by a linear model of the climatic variables when 
the effect of the soil factors is held constant.

We will now run an example using the Doubs data. At the beginning of this 
chapter, we created two objects containing subsets of environmental variables. One 
subset contains physiographical variables (envtopo), i.e. altitude, slope (the 
original, quantitative variable, not the four-level factor used in the previous RDA) 
and discharge; the other contains variables describing water chemistry (envchem), 
i.e. pH, hardness, phosphates, nitrates, ammonium, oxygen content as well as 
 biological oxygen demand. The analysis that follows determines whether water 
chemistry significantly explains the fish species patterns when the effect of the 
topographical gradient is held constant.

In vegan, partial RDA can be run in two ways, depending on whether one uses 
the simple or the formula interface. In the first cases, explanatory variables and 
covariables may or may not be in separate objects, which can belong to classes 
vector, matrix, or data.frame; factor variables cannot be used with that notation, 
however. With the formula interface, the X and W data sets must be in the same 
object, which must be a data frame and may contain factor variables.
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Here again, some additional explanations are needed about the summary output.

•	 Partitioning of variance: This item now shows four components. The first one 
(Total) is, as usual, the total inertia (variance in this case) of the response data. 
The second line (Conditioned) gives the amount of variance that has been 
explained by the covariables and removed.2 The third line (Constrained) 
gives the amount of variance uniquely explained by the explanatory variables. 
The fourth line (Unconstrained) gives the residual variance. Beware: the 
values given as proportions (right-hand column) are unadjusted and are  therefore 
biased. For a proper computation of unbiased, adjusted R2 and partial R2, see 
below (variation partitioning).

•	 Eigenvalues, and their contribution to the variance after removing the contribu-
tion of conditioning variables: these values and proportions are partial in the 
sense that the effects of the covariables have been removed. The sum of all these 
eigenvalues corresponds therefore to the sum of the constrained and uncon-
strained (residual) variances, excluding the conditioned (i.e. removed) 
variance.

We can now test the partial RDA and, if it is significant, draw triplots of the first 
pair of axes (Fig. 6.3).

2 Mathematically, to partial out the effect of a matrix W from an ordination of Y by X, one com-
putes the residuals of a multivariate multiple regression of X on W and uses these residuals as the 
explanatory variables.

Hint The formula interface may seem cumbersome, but it allows a better 
control of the model and the use of factors among the constraints (X) 
or the conditions (W). One could therefore have used the factor-trans-
formed pen variable in the second analysis, but not in the first one.
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Fig. 6.3 (a) RDA triplot, Doubs Hellinger-transformed fish data explained by chemistry, control-
ling for physiography. Sites: model scores (option “lc” of argument display). Scaling 1 
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As could be expected, the results of this partial analysis differ somewhat from 
the previous results, but not fundamentally. Although there are interesting features 
to discuss about the amounts of variance explained, we postpone this aspect until 
we have seen a quick and elegant manner to compute the adjusted R2 of partial 
analyses, by means of variation partitioning (Sect. 6.3.2.7). On the triplots, the 
explanatory variables show the same relationships to one another, but some of them 
(hardness (dur) and nitrates (nit)) are less important to explain the fish commu-
nity structure, as shown by their shorter vectors. This may be due to the fact that 
these two variables are well correlated with the position along the river, and there-
fore their apparent effect on the fish community may have been spurious and has 
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been removed by the analysis, which controlled for the effect of the physiographical 
variables. The scaling 1 triplot shows that the sites are not as cleanly ordered by 
their succession along the river. This indicates that the chemical variables do not 
necessarily follow that order and that the fish community responds significantly to 
the chemical constraints irrespective of their locations along the river.

6.3.2.6  Forward Selection of Explanatory Variables

It happens sometimes that one wishes to reduce the number of explanatory vari-
ables. The reasons vary: search for parsimony, rich data set but poor a priori 
hypotheses, or a method producing a large set of explanatory variables which must 
be reduced afterwards (as in eigenvector-based spatial analysis, see Chap. 7). In the 
Doubs data, there could be two reasons (albeit not compelling) to reduce the num-
ber of explanatory variables: search for parsimony, and possible strong linear 
dependencies (correlations) among the explanatory variables in the RDA model, 
which could render the regression coefficients of the explanatory variables in the 
model unstable.

Linear dependencies can be explored by computing the variables’ variance 
 inflation factors (VIF), which measure the proportion by which the variance of a 
regression coefficient is inflated in the presence of other explanatory variables. 
VIFs above 20 indicate strong collinearity. Ideally, VIFs above 10 should be at least 
examined, and avoided if possible. VIFs can be computed in vegan after RDA 
or CCA:

Several VIF values are above 10 or even 20 in these analyses so that a reduction 
of the number of explanatory variables is justified.

No single, perfect method exists for variable reduction, besides the examination 
of all possible subsets of explanatory variables, which is time-prohibitive for real 
data sets. In multiple regression, the three usual methods are forward, backward and 
stepwise selection of explanatory variables, the latter one being a combination of 
the former two. In RDA, forward selection is the method most often applied. This 
method works as follows:



176 6 Canonical Ordination

Compute RDA of the response data with all explanatory variables in turn.•	
Two sets of criteria are used in the presently available functions for selecting the •	
“best” explanatory variable: (1) in the forward.sel() function of packfor 
(see below), one selects the explanatory variable with the highest R2 if that vari-
able is also significant (permutation test) at a preselected significance level; 
“best” refers to the variable that explains the largest portion of the variance of 
the response data. (2) In the ordistep() function of vegan (see below), the 
significance of the F-statistics associated with all variables is tested using per-
mutation tests, and the most significant explanatory variable is selected. In case 
of equality, the variable that has the lowest value of the Akaike Information 
Criterion (AIC) is selected for inclusion in the model; “best” refers here to the 
most significant variable.
The next task is to look for a second (third, fourth, etc.) variable to include in •	
the explanatory model. Compute all models containing the previously selected 
variable(s) plus one of the remaining explanatory variables. (1) In forward.
sel(), select the new variable that forms the model with the highest R2 (which 
is the same as selecting the variable with the highest semipartial R2) if the partial 
contribution of that variable is significant at the preselected significance level; 
the test of significance is a permutation test by partial RDA. (2) In ordis-
tep(), select the new variable whose partial contribution is the most signifi-
cant. In case of ties, select the variable with the lowest AIC.
The process continues until no more significant variable can enter the model.•	

In its original form, forward selection in packfor’s forward.sel() used 
the preselected significance level a as the main stopping criterion: selection was 
stopped when no additional variable had a p value smaller than or equal to the sig-
nificance level. However, this criterion is known to be overly liberal, either by 
selecting sometimes a “significant” model when none should have been identified 
(hence inflating type I error), or by including too many explanatory variables into 
the model (hence inflating the amount of explained variance). Blanchet et al. 
(2008a) addressed this double problem and proposed solutions to improve this 
technique:

To prevent the problem of inflation of the overall type I error, a global test using  –
all explanatory variables is first run. If, and only if, that test is significant, the 
forward selection is performed.
To reduce the risk of incorporating too many variables into the model, the  –
adjusted coefficient of multiple determination 2

adjR  of the global model (contain-
ing all the potential explanatory variables) is computed, and used as a second 
stopping criterion. Forward selection is stopped if one of the following criteria 
is reached: the traditional significance level a or the global 2

adjR ; in other words, 
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if a candidate variable is deemed non-significant or if it brings the 2
adjR  of the 

current model over the value of the 2
adjR  of the global model.

This new, enhanced procedure has been implemented in the packfor package 
of Dray et al. (2007). The function is called forward.sel(). We can apply it to 
the Doubs data. This procedure does not allow for factor variables; we will use the 
env data set in the analysis.

The result shows that one can devise an explanatory model of the fish commu-
nity that is much more parsimonious than the model involving all explanatory 
variables. Three variables are enough to obtain an 2

adjR  almost as large as that of 
the global model. Besides, observe that the forward.sel() selection has been 
stopped after the variable leading to a value exceeding the 2

adjR  has been entered. 
A moderate excess (here, 0.5948 versus 0.5864) is certainly not a great problem. 
The selection diagnostics show that the last variable entered (pen) increases the 

2
adjR  by 5.5%.
Another function performs several kinds of variable selection: vegan’s 

 ordistep(). This function does not implement Blanchet et al. (2008a)’s  second, 
2

adjR -based stopping criterion. So this criterion must be applied by hand to the result 
in the way presented below. ordistep() selects the variables on the basis of 
their permutational p values, and on AIC in case of ties.
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The selected variables are the same in this example as when using forward.
sel() without the adjR2thresh stopping criterion of Blanchet et al. (2008a). 
One could apply that stopping criterion by computing the 2

adjR  of RDAs that 
 incorporate the variables in their order of inclusion by ordistep() and checking 
when the cumulative 2

adjR  criterion of 0.586435 is exceeded:

These analyses show that the most parsimonious attitude would be to settle for 
a model containing only three explanatory variables: altitude, oxygen and biologi-
cal oxygen demand. What would such an analysis look like?

These results are fascinating in that they demonstrate how parsimony can help 
improve the quality of a model. With a moderate cost in explanatory power, we 
produced a model that is as highly significant, has no harmful collinearity (all VIFs 
are now well below 10), and can be decomposed into three significant canonical 
axes. The global model produced only two significant axes.

It is now time to produce triplots of this result (Fig. 6.4). We compare them to 
the triplots of the global analysis.
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These triplots indeed present the same structures as the ones produced with all 
explanatory variables. We shall revisit this result later.

6.3.2.7  Variation Partitioning

A common occurrence in ecology is that one has two or more sets of explanatory 
variables pertaining to different classes. In the Doubs data, we have already split 
the environmental variables into a first subset of physiographic and a second subset 
of chemical variables. For various reasons, one might be interested not only in a 
partial analysis like the one that we conducted above, but in quantifying the varia-
tion explained by all subsets of the variables when controlling for the effect of the 
other subsets. In multivariate ecological analysis, a procedure of variation partition-
ing has been proposed to that effect by Borcard et al. (1992) and improved by the 
use of adjusted R2 by Peres-Neto et al. (2006). When two explanatory data sets X 
and W are used, the total variation of Y is partitioned as in Fig. 6.5.
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X and W both explain some variation of the response data. Since the explanatory 
data sets are generally not orthogonal to one another (except in some cases 
addressed later), some amount of variation is explained jointly by the two sets (frac-
tion [b] of Fig. 6.5). Consequently, the variation explained by all variables together 
is less than the sum of the variations explained by the various subsets. This is why 
one can express the variation explained by X as fraction [a + b], the variation 
explained by W as fraction [b + c] and the unexplained variation as fraction [d]. In 
the case of two explanatory data sets, three RDAs are needed to partition the varia-
tion into the four individual fractions [a], [b], [c] and [d].

The conceptual steps are the following:

If necessary, forward-select the explanatory variables •	 separately in each subset.
Run an RDA of the response data •	 Y by X. This yields fraction [a + b].
Run an RDA of the response data •	 Y by W. This yields fraction [b + c].
Run an RDA of the response data •	 Y by X and W together. This yields fraction 
[a + b + c].

•	 Compute the adjusted R2 ( 2
adjR ) of the three RDAs above.

Compute the fractions of adjusted variation by subtraction:•	

fraction [a] –
adj

 = [a + b + c]
adj

 − [b + c]
adj

fraction [c] –
adj

 = [a + b + c]
adj

 − [a + b]
adj

Total variation of Y
[d]= unexplained variation

Variation explained by W

[a] [b] [c]

Variation explained by X

Fig. 6.5 Venn diagram of the variation partitioning of a response data set Y explained by two data 
sets X and W. The rectangle represents the total sum-of-squares of Y
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fraction [b] –
adj

 = [a + b]
adj

 − [a]
adj

 = [b + c]
adj

 − [c]
adj

fraction [d] –
adj

 = 1 − [a + b + c]
adj

The three RDAs can be tested as usual, and fractions [a] and [c] can be computed 
and tested by means of partial RDA. Fraction [b], however, is not an adjusted com-
ponent of variance and cannot be estimated and tested by regression methods. It has 
zero degree of freedom. Note also that there is no equation for computing an 
adjusted R2 directly for a partial RDA. The subtractive procedure described above 
avoids this difficulty. It has been shown by Peres-Neto et al. (2006) to produce 
unbiased estimates of the fractions of variation. Remember also that adjusted R2 can 
be negative. See Sect. 6.3.2.3. Negative 2

adjR  can be ignored (considered as null) for 
the ecological interpretation of the results.

The whole procedure of variation partitioning (except the preliminary stage of 
forward selection) can be run in one R command with up to four explanatory matri-
ces. The function to use, available in vegan, is varpart(). Let us apply it to the 
Doubs data and follow up with tests of all testable fractions.

This first partitioning shows that both sets of explanatory variables contribute to 
the explanation of the species data. The unique contribution of the chemical variables 
(fraction [a], 2

adj 0.241R =  ) is much larger than that of physiography (fraction [c], 
2

adj 0.112R =  ). The variation explained jointly by the two sets  (fraction [b], 
2

adj 0.233R = ) is also large. This indicates that the chemical and physiographic 
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 variables are intercorrelated. This is a good reason to make an effort towards 
parsimony, and to combine variation partitioning with forward selection.

As one could have expected, forward-selecting the explanatory variables 
 independently in each subset (chemistry and physiography) does nothing to prevent 
inter-set correlations; some of the variables retained in each set are correlated with 
those of the other set. Therefore, fraction [b] remains important. Beware: conduct-
ing variable selection on the union of the two explanatory data sets would make 
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fraction [b] very small or empty. If one wants to estimate how much of the variation 
of Y is explained jointly by the two explanatory data sets, it is important to carry 
out forward selection separately on the two sets of explanatory variables.

In this example, the two independent forward selections run above have retained 
the same variables as when the whole set had been submitted to forward selection 
(i.e. alt, oxy, dbo) plus variables pen and nit. The latter is strongly correlated 
to alt (r = −0.75). This means that in the RDA with the chemical variables, nit 
has explained some of the same structures as alt has explained in the physiogra-
phy RDA. Removing nit from the chemical variables and running the partitioning 
again yields different results:

This last partitioning has been run to demonstrate the effect of correlation among 
the explanatory variables of different sets. However, one generally applies variation 
partitioning to assess the magnitude of the various fractions, including the common 
ones. If the aim is to minimize the correlation among variables, other approaches 
are preferable (examination of the VIFs, global forward selection).

With this warning in mind, we can examine what the comparison between the 
two latter partitionings tells us. Interestingly enough, the overall amount of varia-
tion explained is about the same (0.595 instead of 0.590). The [b] fraction has 
dropped from 0.196 to 0.088 and the unique physiographical fraction (alti-
tude + slope) has absorbed most of the difference, rising from 0.142 to 0.249. This 
does not mean that altitude is a better causal candidate than nitrates to explain fish 
communities. Comparison of the two analyses rather indicates that nitrate content 
is related to altitude just as the fish communities are, and that the interpretation of 
both variables must be done with caution since their causal link to the fish com-
munities cannot be untangled. On the other hand, altitude is certainly related to 
other, unmeasured environmental variables that have an effect on the communities, 
making it a good proxy for them.

The comparisons above tell us that:

 1. Forward selection provides a parsimonious solution without sacrificing real 
explanatory power: the 2

adjR  of the three partitionings are approximately equal.
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 2. The common fractions, which are one of the reasons why partitioning is 
 computed, must be interpreted with caution, even when the variables responsible 
for them are biologically legitimate.

 3. Forward-selecting all explanatory variables before attributing the remaining 
ones to subsets is in contradiction with the aim of variation partitioning, except 
to help identify the magnitude of the effect of some variables responsible for the 
common fractions.

 4. Forward selection and variation partitioning are powerful statistical tools, but 
they cannot replace sound ecological reasoning.

Final note about the [b] fraction. This fraction should never be mistaken for an 
interaction term in the analysis of variance sense. In a replicated two-way ANOVA, 
the interaction measures the influence of the levels of one factor on the effect of the 
other factor. It is most easily measured when the two factors are independent 
(uncorrelated, orthogonal) ... a case where the [b] fraction is equal to 0.

6.3.2.8  RDA as a Tool for Multivariate ANOVA

In its classical, parametric form, multivariate analysis of variance (MANOVA) has 
stringent conditions of application and restrictions (e.g. multivariate normality of 
each group of data, homogeneity of the variance–covariance matrices, number of 
response variables smaller than the number of objects minus the number of groups). 
It is practically never adapted to ecological data, despite its obvious interest for the 
analysis of the results of ecological experiments.

Fortunately, RDA offers an elegant alternative, while adding the versatility of the 
permutation tests and the triplot representation of results. The condition of homo-
geneity of the variance–covariance matrices still applies, however. It can be tested 
by the function betadisper() of package vegan. The trick is to use factor 
variables and their interactions as explanatory variables. In the example below, the 
factors are coded as orthogonal Helmert contrasts to allow testing the factors and 
interaction in a way that provides the correct F values. The interaction is repre-
sented by variables that are the products of the variables coding for the main fac-
tors. Properties (for a balanced design): (1) the sum of each coding variable is zero; 
(2) all variables are orthogonal (their scalar products are all zero); (3) the groups of 
variables coding for the main factors and their interaction are all orthogonal.

To illustrate this application, let us use a part of the Doubs data to construct a 
fictitious balanced two-way ANOVA design. We will use the first 27 sites, leaving 
the two last out.
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Let us create a first factor representing altitude. This factor has three levels, one 
for each group of sites 1–10, 11–19 and 20–28 (remember that the empty site 8 has 
been removed from the data).

The second factor mimics the pH variable as closely as possible. In the real data, 
pH is more or less independent from altitude (r = −0.05), but no direct codification 
allows the creation of a three-level factor orthogonal to our first factor. Therefore, 
we simply create an artificial, three-level factor orthogonal to altitude and approxi-
mately representing pH. Be aware that we do this for illustration purposes only, and 
that such a manipulation would not be tolerable in the real world.

The end result is a balanced two-way crossed design with two factors of three 
levels each. After having tested for the homogeneity of variance–covariance 
 matrices for the two factors, we test the two main factors and their interaction, each 
time using the appropriate terms as covariables. Using Helmert contrasts instead of 
factors allows an explicit control of all the terms of the model specification.
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Hints To convince yourself that this procedure is the exact equivalent of an 
ANOVA, apply it to species 1 only, and then run a traditional ANOVA 
on species 1 with factors alt.fac and pH.fac, and compare the F 
values. The probabilities may differ slightly since they are permutational 
in RDA.

In the permutational tests of each main effect, the argument strata 
restricts the permutations within the levels of the other factor. This 
ensures that the proper H0 is produced by the permutation scheme.

Examine the help files of functions model.matrix(), 
 contrasts() and contr.helmert().

If the design is unbalanced, this procedure can still be applied, but the contrasts 
are not orthogonal and therefore the tests of significance of the factors and interaction 
have reduced power to detect significant effects.

6.3.2.9  Distance-Based Redundancy Analysis

Ecologists have long needed methods for analysing community composition data 
in a multivariate framework. The need was particularly acute in ecological experi-
ments designed to be analysed by multifactorial analysis of variance. We have seen 
that community composition data with large numbers of zeros must be transformed 
before they are used in MANOVA and other Euclidean-based models. The Legendre 
and Gallagher (2001) transformations (Sect. 3.5) are one way to solve that problem: 
transformed species data can be used in the ANOVA by RDA described in 
Sect. 6.3.2.8. These transformations cover only the chord, Hellinger, chi-square and 
Ochiai distance cases, however. Ecologists may want to compute RDA based on 
other dissimilarity measures that cannot be computed by a data transformation 
followed by the calculation of the Euclidean distance.
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Legendre and Anderson (1999) proposed the method of distance-based redundancy 
analysis (db-RDA) to solve that problem. They showed that RDA could be used as 
a form of ANOVA which was applicable to community composition data if they 
were transformed in some appropriate way, which went through the calculation of 
a dissimilarity matrix of the user’s choice. This approach remains fully valid and 
useful for all dissimilarity measures that cannot be obtained by a data transforma-
tion followed by the calculation of the Euclidean distance. Among the ones devoted 
to communities of living organisms, let us mention most measures for binary data 

(e.g. Jaccard ( )− 71 S , Sørensen  ( )− 81 S ), and quantitative distance measures 

like Bray–Curtis (D
14

), asymmetric Gower ( )− 191 S , Whittaker (D
9
) and Canberra 

(D
10

). Dissimilarities intended for other types of data, e.g. symmetric Gower 

( )− 151 S , Estabrook–Rogers ( )− 161 S , and the generalized Mahalanobis dis-
tance for groups of observations, can also be used in canonical ordination through 
db-RDA. Examples of papers involving db-RDA are Anderson (1999), Geffen et al. 
(2004) and Lear et al. (2008). The method goes as follows:

Compute a Q-mode dissimilarity matrix for the response data.•	
Compute a principal coordinate analysis (PCoA) of the dissimilarity matrix, cor-•	
recting for negative eigenvalues if necessary. Keep all principal coordinates in a 
file; they express all the variance of the data as seen through the dissimilarity 
measure.
Run and test an RDA of the principal coordinates created above (acting as •	
response data) constrained by the explanatory variables available in the study. 
The explanatory variables may represent the factors of a manipulative or men-
surative experiment.

These steps are quite simple; they can be run one by one in R with a few lines 
of code only, but a shortcut is available in vegan, as will be shown below. For the 
sake of example, we will compute a Bray–Curtis dissimilarity matrix of the fish 
data before submitting it to the same ANOVA-like RDA as above.
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6.3.2.10  Nonlinear Relationships in RDA

One last point is worth mentioning. RDA carries out a multivariate linear regression 
analysis followed by a PCA of the fitted values. Consequently, other techniques 
used in multiple regression can be used in RDA as well. Consider the fact that all 
RDA models presented above used only first-degree explanatory variables. 
However, it is frequent that raw species responses are in fact unimodal, with a spe-
cies showing an ecological optimum and some tolerance to the variation of a given 
environmental constraint. A strictly linear model would suffer from lack-of-fit in 
such a case. Plotting all possible pairs of response versus explanatory variables to 
detect such non-linearities would be too cumbersome. An interesting shortcut to 
identify and model unimodal responses is to provide second-degree explanatory 
variables along with the first degree terms (i.e. provide the terms for a quadratic 
model) and run forward selection. This procedure will retain the relevant variables, 
be they of the first or second degree. Of course, the interpretation of such results is 

Hints In the cmdscale() and capscale() functions, the argument 
add=TRUE adds a constant to the distances to avoid negative eigen-
values. This is the Cailliez correction.

When using raw response data, the association coefficient is deter-
mined by the argument distance.
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Hint If one computes raw second-degree variables by hand (i.e. by squaring 
first-degree variables) or by applying argument raw=TRUE to func-
tion poly(), it is better to centre the first-degree variables before 
computing the second-degree terms, otherwise the latter will be 
strongly linearly related to the former. This is not necessary when 
using poly().

more complex, so that it should be applied only when one has serious reasons to 
suspect non-linear relationships. Third-order explanatory variables may even be 
useful in the case of unimodal but highly skewed response variable distributions. 
Raw polynomial terms are highly correlated, so it is preferable to use orthogonal 
polynomials, which can be computed by function poly() of the package 
stats.

In the Doubs data, there are several species that are found mostly in the middle 
section of the river. Their relationship with the variable “distance from the source” 
(das) is therefore unimodal: absence first, then presence, then absence again. Such 
a simple case could be a good candidate to experiment with a second-degree vari-
able. When interpreting the result, note that species having their optimum around 
mid-river will point to the opposite direction from the das-squared variable das2, 
because the quadratic term of a unimodal model is negative. Species with arrows 
pointing in the same direction as the das2 variable may be more present at both 
ends of the river than in the middle. Remember also that this analysis is done on 
untransformed response variables.
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We drew a scaling 2 triplot because we were interested primarily in the relationships 
among the species (Fig. 6.6). At first glance, this triplot looks like some mistake 
has been made, but in fact it displays exactly what has been asked for. The surpris-
ing feature is, of course, the curved distribution of the sites in the plot. Since we 
 modelled the data by means of a second-degree function (i.e. a parabolic function) 
of the distance from the source, the modelled data (option “lc”) form therefore a 
parabola. If you want a triplot showing the sites in a configuration closer to the data, 
replace “lc” by “wa” in the plot function above.

Fig. 6.6 Scaling 2 triplot of the untransformed fish species explained by an orthogonal second 
degree polynomial of the variable “distance from the source” (das)
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To illustrate the interpretation of the first-order das and the second-order das2 
variables, let us take some fish species as examples. We map them along the river 
to make the comparison easier. The four examples are the brown trout (TRU), the 
grayling (OMB), the bleak (ABL) and the tench (TAN). The code is the same as in 
Chap. 2 (Fig. 6.7).

Comparing the ordination triplot with these four maps shows how to interpret 
the fish vectors in combination with the two variables das and das2. Among all 
species, the brown trout TRU is most strongly linked to the upper half of the river; 
its vector is opposed to das and orthogonal to (i.e. independent of) das2; the 
grayling (OMB) is characteristic of the middle part of the river. Note that its vector 
on the triplot is opposed to that of variable das2. The bleak (ABL) is abundant in 
the lower half of the river, as confirmed by its vector pointing in the direction of 
das, orthogonal to das2 and directly opposite to TRU. Finally, the tench (TAN) is 
present in three different zones along the river, which results in vector pointing 
halfway between the das and das2 vectors.
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Of course, since we have other, more explicit environmental variables at our 
disposal, this exercise may seem unnecessary. But it shows that in other cases, add-
ing a second-degree term may indeed add explanatory power to the model and 
improve its fit: the forward selection result confirmed that das2 added a significant 
contribution in this example, the 2

adjR  being raised by 6.3%.
The use of higher-degree explanatory variables is typical in the frame of spatial 

analysis, where the explanatory variables are spatial coordinates and the higher-
degree variables form trend-surface analysis models (see also Chap. 7). This does 
not, however, preclude their use with other types of explanatory variables.
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Fig. 6.7 Bubble plots of the abundances of four fish species, to explain the interpretation of the 
second degree RDA presented above
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6.3.3  A Hand-Written RDA Function

The code below is another exercise in matrix algebra; just follow the equations.
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6.4  Canonical Correspondence Analysis

6.4.1  Introduction

The canonical counterpart of CA, canonical correspondence analysis, has been 
acclaimed by ecologists ever since its introduction (ter Braak, 1986, 1987, 1988). 
It shares many characteristics with RDA, so that a detailed description is not neces-
sary here. Basically, it is a weighted form of RDA applied to the same matrix Q  of 
contributions to the c2 statistic as used in CA (Legendre and Legendre 1998, 
Section 11.2). CCA shares the basic properties of CA, combined with those of a 
constrained ordination. It preserves the c2 distance among sites, and species are 
represented as points in the triplots. ter Braak (1986) has shown that, provided that 
some conditions are fulfilled,3 CCA is a good approximation of a multivariate 
Gaussian regression. One particularly attractive feature of a CCA triplot is that 
 species are ordered along the canonical axes following their ecological optima. 
This allows a relatively easy ecological interpretation of species assemblages. Also, 
species scores can be used as synthetic descriptors in a clustering procedure  
(for instance k-means partitioning) to produce a typology of the species in 
assemblages.

CCA does have some drawbacks, however, related to the mathematical proper-
ties of the c2 distance. Legendre and Gallagher (2001) state that “a difference 
between abundance values for a common species contributes less to the distance 
than the same difference for a rare species, so that rare species may have an unduly 
large influence on the analysis”. Despite its widespread use, “the c2 distance is not 
unanimously accepted among ecologists; using simulations, Faith et al. (1987) 
concluded that it was one of the worst distances for community composition data” 
(Legendre and Gallagher 2001). Its use should be limited to situations where rare 
species are well sampled and are seen as potential indicators of particular charac-
teristics of an ecosystem; the alternative is to eliminate rare species from the data 
table before CCA. These problems, among other points, have led to the develop-
ment of the species pretransformations to open these data to the realm of RDA, 
ANOVA and other linear methods. Furthermore, the proportion of total inertia rep-
resented by explained inertia (inertia is the measure of explained variation of the 
data in CCA), which can be interpreted as an R2, is also biased, but no simple 
method exists for its adjustment. Ezekiel’s adjustment cannot be used. A rather 

3 Two important conditions are that the species must have been sampled along their whole ecologi-
cal range and that they display unimodal responses toward their main ecological constraints. These 
conditions are difficult to test formally, but graphs of species abundances in sites arranged along 
their scores on the first few ordination axes may help visualize their distributions along the main 
ecological gradients.
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cumbersome bootstrap procedure can be used for its estimation, for which no R 
code exists as yet (Peres-Neto et al. 2006). This precludes a correct estimation of 
the proportion of variation explained by CCA in the case of a single analysis, and 
unduly inflates the type I error and the estimation of explained variation in forward 
selection since Blanchet et al. (2008a)’s double stopping criterion cannot be 
applied. Since one cannot take the number of explanatory variables into account in 
computing an adjusted R2, the estimated relative amounts of variation in variation 
partitioning are also distorted.

Despite these shortcomings, CCA is still widely used and deserves an 
illustration.

6.4.2  CCA of the Doubs Data

6.4.2.1  CCA Using vegan

Let us run a CCA of the Doubs data using the formula interface. The species data 
are the raw, untransformed abundances (do not use the Hellinger-transformed data, 
which are meant to be used with RDA; the preserved distance would no longer be 
the c2 distance and the results could not be interpreted).

The differences with an RDA output are the following:

The variation is now expressed as •	 Mean squared contingency coefficient. It is 
biased but cannot easily be adjusted.
The maximum number of canonical axes in CCA is min[(•	 p − 1), m, n − 1]. The 
minimum number of residual axes is min[(p − 1), n − 1]. In our example, these 
numbers are the same as in RDA.
The species scores are represented by •	 points in the triplot.
Site scores are weighted •	 averages (instead of weighted sums) of species scores.
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6.4.2.2  CCA Triplot

The code to produce CCA triplots is similar to the one used for RDA, except that 
the response variables (species) are represented by points and thus arrows are not 
necessary for them.
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Fig. 6.8 (a) CCA triplot of the Doubs fish species constrained by all environmental variables 
except das. Scaling 1
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In CCA as in RDA, the introduction of a third entity (explanatory variables) calls 
for additional interpretation rules for the triplots. Here are the essential ones:

•	 Scaling 1 – (1) Projecting an object at right angle on a quantitative explanatory 
variable approximates the position of the object along that variable. (2) An 
object found near the point representing the centroid of a qualitative explana-
tory variable is more likely to possess state “1” for that variable. (3) Distances 
among centroids of qualitative explanatory variables, and between centroids 
and individual objects, approximate c2 distances.

•	 Scaling 2 – (1) The optimum of a species along a quantitative environmental 
variable can be obtained by projecting the species at right angle on the variable. 
(2) A species found near the centroid of a qualitative environmental variable 
is likely to be found frequently (or in larger abundances) in the sites possessing 
state “1” for that variable. (3) Distances among centroids, and between cen-
troids and individual objects, do not approximate c2 distances.
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The scaling 1 triplot focuses on the distance relationships among sites, but the 
presence of species with extreme scores renders the plot difficult to interpret 
beyond trivialities. Therefore, it may be useful to redraw it without the species 
(Fig. 6.9a):

Here the response of the fish communities to their environmental constraints is 
more apparent. One can see two well-defined groups of sites, one linked to high 
altitude and very steep slope (sites 1–7 and 10) and another with the highest oxygen 
contents (sites 11–15). The remaining sites are distributed among various condi-
tions towards more eutrophic waters. Remember that this is a constrained ordina-
tion of the fish community data, not a PCA of the site environmental variables. The 
triplot therefore displays how the fish community is organized with respect to the 
environmental constraints.

The scaling 2 triplot (Fig. 6.8b) shows two groups of species: OMB, CHA and 
BLA linked to high oxygen concentrations; TRU, VAI and LOC linked to high alti-
tude and very steep slope. To help untangle the other species, a biplot without the 
sites may be useful. You could plot it as we did above for the scaling 1 biplot, but 
this time leaving out the site ("lc") scores and using species ("sp") scores 
(Fig. 6.9b).

This closer look shows that ROT, CAR, TAN, BRO, GOU and PER are linked to 
high ammonium and phosphate concentrations, as well as high biological oxygen 
demand; most other species are linked to high nitrate concentrations, moderate to 
low slopes and high discharge.
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Fig. 6.9 (a) Biplot of CCA, scaling 1 with fitted site scores 
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6.4.2.3  Permutation Tests in CCA, Forward Selection  
and Parsimonious CCA

CCA results can be tested for significance by permutations, in the same way as 
RDA.

The RDA presented in Sect. 6.3.2.2, although globally significant, was not 
 parsimonious. Therefore, we computed a forward selection of explanatory variables 
(Sect. 6.3.2.6). Let us do the same thing here with function ordistep(), since 
forward.sel() only computes RDA.

The result is the same as the most parsimonious one based on RDA. Therefore, 
we can compute a parsimonious CCA on the basis of the same three explanatory 
variables: altitude, oxygen concentration and biological oxygen demand.

Hint Although the explanatory variables are the same, the VIFs differ from 
those of RDA because CCA is a weighted regression procedure where 
the (raw) species data have undergone a double standardization (per 
rows and columns).
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As in RDA, parsimony has paid off. The unadjusted explained inertia is now 
56.3%; it was 72.5% with all explanatory variables. This drop (which would cer-
tainly be smaller if these values were adjusted) is compensated by a clearer model 
with three significant canonical axes. The VIFs of the three remaining variables are 
around 3, which is good.

6.4.2.4  Three-Dimensional Interactive Plots

Instead of plotting these parsimonious results as we did before, let us explore a 
vegan function that can be very useful either for a researcher looking for a new 
perspective on his or her results, or for a teacher: a 3D interactive plot. We see 
several options to reveal or combine results in different ways. These 3D plots are 
run under the rgl package.
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Hint Three-dimensional plots have many options. Type ?ordirgl to 
explore some of them. It is also possible to draw 3D plots of RDA 
results, but there is no simple means to draw arrows for the response 
variables.

6.5  Linear Discriminant Analysis

6.5.1  Introduction

LDA differs from RDA and CCA in that the response variable is a grouping of the 
sites. This grouping may have been obtained by clustering the sites on the basis of 
a data set, or it may represent an ecological hypothesis. LDA tries to determine to 
what extent an independent set of quantitative variables can explain this grouping. 
We insist that the site typology must have been obtained independently from the 
explanatory variables used in the LDA; otherwise, the procedure would be circular 
and the tests would be invalid.

LDA computes discriminant functions from standardized descriptors. These 
coefficients quantify the relative contributions of the (standardized) explanatory 
variables to the discrimination of objects. On the other hand, identification func-
tions can be computed from the original (not standardized) descriptors and can be 
used to find the group to which a new object should be attributed. The example 
below shows both operations (discrimination and identification).

To perform LDA, one must ensure that the within-group covariance matrices of 
the explanatory variables are homogeneous, a condition that is frequently violated 
with ecological data.
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6.5.2  Discriminant Analysis Using lda()

lda() is a function of package MASS. As a simple example, we can use the four-
group classification of sites based on the fish species (gr in the 3D plots above), 
and try to explain this classification using the three environmental variables that 
have been selected in Sect. 6.3.2.6.

When interpreting the result, we refer to the equations presented in Legendre 
and Legendre (1998, Section 11.5).
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The new object has been classified in group 1. This calculation could have been 
done in the same way for a whole table of new observations. Now you could exam-
ine the profiles of the fish species of group 1. What you have actually done is to 
forecast that a site with the environmental values found in vector “new” should 
contain this type of fish community.

The classification success in spe.jac.table seems not as good as the result 
in spe.table. Remember, however, that spe.table shows an a posteriori 
classification of the objects that have been used in the computations. It is too opti-
mistic. By comparison, cross-validation results are obtained by computing the “lda” 
and classification of each object, in turn, with that object taken out of the  
“lda” calculation. It is more realistic.

6.6  Other Asymmetrical Analyses

Not all possible forms of multivariate analysis have been developed above. There 
are several additional methods that may prove useful in some applications. Most of 
them are derived from RDA. Among them, let us mention Principal response 
curves (PRC; Van den Brink and ter Braak 1998, 1999), the asymmetric form of 
 co- correspondence analysis (ter Braak and Schaffers 2004) and a method to test the 
space–time interaction in surveys through space and time without replication at the 
level of individual sampling units (Legendre et al. 2010).

PRC are designed to analyse treatment effects over time in terms of differ-
ences between control and treatment; they provide a clear graphical illustration of 
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 treatment effects at the community as well as the species level. They are available 
through the function prc() of package vegan.

Co-correspondence analysis is based on correspondence analysis and is devoted 
to the simultaneous ordination of two communities sampled at the same sites. Its 
asymmetric form allows one to predict a community on the basis of the other. It can 
be computed with an R package called cocorresp.

Space–time interaction testing is based on RDA and a spatial filtering technique 
(MEM) described in Chap. 7. An R package called STI is available through an 
ESA archive referenced in the paper.

6.7  Symmetrical Analysis of Two (or More) Data Sets

“Symmetrical analysis” means that the two matrices involved in the analysis play 
the same role; there is no “dependent” or “explanatory” matrix. The choice between 
symmetrical and asymmetrical ordination methods is akin to the choice between 
correlation and model I regression analysis. The former is more descriptive or 
exploratory, and also appropriate when no unidirectional causal hypothesis is 
imbedded in the model, while the latter is more inferential, i.e. oriented at explain-
ing the variation of response variables by means of a (hopefully parsimonious) 
linear combination of explanatory variables. The two approaches are therefore 
complementary; they fulfil different research aims and should not be opposed as 
competitors on the same terrain.

Three symmetrical methods are presented here because of their interest in ecol-
ogy: canonical correlation analysis (CCorA), co-inertia analysis (CoIA) and mul-
tiple factor analysis (MFA). Another method, the symmetric form of 
co-correspondence analysis, is devoted to the simultaneous ordination of two com-
munities. It can also be computed with the package cocorresp.

6.8  Canonical Correlation Analysis

6.8.1  Introduction

CCorA is computed on two data tables. The aim of the method is to represent the 
observations along canonical axes that maximize the correlations between the two 
tables. The solution is found by maximizing the between-set dispersion, expressed 
by the covariance matrix between the two sets of variables, with respect to the 
within-set dispersion (Legendre and Legendre 1998, Section 11.4). The two sets of 
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variables must be quantitative and are assumed to be multinormally distributed. The 
limitation of the method is that the total number of variables in the two tables must 
be smaller than (n − 1).

In CCorA, one can also test the hypothesis of linear independence of the two 
multivariate data tables. Pillai and Hsu (1979) have shown that Pillai’s trace is the 
most robust statistic to departures from normality.

The availability of RDA and CCA has limited the application of CCorA in ecol-
ogy, since most ecological problems are stated in terms of control-response hypoth-
eses for which asymmetrical ordination should be preferred. CCorA is more 
appropriate for exploratory purposes in cases where the two groups of variables are 
likely to influence each other, which may often occur in real ecological systems. 
Examples are the study of two groups of competing taxa and long-term studies of 
soil–vegetation relationships during a colonization process.

6.8.2  Canonical Correlation Analysis using CCorA

In the variation partitioning example of Sect. 6.3.2.7, we used two subsets of envi-
ronmental variables, chemistry and physiography, to explain the structure of the 
fish data. Putting aside the variation partitioning of that example, we could study 
the structure of common variation of the two complete subsets of explanatory vari-
ables. How does chemistry relate to physiography?

Since the data should be as close as possible to the condition of multinormality, 
we transform some variables in the following example to make them more 
 symmetrically distributed (we used the Shapiro–Wilk method to test for normality; 
results not shown here). The variables must be standardized since they have 
 different physical dimensions. The function used for the analysis is CCorA() of 
package vegan.
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The result shows that there is a significant relationship between the two matrices 
(permutational probability = 0.001). Pillai’s trace statistic is the sum of the squared 
canonical correlations. The canonical correlations are high on the first two axes. 
The RDA R2 and adjusted R2 are not part of the CCorA computations strictly speak-
ing; the two RDAs are computed separately for information. This information is 
useful to assess whether the canonical axes are likely to express a substantial 
amount of variation (which is the case here), since canonical correlations may be 
large even when the common variation is small with respect to the total variation of 
the two data sets.

Fig. 6.10 Biplots of a canonical correlation analysis (CCorA) of the chemical (left) and 
 physiographic (right) variables of the Doubs data
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In Fig. 6.10 the left-hand biplot shows the standardized chemical variables and 
the objects projected in their space. The right-hand biplot shows the standardized 
physiographical variables and objects in their space. Note that the two spaces are 
“aligned” with respect to one another, i.e. the canonical axes show the same trends 
expressed by the two sets of variables. The positions of the sites in the two biplots 
are related, although not similar. The structures displayed are the result of linear 
combinations of variables in each of the biplots so that the interpretation of indi-
vidual variables is difficult. The pair of biplots expresses the fact that oxygenated 
waters are related to high altitude and steep slope (i.e. upstream conditions), 
whereas discharge (deb) is highly positively correlated with hardness (dur), phos-
phates (pho) and nitrates (nit); altitude (alt) and slope (pen) are highly nega-
tively correlated with these same variables.

CCorA is also available in package stats (function cancor()) and in a 
package (unfortunately) called CCA, a wrapper computing canonical correlations 
using cancor (in a function called cc()) and providing graphical outputs (func-
tion plt.cc()) and extensions to situations where the number of variables 
exceeds that of sites (function rcc()).

6.9  Co-inertia Analysis

6.9.1  Introduction

Dolédec and Chessel (1994) proposed an alternative to CCorA called CoIA. Dray 
et al. (2003) showed that this approach is a very general and flexible way to couple 
two or more data tables. CoIA is a symmetrical approach allowing the use of vari-
ous methods to model the structure in each data matrix.

The analysis for two data tables is computed as follows:

Compute the covariance matrix crossing the variables of the two data tables. The •	
sum of squared covariances is the total co-inertia. Compute the eigenvalues and 
eigenvectors of that matrix. The eigenvalues represent a partitioning of the total 
co-inertia.
Project the points and variables of the two original data tables on the co-inertia •	
axes. By means of graphs, compare the projections of the two data tables in the 
common co-inertia space.

One particularly attractive feature of CoIA is the possibility to choose the type 
of ordination to apply to each data table prior to the joint analysis. Dray et al. 
(2003) gave examples of choices, each of them yielding different results. Of course 
the type of ordination must be chosen according to the research question and the 
mathematical type of the data. The main options are the ordination techniques 
explained in Chap. 5 (CA, PCA), but other methods can also be applied. 
Furthermore, within the intrinsic limits of the ordination methods applied to each 
data set, CoIA imposes fewer constraints than CCorA regarding the mathematical 
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type and the number of variables in the two tables. Note, however, that the row 
weights must be equal in the two separate ordinations, a condition that renders the 
use of CoIA with correspondence analysis difficult. CA is a weighted regression 
approach, and weights depend on the data. To apply CoIA, a choice must therefore 
be made about the weights of one or the two separate analyses to constrain them to 
be equal.

6.9.2  Co-inertia Analysis Using ade4

A function called coinertia() is available in package ade4 to compute CoIA. 
In the code below, we apply CoIA to the chemical and physiographic subsets of 
environmental variables of the Doubs data set. Since ade4 requires separate appro-
priate analyses, a PCA of the standardized data (correlation matrix) is first per-
formed on each of the two data tables.4 The number of axes to be retained in each 
analysis (2 by default) can be specified. The proportion of variance accounted for 
by the eigenvalues is then computed to assess the number of axes to be retained in 
the CoIA. In this example, three axes of the chemistry PCA account for 89.5% 
variation, and two axes of the physiography PCA account for 98.9% variation. 
After having verified that the row weights are equal in the two PCAs, these two 
results are then submitted to CoIA which is asked to retain two canonical axes. A 
permutation test is run to assess the significance of the co-structure of the data 
tables.

4 Note that ade4 has been developed around a very general mathematical framework involving 
entities that will not be described here, called duality diagrams (Escoufier 1987). Readers are 
invited to consult the original publication to learn more about this framework.
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Figure 6.11 gives a visual summary of the results of the CoIA. The numerical 
output looks like this:

The numerical results first present the eigenvalue decomposition of the matrix 
of co-inertia: eigenvalues (eig), covariance (covar) and standard deviation (sdX and 
sdY) of the two sets of site scores on the co-inertia axes and correlations between 
the two sets of site scores. This correlation is computed as covar/(sdX*sdY).

The second block of results compares the inertia of the (cumulated) projections 
of the X and Y data tables as projected in the CoIA (inertia) compared to the maxi-
mum inertia of the axes of the separate ordinations (max). It also gives the ratio 
between these values as a measure of concordance between the two projections.

The RV coefficient is the ratio of the total co-inertia to the square root of the 
product of the squared total inertias of the separate analyses (Robert and Escoufier 
1976). RV is a multivariate generalization of the Pearson correlation coefficient.



2176.9 Co-inertia Analysis

These results show that the first eigenvalue, representing 98.9% of the total 
variation, is overwhelmingly larger than the second one. Most of the common struc-
ture of the two data matrices is therefore to be sought on the first axis. The circular 
plots in Fig. 6.11 show that axes 1 of the two PCAs are almost perfectly aligned on 
the first CoIA analysis. The upper right-hand plot (normed site scores) shows the 
position of the sites on the co-inertia axes using the chemistry (origins of the 
arrows) and physiography (arrowheads) co-inertia weights. The shorter the arrows, 
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Fig. 6.11 Graphical results of a co-inertia analysis of the chemical and physiographical variables. 
Details: see text. X refers to the first and Y to the second data table
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the better the concordance between the two projections. The lower right-hand pair 
of plots shows the contribution of the two groups of variables to the canonical 
space. Vectors pointing to the same direction are correlated and longer vectors 
contribute more to the structure. Oxygen (oxy) correlates positively with slope 
(pen), phosphates (pho) negatively with slope (pen); nitrates (nit), hardness 
(dur, label masked by nitrates) and biological oxygen demand (dob) are all nega-
tively correlated with altitude (alt) since these variables have higher values down-
stream, and positively with discharge (deb, which increases downstream).

An extension of CoIA called RLQ analysis (Doledec et al. 1996; Dray et al. 
2002) relates species traits to environmental variables by means of three tables: site-
by-species (table L), site-by-environment (table R) and species-by-traits (table Q). 
It is available through the function rlq() of package ade4.

6.10  Multiple Factor Analysis

6.10.1  Introduction

Yet another approach to the symmetrical analysis of a data set described by k (usu-
ally k > 2) subsets or groups of variables is multiple factor analysis (MFA; Escofier 
and Pagès 1994). This analysis is correlative; it excludes any hypothesis of causal 
influence of a data set on another. The variables must belong to the same mathe-
matical type (quantitative or qualitative) within each subset. If all variables are 
quantitative, then MFA is basically a PCA applied to the whole set of variables in 
which each subset is weighted. MFA computation consists in the following steps:

A PCA is computed for each (centred and optionally standardized) subset of •	
variables. Each centred table is then weighted to give them equal weights in the 
global analysis, accounting for different variances among the groups. This is 
done by dividing all its variables by the first eigenvalue obtained from its PCA
The •	 k weighted data sets are concatenated. The resulting table is submitted to a 
global PCA
The different subsets of variables are then projected on the global result; com-•	
mon structures and differences are assessed for objects and variables

The similarity between the geometrical representations derived from each group 
of variables is measured by the RV coefficient. RV coefficients, which vary between 
0 and 1, can be tested by permutations (Josse et al. 2008).

MFA has been mainly used in sensory evaluation and chemistry so far, but the 
potential for ecological applications is promising, as evidenced by a few recent 
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 contributions (Beamud et al. 2010; Carlson et al. 2010; Lamentowicz et al. 2010). 
Indeed, this method is very useful to explore the complex relationships among sev-
eral ecologically meaningful groups of descriptors, whatever their number and type.

MFA can be run by using function mfa() of the package ade4. Note that a 
data frame comprising all blocks of variables must first be assembled and set into 
class ktab by function ktab.data.frame(). Here we shall use function 
MFA() of the package FactoMineR (Lê et al. 2008), which is more straightfor-
ward and offers more options.

6.10.2  Multiple Factor Analysis Using FactoMineR

In the code below, we apply MFA to three subsets of the Doubs data: the species 
(Hellinger-transformed abundances), the physiographical variables (upstream–
downstream gradient), and the chemical variables (water quality). Note that this 
example is not at all equivalent to a constrained ordination, where the species data 
are explained by environmental variables and where the focus is put on an underly-
ing, one-directional causal model. MFA proposes a symmetrical, exploratory point 
of view, where correlative structures are exposed without any reference to a direc-
tionality of possible causal relationships. No formal directional hypothesis is tested, 
either. This approach is therefore not adapted to the modelling of asymmetrical 
relationships, a task devoted to RDA or CCA. However, MFA could be used in early 
stages of a research project as a neutral data exploration technique to help generate 
causal hypotheses, which could be tested afterwards on an independent data set.

The function MFA() includes an important argument type, which allows 
specifying the mathematical type of each subset: "c" for continuous variables (to 
run a PCA on a covariance matrix), "s" for continuous variables requiring stan-
dardization (to run a PCA on a correlation matrix), or "n" for nominal variables 
(to run a MCA or multiple correspondence analysis, see Sect. 5.4.5). In our case, 
we have to state that the species subset belongs to type "c", whereas the two envi-
ronmental subsets (chemistry and physiography) belong to type "s".
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The MFA provides an interesting picture of two main gradients and of the 
relationships among the three groups of variables. The first two axes represent more 
than 63% of the total variance. The plot “Partial axes” (Fig. 6.12) represents the 
projection of the principal components of each separate PCA on the global PCA. 
The plot “Individual factor map” (Fig. 6.13) shows the position of the sites accord-
ing to four viewpoints: the labelled black points represent the MFA site scores 
(centroids of the site scores of each separate PCA); some of them are connected by 
coloured lines to the points representing their scores in the three separate PCAs. 
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The plot “Correlation circle” (Fig. 6.14) represents the normalized vectors of all 
quantitative variables.

In the table below, the RV coefficients appear in the lower-left triangle, below 
the diagonal, while the upper-right triangle contains permutational p values. These 
results tell us that fish communities are mostly linked to the physiographical condi-
tions (RV = 0.58), which are themselves partly linked to water chemistry 
(RV = 0.36).
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If we examine Figs. 6.13 and 6.14 together, we can easily recognize the main 
upstream–downstream gradient along the first axis and the gradient of water quality 
along a combination of the first and second axes (from upper left to lower right). 
For example, the scores of sites 1, 2 and 3 (Fig. 6.13, left-hand part of the graph) 
correspond (Fig. 6.14) to a high altitude and a strong slope, as well as a high oxygen 
concentration. Here, close to the source, the ecological conditions are dominated by 
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physiography. The (relatively poor) fish community is characterized by TRU, VAI 
and LOC. On the opposite side, sites 23, 24 and 25 show the highest concentrations 
in phosphates, ammonium and nitrates, and a high biological oxygen demand. 
These three sites are heavily polluted and their community is characterized by 
another set of three species: ABL, GAR and CHE.

6.11  Conclusion

Ordination is a natural and informative way to look at ecological data, and ordina-
tion involving more than one data matrix is certainly the most powerful family of 
methods to reveal, interpret, test and model ecological relationships in the multi-
variate context. We presented what we think are the most important and useful 
methods, illustrating them using examples that highlighted their potential (Table 6.1). 
This is by no means the end of the story. Researchers continuously propose either 
new ways of exploiting the existing methods, or new methods altogether, whose 
merits and limits must be put under close scrutiny to allow them to be properly 
integrated into the already powerful statistical toolbox of the ecological community. 
Readers of this book are encouraged to join this movement.

Table 6.1 Names and some characteristics of the methods described in this chapter

Name, acronym Use (examples)
R functions  
packages

Data; implementation; 
limitations

A. Asymmetric analyses

Redundancy  
analysis, RDA

Predict Y with X: 
Variation  
partitioning

rda  
{vegan}

varpart  
{vegan}

All types; species data with 
prior transformation; 
m < (n − 1). Linear 
model.

Canonical 
correspondence 
analysis, CCA

Predict Y with X cca  
{vegan}

Y: species abundances;  
X: all types; m < (n − 1); 
unimodal response to 
latent variables

Linear discriminant 
analysis, LDA

Explain classification 
with quantitative 
variables

lda  
{MASS}

Y: classification; X: 
quantitative variables. 
Linear model.

Principal response 
curves, PRC

Model community 
response through 
time in controlled 
experiments

prc  
{vegan}

Y: community data; factor 
“treatment”; factor 
“time”

Space–time  
interaction  
analysis, STI

Test interaction in 
space–time data  
sets without 
replicated sites

{STI} Y: community data; T: 
time vector; S: spatial 
coordinates

Co-correspondence 
analysis 
(asymmetric  
form), COCA

Predict one community 
on the basis of 
another

coca  
{cocorresp}

Y: data for community 1; 
X: data for community 
2; both at the same sites. 
Unimodal response to 
latent variables

(continued)
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Name, acronym Use (examples)
R functions  
packages

Data; implementation; 
limitations

B. Symmetric analyses

Co-correspondence 
analysis  
(symmetric  
form), COCA

Optimized comparison 
of two communities 
(descriptive 
approach)

coca  
{cocorresp}

Y1: data for community 1; 
Y2: data for community 
2; both at the same sites. 
Unimodal response to 
latent variables

Canonical  
correlation  
analysis, CCorA

Common structures of 
two data matrices

CCorA  
{vegan}

Two matrices of 
quantitative data. Linear 
model

Co-inertia analysis, 
CoIA

Common structures  
of two or more  
data matrices

coinertia  
{ade4}

Very general and flexible; 
many types of data and 
ordination methods

RLQ analysis, RLQ Species traits related 
to environmental 
variables

rlq  
{ade4}

Three tables: species-
by-sites, species-
by-environment; 
species-by-traits

Multiple factor 
analysis, MFA

Common structures  
of two or more  
data matrices

mfa {ade4}
MFA  

{FactoMineR}

Simultaneous ordination of 
two or more weighted 
tables. Mathematical 
type must be 
homogeneous within 
each table

Table 6.1 (continued)
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7.1  Objectives

Spatial analysis of ecological data is a huge field that could fill several books by 
itself. To learn about general approaches in spatial analysis with R, readers may 
consult the recent book by Bivand et al. (2008). The present chapter has a more 
restricted scope. After a short general introduction, it deals with several methods 
that were specifically developed for the analysis of scale-dependent structures of 
ecological data; these methods can, of course, be applied to other domains. These 
methods are based on sets of variables describing spatial structures in various ways, 
derived from the coordinates of the sites or from the neighbourhood relationships 
among sites. These variables are used to model the spatial structures of ecological 
data by means of multiple regression or canonical ordination, and to identify sig-
nificant spatial structures at all spatial scales that can be perceived by the sampling 
design. As you will see, the whole analytical process uses many of the techniques 
covered in the previous chapters.

Practically, you will:

Learn how to compute spatial correlation measures and draw spatial •	
correlograms
Learn how to construct spatial descriptors derived from site coordinates and •	
from links between sites
Identify, test and interpret scale-dependent spatial structures•	
Combine spatial analysis and variation partitioning•	
Assess spatial structures in canonical ordinations by computing variograms of •	
explained and residual ordination scores

Chapter 7
Spatial Analysis of Ecological Data
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7.2  Spatial Structures and Spatial Analysis:  
A Short Overview

7.2.1  Introduction

As mentioned in Chap. 6, spatial structures play a very important role in the  analysis 
of ecological data. Living communities are spatially structured at many scales, and 
these structures are the result of several classes of processes. On the other hand, 
beta diversity is the spatial variation in community composition; so, a study of the 
factors that can explain the spatial variation of community composition is in every 
respect an analysis of beta diversity. The environmental control model advocates 
that external forces (climatic, physical, chemical) control living communities. If 
these factors are spatially structured, their patterns will reflect on the living com-
munities (examples: patches of desert where the soil is humid enough to support 
vegetation; gradient of successive communities through an intertidal zone). The 
biotic control model predicts that intra- and interspecific interactions within com-
munities (examples: social groups of animals; top-down or bottom-up processes), 
as well as neutral processes such as ecological drift and limited dispersal, may 
result in spatial patterns which are the cause of spatial autocorrelation in the strict 
sense. Historical events (e.g. past disturbances like fire or human settlements) may 
have structured the environment in a way that still influences present-day 
communities.

In all, ecological data are a combination of many structures, spatial or not:

The overall mean of each response variable; if the whole sampling area is under •	
the influence of an all-encompassing process that changes the mean in a gradient 
across the area, then a trend is present. The trend may be due to a process operat-
ing at a scale larger than the sampling area.
Spatial structures at regional scales: ecological processes of various kinds (biotic •	
or abiotic) influence the data at scales finer than the overall sampling area, pro-
ducing identifiable spatial patterns.
Local deterministic structures with no recognizable spatial component because •	
the sampling design is not fine enough to identify such fine-scale patches.
Random noise (error): this is the residual (stochastic) component of the variation. •	
It can be attributed to local effects operating independently at each sampling site.

One of the aims of spatial analysis is to discriminate between these sources of 
variation and model the relevant ones separately.
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7.2.2  Induced Spatial Dependence and Spatial Autocorrelation

An important distinction must be made here. As we wrote above, a spatial structure 
in a response matrix Y can result from two main origins: either from the forcing of 
external (environmental) factors that are themselves spatially structured, or as the 
result of processes internal to the community itself. In the first case, one speaks of 
induced spatial dependence, in the second case of spatial autocorrelation.

For value y
j
 of a response variable y observed at site j, the model for induced 

spatial dependence is the following:

 = + +( )j y j jy f Xm e  (7.1)

where yµ  is the overall mean of variable y, X is a set of explanatory variables, and 

jε  is an error term that varies randomly from location to location. The additional 
term [f(X

j
)] states that y

j
 is influenced by external processes represented in the 

model by explanatory variables. The spatial structure of these variables is reflected 
in y. When they form a gradient, they represent what Legendre (1993) called “true 
gradients”, that is, gradient-like deterministic structures generated by external 
forces, whose error terms are not autocorrelated.

The model for spatial autocorrelation is:

 m m e= + − +∑ ( )j y i y jy f y  (7.2)

This equation states that y
j
 is influenced by the values of y at the surrounding 

sites i. This influence is modelled by a weighted sum of the (centred) values y
i
 at 

these sites. The biological context dictates the radius of the zone influencing a 
given point, as well as the weight to be given to the neighbouring points. These 
weights are generally dependent on the distance. The spatial interpolation method 
called kriging (Isaaks and Srivastava 1989; Bivand et al. 2008) is based on this 
model. Kriging is a family of interpolation methods that is not discussed further in 
this book. Kriging functions are available in package geoR.

Spatial autocorrelation may mimic gradients if the underlying process has a 
range of influence larger than the sampling area. Legendre (1993) called the result-
ing structures “false gradients”. There is no statistical way to distinguish false from 
true gradients. One must rely upon biological hypotheses: in some cases, one has a 
strong hypothesis about the processes generating spatial structures, and therefore 
whether these processes may have produced autocorrelation in the data. In other 
cases, an opinion can be formed by comparing the processes detected at the scale 
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of the study area with those that are likely to occur at the scale of the (larger) target 
population (Legendre and Legendre 1998).

Spatial correlation measures the fact that near points in space have either more 
similar (positive correlation) or more dissimilar values (negative correlation) than 
randomly selected pairs. This phenomenon, which is generated either by true 
 autocorrelation (7.2) or by spatial structures resulting from spatial dependence 
(7.1), has noxious effects on statistical tests. In spatially correlated data, values at 
any given site can be predicted, at least partially, from the values at other sites, if 
the researcher knows the biological process and the locations of the sites. This 
means that the values are not stochastically independent of one another. The 
assumption of independence of errors is violated in such cases. In other words, each 
new observation does not bring with it a full degree of freedom. While the fraction 
is difficult to determine, the fact is that the number of degrees of freedom used for 
a parametric test is often overestimated, thereby biasing the test on the “liberal” 
side: the null hypothesis is rejected too often. Numerical simulations have shown, 
however, that this statistical problem only occurs when both the response (e.g. spe-
cies) and the explanatory variables (e.g. environmental) are spatially correlated 
(Legendre et al. 2002).

7.2.3  Spatial Scale

The term scale is used in many senses across different disciplines. It encompasses 
several properties of sampling designs and spatial analysis.

A sampling design has three characteristics pertaining to spatial scale (Legendre 
and Legendre 1998, Section 13.0):

•	 Grain size: size of the sampling units (diameter, surface or volume depending on 
the study).

•	 Sampling interval, sometimes called lag: average distance between neighbour-
ing sampling units.

•	 Extent (sometimes called range): total length of the transect, surface area or 
volume (e.g. air, water) included in the study.

These three properties of a sampling design have an influence on the type and 
size of the spatial structures that can be identified and measured. (1) Sampling units 
integrate the structures occurring in them: one cannot identify structures of sizes 
equal to or smaller than the grain of the study. (2) The sampling interval determines 
the size of the finest spatial structures that can be identified (by differentiation 
among sampling units). (3) The extent of the study area sets an upper limit to the 
size of the measurable patterns. It is therefore essential to match each of these three 
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elements to the hypotheses to be tested and to the characteristics of the system 
under study (Dungan et al. 2002).

The ecological context of the study dictates the optimal grain size, sampling 
interval and extent. The optimal grain size (size of the sampling units) should match 
the size of unit entities of the study (e.g. objects like individual plants or animals, 
patches of vegetation, lakes, or areas affected by fine-scale processes). The average 
distance between unit objects or unit processes should be matched by the sampling 
interval. The extent should encompass the range of the broadest processes targeted 
by the study. These recommendations are detailed in Dungan et al. (2002).

Note that the expressions “large scale” and “small scale” are somewhat ambigu-
ous because their meanings in ecology and cartography are opposite. In ecology 
“small scale” refers to the fine structures and “large scale” to the broadest struc-
tures, contrary to cartography where a large-scale map (e.g. 1:25000) is more 
detailed than a small-scale map (e.g. 1:1000000). Therefore, we advocate the use 
of “broad scale” (phenomena with large grains, large extents) and “fine scale” in 
ecology (Wiens 1989). Although these terms are not strict antonyms, we feel that 
they are less ambiguous than “large” and “small scale”.

Finally, ecological processes occur at a variety of scales, resulting in complex, 
multiscale patterns. Therefore, identifying the scale(s) of the patterns and relating 
them to the appropriate processes are goals of paramount importance in modern 
ecology. To reach them, the researcher must rely on appropriate sampling designs 
and powerful analytical methods. The approaches presented in this chapter have 
been devised for the latter purpose.

7.2.4  Spatial Heterogeneity

A process or a pattern that varies across an area is said to be spatially heteroge-
neous. Many methods of spatial analysis are devoted to the measurement of the 
magnitude and extent of this heterogeneity and testing for the presence of spatial 
correlation (in other words, spatial structures of any kind). The latter may be done 
either to support the hypothesis that no spatial correlation (in the broad sense) is 
present in the data (if the researcher has classical parametric tests in mind) or, on 
the contrary, to show that correlation is present and use that information in concep-
tual or statistical models (Legendre and Legendre 1998).

Spatial heterogeneity in relation to inter-site distance is most often studied by 
means of structure functions. Examples of these are correlograms, variograms 
and periodograms. While it is not the purpose of this book to discuss these various 
functions, it is useful to devote a section to correlograms, since the main underlying 
measures of spatial correlation are used later in this chapter.
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7.2.5  Spatial Correlation or Autocorrelation Functions  
and Spatial Correlograms

The two main statistics used to measure spatial correlation of univariate quantita-
tive variables are Moran’s I (Moran 1950) and Geary’s c (Geary 1954). The first is 
constructed in much the same way as the Pearson correlation coefficient:

 = =

=

− −
= ≠

−

∑∑

∑
1 1

2

1

1
( )( )

( ) for 
1

( )

n n

hi h i
h i

n

i
i

w y y y y
W

I d h i

y y
n

 (7.3)

The expected value of Moran’s I for no spatial correlation is
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Values below E(I) indicate negative spatial correlation, and values above E(I) 
indicate positive correlation. E(I) is close to 0 when n (the total number of observa-
tions) is large.

Geary’s c is more akin to a distance measure:
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The expected value of Geary’s c for no spatial correlation is E(c) = 1. Values 
below 1 indicate positive spatial correlation, and values above 1 indicate negative 
correlation.

y
h
 and y

i
 are the values of variable y at pairs of sites h and i. To compute spatial 

correlation coefficients, one first constructs a matrix of geographical distances 
among sites. These distances are then converted to classes d. Both formulas show 
the computation of the index value for a class of inter-site distance d. The 
weights w

hi
 have value w

hi
 = 1 for pairs of sites belonging to distance class d, and 

w
hi
 = 0 otherwise. W is the number of pairs of points used to compute the coef-

ficient for the distance class considered, i.e., the sum of the w
hi
 weights for that 

class.
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A correlogram is a plot of the spatial correlation values against the distance 
classes. Combined with statistical tests, a correlogram allows a quick assessment of 
the type and range of the spatial correlation structure of a variable. A typical case 
is spatial correlation that is positive at short distances, decreases to negative values, 
and levels out to a point where it becomes non-significant. The corresponding dis-
tance class sets the distance beyond which a pair of values can be considered as 
spatially independent. It is important to note that spatial correlograms display any 
kind of spatial correlation, generated by (7.1) (induced spatial dependence) or (7.2) 
(spatial autocorrelation); so the name “spatial autocorrelogram” which is often 
given to these plots is somewhat misleading.

Univariate spatial correlograms can be computed using the function sp.cor­
relogram() of package spdep. We can apply this function to the variable 
“Substrate density” of the oribatid mite data set. We first define neighbourhoods of 
size £ 0.7 m around the points using the function dnearneigh(). These links 
can be visualized using our function plot.links(). Following that, the func-
tion sp.correlogram() finds successive lag orders of contiguous neighbours 
and computes Moran’s I for each of these lag orders. A lag order is the number of 
links, or steps in the linkage graph, between two points. It can be construed as a 
generalized form of distance between points. For instance, if sites A and C are con-
nected through site B, two links (A–B and B–C) are needed to connect A and C. 
They are connected at lag order 2.

Note: Cartesian coordinates can be obtained from latitude–longitude (sometimes 
abbreviated to Lat/Lon or LatLon) data using the function geoXY() of package 
SoDA.
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Hint We use the print() function to display the correlogram results 
because it allows for correction of the p values for multiple testing. In 
a correlogram, a test is performed for each lag (distance class), so that 
without correction, the overall risk of type I error is greatly increased. 
The Holm (1979) correction is applied here.

This correlogram has a single significant distance class: there is positive spatial 
correlation at distance class 1 (i.e. 0.0–0.7 m). Negative spatial correlation at 
 distance class 4 (i.e. 2.1–2.8 m) is hinted at, but the coefficient is not significant 
after Holm (1979) correction for multiple testing (see Sect. 7.2.6). Beyond this 
mark, no significant spatial correlation is identified, which means that for practical 
 purposes measurements taken more than 0.7 m, or (conservatively) 2.8 m apart (the 
upper limit of class 4), can be considered as spatially independent with respect to 
substrate density.

Spatial correlation in the multivariate domain can be assessed and tested for by 
means of a Mantel correlogram (Sokal 1986; Oden and Sokal 1986). Basically, one 
computes a normalized Mantel statistic r

M
 (analogous to a Pearson’s r  coefficient) 

between a dissimilarity matrix among sites and a matrix where pairs of sites belong-
ing to the same distance class receive value 0 and the other pairs, value 1. The process 
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is repeated for each distance class. Each r
M

 value can be tested by permutations. The 
expectation of the Mantel statistic for no spatial  correlation is r

M
 = 0.

A Mantel correlogram can be computed, tested and plotted (Fig. 7.1) by using 
vegan’s function mantel.correlog(). The only data necessary are a 
response distance matrix and either the geographical coordinates of the sites or a 
matrix of geographical distances among sites. Here is an example of a Mantel cor-
relogram for the oribatid mite data, which is first detrended (Sect. 7.3.2) to make 
the data second-order stationary (Sect. 7.2.6).

Hint In this run, the number of classes has been computed automatically 
using Sturge’s rule. Use argument n.class to provide a user- 
determined number of classes.

Fig. 7.1 Mantel correlogram of the Hellinger-transformed and detrended oribatid mite species 
data. Black squares indicate significant multivariate spatial correlation after Holm correction for 
multiple testing. The abscissa is labelled in metres since this is the unit of the data used to 
construct the distance classes
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In this simple run, most default settings have been applied, including Holm’s 
correction for multiple testing (see Sect. 7.2.6). The number of classes has been 
computed using Sturge’s rule [number of classes = 1 + (3.3219 ´ log

10
n), where n is 

the number of elements, here the number of pairwise distances]. The resulting num-
ber of classes and the corresponding break points can be read in the result object:

The result shows significant positive spatial correlation in the first two distance 
classes (i.e. between 0.15 and 1.61 m; see the break points) and negative significant 
correlation in the fourth to sixth classes (between 2.34 and 4.52 m). Examining the 
environmental variables allows some speculation about the ecological reasons 
behind these structures. Close sites tend to show similar communities because the 
soil conditions are rather similar. On the other hand, any pair of sites whose mem-
bers are about 2.7 m apart (class index of distance class 4) falls into contrasting soil 
conditions, which in turn explains why their mite communities are different.

7.2.6  Testing for the Presence of Spatial Correlation:  
Conditions

As shown above, spatial correlation coefficients can be tested for significance. 
However, conditions of application must be respected. The condition of normality 
can be relaxed if the test is carried out by permutations. To test the significance 
of coefficients of spatial correlation, however, the condition of second-order sta-
tionarity must be met. That condition states that the mean of the variable and its 
spatial covariance (numerator of (7.3)) are the same over the study area, and that its 
variance (denominator of (7.3)) is finite. This condition tells us, in other words, 
that the spatial variation of the data should be adequately described by the same 
single spatial correlation function in all portions of the study area. Spatial cor-
relation coefficients cannot be tested for significance if an overall trend is present 
in the data (“true gradient”), or if the variable has been measured in a region 
where several distinct structures should be modelled by different spatial correlation 

Hint The default option cutoff=TRUE limits the correlogram to the 
 distance classes including all points (the first seven distance classes in 
this example); the results for the last five distance classes (computed 
on fewer and fewer points) are not shown.
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functions. Data displaying simple trends can often be detrended by means of a first- or 
higher-degree function of the site geographical coordinates (Sect. 7.3).

Another, relaxed form of stationarity is called the intrinsic assumption, a short 
form for “hypothesis of intrinsic stationarity of order 2” (Wackernagel 2003). This 
condition considers only the increments of the values of the variable; it states that 
the differences (y

h
 − y

i
) for any distance d (in the numerator of (7.5)) have zero mean 

and constant and finite variance over the study area, independently of the location 
(Legendre and Legendre 1998). This condition allows one to compute and examine 
correlograms but without tests of significance.

Legendre and Legendre (1998, p. 721) show how to interpret all-directional 
 correlograms (i.e. correlograms built on distance classes defined the same way in 
all directions) as well as directional correlograms.

A word is needed here about multiple testing. In Sect. 7.2.5 several spatial 
correlation values were tested simultaneously for significance. In such cases, the 
probability of type I error increases with the number of tests. If k tests are carried 
out, the binomial law tells us that the overall probability of type I error (techni-
cally called the “experimentwise error rate”) is equal to 1 − (1 − a)k where a is the 
nominal value for a single test. For instance, in the Mantel correlogram shown in 
Fig. 7.1, seven tests are carried out simultaneously. Without correction, the over-
all probability of obtaining at least one type I error is equal to 1 − (1 − 0.05)7 = 0.302 
instead of the nominal a = 0.05. Several methods have been proposed to achieve 
a correct level of type I error in multiple tests (reviewed in Legendre and 
Legendre 1998; Wright 1992). The most conservative solution for k independent 
tests is to divide the significance level by the number of simultaneous tests: 
a¢ = a/k and compare the p values to a¢. Conversely, one can multiply the p values 
by k (i.e. p¢ = kp) and compare the resulting values to the unadjusted a. For non-
independent tests, Holm’s procedure (Holm 1979) is more powerful. The reason 
is that Holm’s correction consists in applying Bonferroni’s correction sequen-
tially by progressively relaxing the correcting factor as follows. First, order 
the (uncorrected) p values in increasing order from top to bottom. Then, multiply 
the smallest p value by k, the second smallest by k –1, and so on. If an adjusted 
p value is smaller than the previous one, make it equal to it. Compare the resulting 
values to the unadjusted alpha.

Other corrections have been proposed in addition to the two presented above. 
Several are available in a function called p.adjust() in package stats. This 
function can be called whenever one has run several simultaneous tests of signifi-
cance. The data submitted to that function must be a vector.
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7.2.7  Modelling Spatial Structures

Beyond the methods described above, there are other, more modelling-oriented 
approaches to spatial analysis. Finding spatial structures in ecological data  indicates 
that some process has been at work to generate them; the most important are 
 environmental forcing (past or present) and biotic processes. Therefore, it is interesting 
to identify the spatial structures in the data and model them. Spatial structures can 
then either be related to explanatory variables representing hypothesized causes, or 
help generate new hypotheses as to which processes may have generated them.

Spatial structures can be present at many different scales. Identifying these 
scales and modelling the corresponding spatial structures separately is a long-
sought goal for ecologists. A first, rather coarse approach in multivariate analysis 
is the adaptation of trend-surface analysis to canonical ordination. As suggested by 
ter Braak (1987) and demonstrated by Legendre (1990), response data may be 
explained by a polynomial function of the (centred) site coordinates. Borcard et al. 
(1992) have shown how to integrate this method into variation partitioning to iden-
tify, among other fractions, the pure spatial component of the ecological variation 
of species assemblages.

Multivariate trend-surface analysis only allows one to extract rather simple spa-
tial structures because polynomial terms become rapidly cumbersome, and highly 
correlated if one uses raw polynomials. In practice, their use is restricted to third-
degree polynomials. A breakthrough came with the development of principal coor-
dinates of neighbour matrices (PCNM) and other forms of eigenvector-based 
spatial functions, which are described in Sect. 7.4, after a short example of trend-
surface analysis.

7.3  Multivariate Trend-Surface Analysis

7.3.1  Introduction

Most ecological data have been sampled on geographic surfaces. Therefore, the 
crudest way to model the spatial structure of the response data is to regress them on 
the X–Y coordinates of the sampling sites. Of course, this will only model a linear 
trend; a plane will be fitted through the data in the same way as a straight line would 
be fitted to data collected along a transect by regressing them on their X 
coordinates.

A way of allowing curvilinear structures to be modelled is to add polynomial 
terms of the coordinates to the explanatory data. Second- and third-degree terms are 
often applied. It is better to centre (but not standardize, lest one distort the aspect-ratio 
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of the sampling design) the X and Y coordinates before computing the polynomial 
terms, to make at least the second-degree terms less correlated. The first-, second- 
and third-degree functions are:

 0 1 2ˆ ( , )z f X Y b b X b Y= = + +  (7.6)

 2 2
0 1 2 3 4 5ẑ b b X b Y b X b XY b Y= + + + + +  (7.7)

 2 2 3 2 2 3
0 1 2 3 4 5 6 7 8 9ẑ b b X b Y b X b XY b Y b X b X Y b XY b Y= + + + + + + + + +  (7.8)

An alternative method is to compute orthogonal polynomial terms using the 
function poly() with the default option raw=FALSE, which produces orthogo-
nal polynomials. For a set of X–Y coordinates, the monomials X, X2, X3 and Y, Y 2, 
Y 3 have a norm of 1 and are orthogonal to their respective lower order terms. X 
monomials are not orthogonal to Y monomials, however, except when the points 
form a regular orthogonal grid; terms containing both X and Y are not orthogonal 
to one another and their norms differ from 1. Orthogonal polynomials produce the 
exact same R2 in regression and canonical analysis as raw polynomials. The orthog-
onality of orthogonal polynomials presents an advantage when selection of explan-
atory variables is used to find a parsimonious spatial model.

Trend-surface analysis can be applied to multivariate data by means of RDA or 
CCA. The result is a set of independent spatial models (one for each canonical 
axis). One can also use forward selection to reduce the model to its significant 
components only.

7.3.2  Trend-Surface Analysis in Practice

Our first step in spatial modelling is to produce some monomials of the X and Y 
coordinates on a grid just to become familiar with the shapes they produce through 
visualization. We then proceed to apply this technique to the oribatid mite data. As 
a courtesy to our readers, we have modified ade4’s s.value() function to draw 
round instead of square bubbles in some plots. The modified function is called 
sr.value().
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Hint Note that the fitted site scores in scaling 1 have been used in the plots. 
We want to display the “pure” spatial model, i.e. the linear combina-
tion of spatial variables, in a projection preserving the Euclidean dis-
tances among sites.
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This analysis shows that the oribatid mite community is significantly spatially 
structured, and that three significant independent models can be obtained. The first 
one (first canonical axis, 73.8% of the explained variance) displays a strong difference 
between the upper and the lower half of the area. The two other models (12.1 and 
8.5% of the explained variance, respectively) display finer-scale structures (Fig. 7.2).

Fig. 7.2 Cubic trend-surface analysis of the Hellinger-transformed oribatid mite data. Three 
significant RDA axes have been retained, representing linearly independent spatial structures
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These models could now be interpreted by regressing them on environmental 
variables. But we postpone that step until we can implement it in another spatial 
modelling framework.

Nowadays, the most useful application of trend-surface analysis is for detrending. 
We have seen in Sect. 7.2.6 that data have to be detrended before spatial correlo-
grams can be tested. We will also see later that eigenvector-based spatial analyses 
are best applied to detrended data. Therefore, a handy procedure is to test for linear 
trends and detrend the data if the trend surface is significant. This means to regress 
all variables on the X–Y coordinates and retain the residuals. This can most easily 
be done using the function lm().

This detrended data set is now ready for more complex spatial analyses and 
modelling.

7.4  Eigenvector-Based Spatial Variables and Spatial Modelling

7.4.1  Introduction

Trend-surface analysis is a rather coarse method of spatial modelling. The multi-
scale nature of ecological processes and data calls for other approaches that can 
identify and model structures at all scales that can be perceived by a sampling 
design. Practically, this means methods that could model structures at scales rang-
ing from the broadest, encompassing the whole sampled area, down to the finest, 
whose sizes are of the order of magnitude of the sampling interval. To achieve this in 
the context of canonical ordination, we must construct spatial variables  representing 
structures of all relevant scales. This is what the PCNM method (principal coordinates 
of neighbour matrices; Borcard and Legendre 2002; Borcard et al. 2004) and its 
offsprings do. These methods will now be studied in detail.

As will be shown in Sect. 7.4.3, the PCNM method is actually a special case of 
a wider family of methods that are now called MEM (Moran’s eigenvector maps; 
Dray et al. 2006). However, since many published papers cite this variant under its 
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original name, we use it here for explanatory purposes. Bear in mind, however, that 
the acronym PCNM is likely to be short-lived in the literature. New papers use the 
generic acronym MEM.

7.4.2  Classical Distance-Based MEM, Formerly Called  
Principal Coordinates of Neighbour Matrices

7.4.2.1  Introduction

The PCNM method works as follows:

Construct a matrix of Euclidean (geographic) distances among sites.•	
Truncate this matrix to retain only the distances among close neighbours. The •	
threshold depends on the data. In most cases, it is chosen to be as short as pos-
sible, but all points must remain connected by links smaller than or equal to the 
truncation distance. Otherwise, different groups of eigenfunctions are created, 
that model the spatial variation within separate subgroups of points but not 
among these groups. How to choose the truncation threshold distance is dis-
cussed below. All pairs of points more distant than the threshold receive an 
arbitrary “large” distance value corresponding to four times the threshold.
Compute a PCoA of the truncated distance matrix.•	
In most studies, retain the eigenvectors that model positive spatial correlation •	
(Moran’s I larger than E(I), (7.4)).
Use these eigenvectors as spatial explanatory variables in multiple regression  •	
or RDA.

The PCNM method presents several advantages over trend-surface analysis. It 
produces orthogonal (linearly independent) spatial variables over a much wider 
range of spatial scales. It allows the modelling of any type of spatial structures, as 
Borcard and Legendre (2002) have demonstrated through extensive simulations.

The PCNM method can work for any sampling design, although the spatial 
variables are easier to interpret in the case of regular designs, as shown below. 
When the design is irregular, it may happen that a large truncation value must be 
chosen to allow all points to remain connected. A large truncation value means a 
loss of the finest spatial structures. Therefore, ideally, even an irregular sampling 
design should ensure that the minimum distance allowing all points to be connected 
is as short as possible. In cases where this distance is too large, Borcard and 
Legendre (2002) suggested (1) to add a limited number of supplementary points to 
the spatial data to cut down the threshold distance, (2) compute the PCNM  variables, 
and (3) remove the supplementary points from the PCNM matrix. This ensures that 
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the finest scales are better modelled. The trade-off is that the resulting PCNM 
 variables are no longer totally orthogonal to one another, but if the number of 
supplementary points is small with respect to the number of true points, the depar-
ture from orthogonality remains small.

The classical PCNM method produces eigenfunctions for all positive eigenval-
ues. However, some of these eigenfunctions display negative spatial correlation. In 
most studies, one is primarily interested in patterns produced by spatially conta-
gious processes, which display positive spatial correlation. Therefore, it is generally 
pre ferable to retain only the eigenfunctions with Moran’s I > E(I), or to run separate 
analyses with the eigenfunctions with positive and negative spatial correlation. The 
relationship between the sign of the eigenvalues and the sign of the spatial correla-
tion is not simple for PCNM, whereas the value of Moran’s I is a linear function of 
the eigenvalue in the case of standard MEM eigenfunctions. So it is advised to 
compute Moran’s I in all cases. Function PCNM() of the package PCNM presented 
in Sect. 7.4.2.3 can do that automatically (argument moran).

7.4.2.2  PCNM Variables on Regular Sampling Designs

When the spatial coordinates correspond to points that are equispaced along a 
transect or across a surface, the resulting PCNM variables represent a series of 
sinusoids of decreasing periods. For a transect with n regularly spaced points and 
sampling interval s, the wavelength l

i
 of the eigenfunction with rank i is: l

i
 = 2(n + s)/

(i + 1) (Guénard et al. 2010, eq. 3).1 Let us construct and illustrate a one-dimensional 
(Fig. 7.3) and a two-dimensional (Fig. 7.4) example, both equispaced.

1A simple function to find the wavelength for an intersite distance s = 1 is: wavelength <- 
function(i,n) {2*(n+1)/(i+1)}.
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Hint Functions s.value() and sr.value() propose two representa-
tions of values on maps: by symbols with sizes proportional to the 
values (default argument method = “squaresize”) and by sym-
bols of constant size and values represented by shades of grey (method 
= “greylevel”).
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Figures 7.3 and 7.4 show that these variables are periodical and ranging from 
broadest to finest scales. As discussed above, this does not imply that only periodi-
cal structures can be modelled by PCNM analysis, however. Even short-range 
spatial correlation can be modelled by fine-scale PCNM variables. This topic is 
addressed later.
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Fig. 7.3 Some of the 67 PCNM variables with positive eigenvalues built from a transect of 
100 equispaced points. The first 49 of them have Moran’s I larger than E(I), showing that they 
model positive spatial correlation
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7.4.2.3  PCNM Analysis of the Mite Data

PCNM analysis is not restricted to regular sampling designs. The drawback in the 
case of irregular designs is that the PCNM variables lose the regularity of their 
shapes, sometimes making the assessment of scale more difficult.

Now, it is time to try PCNM analysis on real data. You will first run the analysis 
“by hand”, i.e. by separately coding every step. After that, automated functions will 
be presented that simplify the analysis.

Fig. 7.4 Some of the 279 PCNM variables with positive eigenvalues built from a grid of 20 by 
20 equispaced points. The first 209 of them have Moran’s I larger than E(I)
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In the code below, PCNM variables are constructed using a package dedicated 
to this task (called PCNM). Function PCNM() of this package provides an immedi-
ate assessment of the spatial correlation (Moran’s I, (7.3)) displayed by the com-
puted eigenfunctions. Moran’s I gives a criterion to decide which eigenfunctions 
should be used for modelling; see Sect. 7.4.4. Otherwise, the user can apply the 
simpler function pcnm() of the vegan package.
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As one can see, the first 17 PCNMs have significant positive spatial correlations 
at the 5% significance level, while significant negative spatial correlations are 
found in PCNMs 35–43. The test of significance of Moran’s I may not be a reliable 
criterion to eliminate PCNMs from the analysis, however, so we will keep the 23 
PCNMs with positive spatial correlation. We will apply forward selection with the 
Blanchet et al. (2008a) double stopping criterion.

Hint The truncation distance can be chosen by the user to be either the 
value proposed by the PCNM function (longest link along the mini-
mum spanning tree drawn on the map of the points), or any other value 
larger than that. For example, for a regular two-dimensional grid of 
points with spacing of 1, one may choose a value slightly larger than 
the distance between diagonal neighbours, sqrt(2) = 1.4142, as the 
truncation distance. The chosen truncation distance may be 1.4143 in 
that case.
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Hint In the scores.cca() call above, be careful to set display=”lc”. 
The default is “wa”, but here we want the fitted site scores.

2 The value 0.7527 is found in the section “Accumulated constrained eigenvalues” of the RDA 
output. It is the proportion of variance explained by the first two canonical axes with respect to 
the total explained variance.

PCNM analysis of the detrended mite data explained 27.13% of the variance 
(see mite.fwd.R2a, the adjusted R2 obtained with the ten variables retained by 
forward selection, slightly exceeding the total 2

adjR ). Two canonical axes, explain-
ing 27.13 × 0.75272 = 20.4% of the total variance, are significant; their fitted site 
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scores have been plotted on a map of the sites. These two plots (Fig. 7.5) represent 
the spatially structured variation of the detrended oribatid mite data. Now, is this 
variation related to any of the environmental variables? A simple way to assess 
this is to regress the fitted site scores of these two canonical axes on the environ-
mental data.

Fig. 7.5 Manual PCNM analysis of the detrended oribatid mite data, ten significant PCNM vari-
ables. Maps of the fitted site scores of the first two canonical axes
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This PCNM analysis produced spatial models combining all the PCNM  variables 
forward-selected from the set of 23 classical PCNMs with positive spatial correla-
tion. Here, both significant canonical axes are a combination of PCNM  variables 
ranging from broad (PCNM1) to fine scale (PCNM23). While this may be interesting 
if one is interested in the global spatial structure of the response data, it does not 
allow one to discriminate between broad, medium and fine-scale structures since all 
significant PCNMs are combined.

Another approach consists in computing separate RDAs constrained by subsets 
of the significant PCNM variables. The PCNM variables being linearly  independent 
of one another, any submodel defined with a subset of PCNMs is also independent of 
any other submodel defined with another subset. These subsets can be defined in 
such a way as to model different scales. The choices are arbitrary: there is no gen-
eral rule defining what is broad, medium or fine scale. One can either predefine 
these limits, using the sizes of the patterns corresponding to the PCNM variables, 
or run forward selection and define submodels corresponding to groups of more or 
less consecutive PCNM variables retained by the procedure. One can also draw 
maps of the significant PCNM variables (Fig. 7.6) and group them according to the 
scales of the patterns they represent:
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On this basis, one could for instance define PCNMs 1, 3 and 4 as “broad scale”, 
PCNMs 5, 6, 7, 10 and 11 as “medium scale”, and PCNMs 20 and 23 as “fine scale” 
descriptors. Separate RDAs with these subsets model broad, medium and fine scale 
patterns, respectively.

Fig. 7.6 The ten significant PCNM variables with positive spatial correlation used in the manual 
PCNM analysis of the detrended oribatid mite data
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Something has occurred here, which is often found in fine-scale PCNM analysis. 
The only convincing correlation is with the presence of bare peat, a feature that was 
very localized in the study area. Otherwise, in most cases, fine scale PCNM 
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 variables cannot be related to environmental descriptors and are mostly the 
 signature of local spatial correlation generated by community dynamics. This topic 
will be addressed later.

7.4.2.4  Hassle-Free PCNM Analysis: Function quickPCNM()

A single-step PCNM analysis can be performed easily with the function quick­
PCNM(). This function, available in the PCNM package, requires only two argu-
ments: a response data table (pre-transformed if necessary) and a table containing 
the site geographic coordinates (which can be one- or two-dimensional). The func-
tion performs a complete PCNM analysis: it checks whether the response data 
should be detrended and does it if a significant trend is identified; it constructs the 
PCNM variables and tests the global analysis; it runs forward selection, using the 
PCNMs with positive spatial correlation; it runs RDA with the retained PCNM 
variables and tests the canonical axes; it delivers the RDA results (including the set 
of PCNM variables) and plots maps of the significant canonical axes.

Function quickPCNM() provides several arguments to fit various needs. For 
instance, detrending is done by default if a significant trend is found, but this option 
can be disabled (detrend=FALSE). The truncation threshold is computed auto-
matically unless the user provides another value (e.g. thresh=1.234). 
Computation of the PCNM variables is overridden if the user provides a ready-
made set of spatial regressors (myPCNM=userdataset).
quickPCNM() provides a composite output object containing many results. 

The summary shows all the components. To draw a biplot of the RDA results, the 
code is the following:
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7.4.2.5  Combining PCNM Analysis and Variation Partitioning

A clever and global approach to assess the environmental variation related to all 
scales of spatial variation is to perform a variation partitioning with an environ-
mental data set and up to three subsets of spatial variables. Function varpart() 
can only handle numeric variables (not factors), however, so that we have to recode 
environmental variables 3–5 into dummy binary variables.

Variation partitioning aims at quantifying the various unique and combined frac-
tions of variation explained by several sources. In this context, a linear trend can be 
considered as a source of variation like any other. The trend is likely to act on the 
response as well as the explanatory variables. Therefore, in this application we 
advocate not to detrend the response data prior to variation partitioning, but rather 
to test for a linear trend and incorporate it explicitly in the partitioning procedure if 
it is significant.

In this example, we independently forward-select the X–Y coordinates, the 
 environmental variables and the PCNM variables before variation partitioning. The 
significant PCNM variables are split into a broad and a fine-scale fraction. The par-
titioning results are presented in Fig. 7.7.
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When interpreting such a complex variation partitioning diagram, keep in mind 
that the R2 adjustment is done for each fraction that can be fitted without resorting 
to partial RDA or multiple regression (here, the first 15 rows of the table of results), 
and that the individual fractions [a] to [p] are then computed by subtraction. Very 
small negative 2

adjR  values frequently appear in this process. Negative 2
adjR  values 

correspond to explanatory variables that explain less of the response variables’ 
variation than would be expected by chance; so, for all practical purposes, they can 
be interpreted as zeros and neglected during interpretation, although they must be 
taken into account for the sum of all fractions to be 1.

The whole set of environmental and spatial variables explains 52.8% of the 
variation of the undetrended mite data (see the 2

adjR  for “All” fractions). The envi-
ronmental variables alone (matrix X1 in the partitioning results) explain 40.8% of 
the variation, of which a mere 5.8% is not spatially structured (fraction [a]). This 
fraction represents species–environment relationships associated with local envi-
ronmental conditions.

Fig. 7.7 Variation partitioning of the undetrended oribatid mite data into an environmental com-
ponent (upper left-hand circle), a linear trend (upper right-hand circle), a broad scale (lower cir-
cle) and fine scale (disjoined rectangles) PCNM spatial components. The empty fractions in the 
plots have small negative 

2
adjR  values
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The remaining fractions involving environmental and spatial variables (essentially 
fractions [g] and [l]) represent spatially structured environmental variation. Fraction 
[g] (12.5% variance explained) is common to the environmental and broad scale 
PCNM variables. Fraction [l] (23.0%) represents a strong spatial component that 
is jointly explained by the environmental variables, the Y coordinate of the sam-
pling sites and the broad scale PCNM variation. This is a typical case of induced 
spatial variation, where the spatial structure of environmental factors produces a 
similar spatial structure in the response data. In this example, fraction [l], which 
represents two-thirds of that joint structure, corresponds to the linear gradient in the 
north–south direction of the map represented in the analysis by variable mite.
xy[,2], showing that broad-scale PCNM variables can indeed model a linear gradi-
ent. On the other hand, the common fractions corresponding to the environment and 
the fine-scale PCNM structure ([h + k + n + o], 2

adj 0.006%R = − ) is negligible.
When some variance is explained commonly by the environmental and spatial 

variables, one should be careful when inferring causal species–environment rela-
tionships: the correlations may be due to a direct influence of the environmental 
variables on the species (direct induced spatial variation), or to some unmeasured 
underlying process that is spatially structured and is influencing both the mite com-
munity and the environmental variables (e.g. spatial variation induced by a histori-
cal causal factor).

The variation partitioning also shows that the four sources of variation have 
unequal unique contributions: the environment alone ([a], 5.8%), as well as the 
broad scale ([c], 8.0%) variation, are significant, while the trend alone ([b], 0.5%) 
and the fine scale variation ([d], 0.8%) are not.

There is also some variation explained by spatial variables independently of the 
environment. This variation is represented by fractions [b], [c], [d], [f], [i], [j] and 
[m]. Together these fractions explain 12% of the variation. Most likely, some of this 
variation, especially at broad and medium scales, could be explained by unmea-
sured environmental variables, although one cannot exclude the influence of past 
events that could still show their marks in the mite community (Borcard and 
Legendre 1994). Fine scale structures are more likely explainable by spatial cor-
relation produced by neutral biotic processes. Neutral processes include ecological 
drift (variation in species demography due to random reproduction and random 
survival of individuals due to competition, predator–prey interactions, etc.) and 
random dispersal (migration in animals, propagule dispersion in plants). Controlling 
for spatial correlation by means of PCNM variables when testing species–environ-
ment relationships is briefly addressed in Sect. 7.4.3.4.
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Finally, note that the broad and fine-scale PCNM variables have a non-null 
 intersection despite the fact that the PCNM variables are orthogonal: fraction 
[j + m + n + o] totals −1.7%. This occurs because other variables (environment and 
trend), which are not orthogonal to the PCNMs, are involved in the partitioning, and 
also because the variation partitioning procedure involves subtractions of R2 that 
have been adjusted on the basis of different numbers of explanatory variables.

7.4.3  MEM in a Wider Context: Weights Other than  
Geographic Distances

7.4.3.1  Introduction

The PCNM method provides an elegant way of constructing sets of linearly inde-
pendent spatial variables. Since its publication, it has gained a wide audience and 
has been applied in several research papers. But it is not the end of the story.

Dray et al. (2006) have greatly improved the mathematical formalism of PCNM 
analysis by showing that it is a particular case of a wider family of methods that they 
called Moran’s eigenvector maps (MEM). They demonstrated the link between the 
eigenvalues of the MEM eigenvectors and Moran’s spatial correlation index, I (7.3).

They reasoned that the relationship among sites, which is the basis for any spa-
tial eigenvector decomposition, actually has two components: (1) a list of links 
among objects, represented by a connectivity matrix and (2) a matrix of weights to 
be applied to these links. In the simplest case, the weights are binary (i.e. either two 
objects are linked, or they are not). In more complex models, non-negative weights 
can be placed on the links; these weights represent the easiness of exchange (of 
organisms, energy, information, etc.) between the points connected by the links. For 
instance, link weights can be made to be inversely proportional to the squared 
Euclidean distance among sites.

Furthermore, Dray et al. (2006) showed that (1) by using similarities instead of 
distances among sites, (2) setting the relationship of the sites with themselves to 
null similarity and (3) avoiding a square-root standardization of the eigenvectors 
within the PCoA procedure, one obtains a family of flexible methods (MEM) that 
bear an immediate connexion with Moran’s I and can be modulated to optimize the 
construction of spatial variables. The MEM method produces n − 1 spatial variables 
with positive and negative eigenvalues, allowing the construction of a wide range 
of variables modelling positive and negative spatial correlation. The eigenvectors 
maximize Moran’s I index, the eigenvalues being equal to Moran’s I multiplied by 
a constant. Therefore, the spatial structures of the data are extracted in such a way 
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that the axes first optimally display the positively autocorrelated structures in 
decreasing order of importance, and then the negatively autocorrelated structures in 
increasing order.

The MEM method consists in defining two matrices describing the relationships 
among the sites:

A binary •	 connectivity matrix B defining which pairs of sites are connected (1) 
and which are not (0)
A •	 weighting matrix A providing the intensity of the connexions

The final spatial weighting matrix W results from the Hadamard (i.e. term-by-
term) product of these two matrices, B and A.

The connectivity matrix B can be constructed on the basis of distances (by 
selecting a distance threshold and connecting all points that are within that dis-
tance) or by other connexion schemes, such as Delaunay triangulation, Gabriel 
graph or others (described by Legendre and Legendre 1998, Section 13.3). The 
connexion matrix can of course be customized to fit special needs – for instance, 
by only allowing connexions among sites along the littoral zone of a lake (not 
across water) or along the shoreline of an island.

Matrix A is not mandatory, but is often used to weight the connexions according 
to distance, e.g. by inverse distance or inverse squared distance, since it is ecologi-
cally realistic to assume that a process influences a community with an intensity 
decreasing with distance. The choice of both matrices is very important because it 
greatly affects the structure of the spatial variables obtained. These variables, in 
turn, condition the results of the spatial analysis, especially in the case of irregular 
sampling: “In the case of regular sampling (e.g. a regular grid), structures defined 
by eigenvectors are roughly similar for different definitions of W. For irregular 
distributions of sites, however, the number of positive/negative eigenvalues and the 
spatial structures described by their associated eigenvectors are greatly influenced 
by the spatial relationships defined in W” (Dray et al. 2006). These authors provide 
the following general recommendations:

The choice of the spatial weighting matrix W is the most critical step in spatial analysis. 
This matrix is a model of the spatial interactions recognized among the sites, all other 
interactions being excluded. In some cases, a theory-driven specification can be adopted, 
and the spatial weighting matrix can be constructed based upon biological considerations 
[…]. In most situations, however, the choice of a particular matrix may become rather dif-
ficult and a data-driven specification could then be applied. Under this latter approach, the 
objective is to select a configuration of W that results in the optimal performance of the 
spatial model.
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For data-driven model specification, the authors proposed a procedure starting 
with a user-defined set of possible spatial weighting matrices. For each candidate, 
one computes the MEM eigenfunctions, reorders them according to their explana-
tory power, enters them one by one into the model and retains the model with the 
lowest corrected Akaike information criterion (AIC

c
). When this is done for all 

candidates, one retains the W matrix yielding the lowest AIC
c
.

The AIC
c
-based selection is but one possibility. One could also forward-select 

the MEM within each candidate model using Blanchet et al.’s (2008a) double stop-
ping criterion and retain the model with the highest 2

adjR . This alternative, which 
had not yet been devised when the Dray et al. (2006) paper was published, addresses 
the concerns raised by these authors in their conclusion about the drawbacks of 
forward selection procedures.

7.4.3.2  MEM Analysis of the Mite Data

Dray et al. (2006) used the oribatid mite data to illustrate MEM analysis. As an 
example, we duplicate their analysis, exploring some choices along the steps of the 
method. Several packages are used. The following example is based on Stéphane 
Dray’s tutorial on MEM analysis, with our thanks to the author. It relies heavily on 
the spacemakeR package that Dray devised especially for this purpose.

The spacemakeR functions used below should make model selection rela-
tively easy. Of course, the final result depends upon a proper choice of a class of 
models. The function test.W() is particularly useful as it combines the construc-
tion of MEM variables and model selection; examine the help file of that 
function.

We experiment with three classes of models:

The first class is based on Delaunay triangulation with binary weights.•	
The second class starts from the same connectivity matrix, to which weights are •	
added. The weighting function is based on Euclidean distances among the sites: 
f
2
 = 1 − (d/d

max
)a where d is a distance value and d

max
 is the maximum value in the 

distance matrix.
The third class evaluates a series of models based on a range of distances around •	
the points. All pairs of points within the distance considered are linked, the others 
not. What should the range of distances be? This can be assessed by means of a 
multivariate variogram of the response data. Variograms are plots of semivari-
ances against distance classes. Semivariance is a distance-dependent measure of 
variation, which is used in the same way as in the correlograms presented earlier 
(e.g. Bivand et al. 2008). A variant of this approach will weight the links by the 
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function of inverse distance that was used in the second model class above. This 
last variant duplicates the results presented in the Dray et al. (2006) paper.

First and second classes of MEM models: unweighted (binary) and distance-
weighted Delaunay triangulation.
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Third class of MEM models: connectivity matrix based on distances.

The multivariate variogram is presented in Fig. 7.8. It consists in the sum of 
univariate variograms computed for all species. The variance increases from 0 to 
4 m. Since the shortest distance to keep all sites connected is 1.0111 m (see PCNM 
analysis), we explore a range of ten evenly distributed distances ranging from this 
threshold up to 4.0 m (i.e. approximately four times the threshold, as in PCNM 
analysis).
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Hint dnearneigh() requires two geographic dimensions. Add a con-
stant column (e.g. a column of 1) if you only have one dimension, e.g. 
a transect or a time series.

Fig. 7.8 Multivariate variogram of the detrended oribatid mite data. Twenty distance classes
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This result is more interesting than that of the weighted Delaunay MEM. The 
AICc of the best model, obtained with a threshold of 2 m, is −100.6 with a model 
consisting of five MEM variables only. Let us see if we could improve this result 
by weighting the connexions by an inverse distance function.

Hint The actual d
max

 value found by the function is often smaller than the d
max

 
provided to the function by means of the vector of user-selected thresh-
old distances, because the output of the function shows the largest actual 
distance within the limit provided by each threshold value. In the exam-
ple, the sixth value in vector thresh10, which contains the list of 
user-selected threshold distances, is 2.671639. There is no such dis-
tance in the mite geographic distance matrix; the function found that the 
largest distance smaller than or equal to that threshold is 2.668333.

With an AICc
 of −102.7, this is the best result of all our attempts in terms of 

AIC
c
. We can therefore extract this champion model, which contains seven MEM 

variables, from the output object:
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The very best MEM model among those tested contains seven MEM variables; 
four of them are positively spatially correlated (1, 2, 3, 6) and three negatively 
(9, 11, 57). Interestingly enough, the same result is found by redoing the selection 
using the forward selection procedure proposed by Blanchet et al. (2008a), with two 
separate forward selections for the MEM with positive and negative spatial correla-
tion and using only the a value as stopping criterion for the negative MEM.

RDA of the detrended mite data with the seven MEM variables can be computed 
in a similar fashion as in the PCNM analysis:
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The 2
adjR  of the MEM and PCNM models are similar (approximately 0.30), but 

the PCNM model requires 11 variables to reach this value and is thus less parsimo-
nious than the MEM model. The graphical result (not reproduced here) closely 
resembles that of the PCNM analysis, showing that the structures revealed by the 
two analyses are the same.

For the sake of comparison with the PCNM variables, one can plot the seven 
MEM variables on a map of the sampling area:

The MEMs look similar to the PCNMs at first glance, but a closer look shows 
that they differ more than one would have expected. Indeed, the two groups of 
spatial variables are rather weakly correlated:
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These MEM results show that the whole process of selecting and fine-tuning a 
spatial model, cumbersome as it may seem, can end up with an efficient and parsi-
monious set of spatial variables.

Note also that test.W() searches the best model, including MEMs with posi-
tive and negative spatial correlation. To identify the two groups of eigenfunctions 
and, if desired, run separate analyses, one must compute Moran’s I of the selected 
MEMs found in object MEM.select. Another approach could be to compute 
Moran’s I of all MEM candidates of the champion model (object MEM.all) and 
run separate forward selections on MEMs with positive and negative spatial 
correlation.

7.4.3.3  Other Types of Connectivity Matrices

In special cases, when one has a specific spatial model in mind, it is useless to go 
through the automatic procedure shown above, which finds the best model among 
multiple possibilities. The present subsection shows how to construct connectivity 
matrices of several types by hand.

Apart from the Delaunay triangulation used in the example above, the package 
spdep offers many possibilities for the definition of connectivity matrices. The 
ones constructed below and shown in Fig. 7.9 are described in Legendre and 
Legendre (1998), Section 13.3. They are presented in decreasing order of connec-
tivity and are nested (i.e. the edges (connexions) of a minimum spanning tree are 
all included in the relative neighbourhood graph and so on).

Depending on the context (hypotheses, data), researchers need connecting 
schemes that are more or less dense. Some reasons may be technical (e.g. the use 
of a minimum spanning tree in the PCNM procedure presented in Sect. 7.4.2). 
Ecological reasons include topographical structure of the sampling area (including 
possible barriers), dispersion ability of organisms, permeability of some types of 
substrates and so on.
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Fig. 7.9 Four types of connectivity matrices applied to the oribatid mite sampling plot. They are 
presented in decreasing order of connectivity. The links in each model are a subset of the links in 
the previous one
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Some of these matrices may contain unwanted links (for instance, along the 
borders of the areas). These can be edited either interactively or by command 
lines:

The following code shows how to construct connectivity matrices based on a 
distance: pairs of sites within a given radius are connected, the others not.
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These connectivity matrices belong to class “nb”. To use them further, we need 
to convert them into another class called “listw”. The function doing this conver-
sion is called nb2listw().

In the simplest case, one of the binary matrices above can be directly converted 
as follows (including a matrix-class representation of the connectivity matrix for 
convenience, using function listw2mat()):

This binary (unweighted) matrix could be used directly to create MEM variables 
using the function scores.listw(); see below.

Now, if you want to apply weights (matrix A) onto a binary matrix on the basis 
of Euclidean distances, you need two additional steps: (1) replace all values “1” in 
the connectivity matrix by the corresponding Euclidean distances [function 
nbdists()] and (2) define weights as a function of inverse distances in this 
example (weights may be different in other examples):
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Now, it is time to compute the MEM spatial variables. This can be done by func-
tion scores.listw() of the package spacemakeR. We do it on the weighted 
distance matrix created above. The MEMs are then tested for spatial correlation 
(Moran’s I).
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To show that the MEM variables are directly related to Moran’s I, let us draw a 
scatterplot of the MEM eigenvalues and their corresponding Moran’s I:

As in the case of the automatic model selection presented before, these MEM 
variables can now be used as explanatory variables in RDA or multiple regression, 
in the same way as PCNM variables were.

These are but several examples. We suggest that you explore the manual of the 
package spacemakeR, which presents in great detail the use of many options to 
construct, present and use various types of connectivity matrices.

7.4.3.4  Controlling for Spatial Correlation Using MEM

Peres-Neto and Legendre (2010) explored the potential use of polynomials and 
MEM eigenfunctions to control for spatial correlation in statistical tests. Their main 
conclusion is that MEM, but not polynomials, can adequately achieve this goal. They 
propose the following procedure: (1) Test for the presence of a spatial structure using 
all positive MEM variables. (2) If the global test is significant, proceed to forward-
select MEM variables, but (a novelty) do this individually for each species, and 
retain the union of the MEMs selected, i.e. retain all MEMs that have been selected 
at least once. (3) Proceed to test the species–environment relationships, controlling 
for spatial correlation by placing the retained MEM variables in a matrix of covari-
ables. The authors demonstrate that this procedure yields correct type I error for tests 
of significance in linear models, in the presence of spatial correlation.
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7.4.3.5  MEM on Sampling Designs with Nested Spatial Scales

The hierarchical structure of many natural entities (e.g. metapopulations or 
metacommunities; landscapes at various scales) sometimes calls for nested sam-
pling designs. An example is found in Declerck et al. (2011), where the authors 
studied cladoceran metacommunities in wetland pools found in several valleys of 
the High Andes. The authors analysed the metacommunity spatial structure among 
and within valleys by means of a two-level spatial model. The among-valley com-
ponent was modelled by a set of dummy variables. For the within-valley component, 
where several pools had been sampled in each valley, a set of MEM variables was 
computed for each valley. All dummy and MEM variables were assembled into a 
single staggered matrix. The MEM variables were arranged in blocks correspond-
ing to each valley. Within each block, all pools belonging to other valleys received 
the value 0, in a way similar to the one presented in Appendix C of Legendre et al. 
(2010) in the context of space–time analysis. Declerck et al. (2011) provide a func-
tion called create.MEM.model() to construct the staggered spatial matrix 
from a set of Cartesian coordinates and information about the number of groups and 
number of sites per group. That function is also available in the electronic material 
accompanying this book (see Chap. 1).

7.4.4  MEM with Positive or Negative Spatial Correlation:  
Which Ones Should Be Used?

In the course of the examples above, PCNM and MEM eigenfunctions have been 
produced, some with positive and some with negative spatial correlation. The ques-
tion therefore arises: should one use all the (significant) eigenfunctions as explana-
tory variables in the following regression or canonical analyses, or only those that 
model positive spatial correlation?

There is no single answer to this question. Ecologically speaking, one is generally 
more interested in features that are positively correlated at various ranges, simply 
because they are the signature of contagious processes that are frequent in nature. 
On the other hand, our experience shows that with real data the significant and nega-
tively correlated variables are either related to very local, almost “accidental” data 
structures, or they belong to the pure spatial fraction of variation in partitioning, i.e. 
they correspond to biotic interactions. If these are of interest, then all eigenfunctions 
should be considered in the analyses.

The original PCNM procedure generates a maximum of 2n/3 eigenfunctions 
(n = number of sites), with roughly the first n/2 modelling positive spatial correla-
tion, so a forward selection procedure including all variables can be conducted with 
the Blanchet et al. (2008a) double stopping criterion, which involves the  computation 
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of the 2
adjR  of the global analysis. In the generalized MEM framework, this is not 

possible because this method produces n − 1 spatial variables, which saturate the 
regression model if they are all considered together. This is why Blanchet et al. 
proposed to run separate selections on the MEM with positive and negative eigen-
values (usually, the first and the second half of the eigenfunctions), and then apply 
the Šidák (1967) correction to the probability values: P

S
 = 1 − (1 − P)k where P is the 

p value to be corrected and k is the number of tests (here k = 2).

7.4.5  Asymmetric Eigenvector Maps: When Directionality 
Matters

7.4.5.1  Introduction

The PCNM and MEM analyses presented above are designed for situations where 
the physical processes generating the response structures (e.g. in communities) do 
not present any directionality. In other words, the influence of any given point on 
its surroundings does not depend on the direction.

There are other situations, however, where directionality matters. The most 
obvious one is the cases of streams or rivers. Consider community effects driven by 
current: the physical process is geographically asymmetrical, the influence of a site 
onto another following an upstream–downstream direction. Colonization of the 
stream network by fish from the river mouth represents a different process, which 
follows the opposite direction. PCNM or MEM variables are computed on distance 
or connectivity matrices, where no directionality is specified. Therefore, informa-
tion about directionality is lost and the modelling, although adequate to reveal 
major spatial structures, does not exploit all the potential of directional data. Trends 
do not have to be extracted from the data prior to asymmetric eigenvector maps 
(AEM) analysis because directional processes are expected to produce trends in the 
response data; so, a trend is a part of the response data that one wants to model in 
AEM analysis.

This is the reason why Blanchet et al. (2008b) developed the AEM modelling 
method. AEM is an eigenfunction-based technique that uses information about the 
direction of the physical process, plus the same information as MEM (spatial coor-
dinates of sites, connexion diagram, optional weights) if needed. It works best on 
tree-like structures like river networks or on two-dimensional sampling designs like 
series of cross-river traps or sampling sites located in a large river or marine cur-
rent. Depending on the process under study, the origin(s) or root(s) in a river net-
work may be located upstream (e.g. flow of dissolved chemical substances, 
plankton dispersal) or downstream (fish invasion routes).
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For spatial transects or time series, AEM and MEM regression and canonical 
models are very similar, and in most cases they explain the response data with simi-
lar (although not strictly equal) R2. The AEM eigenfunctions are cosine-like, just 
like MEM eigenfunctions, although the AEMs have longer wavelengths than 
MEMs along transects. If the n observations are regularly spaced along the transect 
and the sampling interval is s, the wavelength l

i
 of the AEM with rank i is l

i
 = 2ns/i. 

AEM analysis should be preferred when modelling gradients and other spatial 
structures generated by directional physical processes.

AEM analysis was devised for cases where physical forces drive the communi-
ties in such a way that the causal relationships are directional. This is not the same 
as a simple ecological gradient, where an ecological factor is spatially structured 
but the communities can still interact in any direction. In the latter case, PCNM and 
MEM modelling are appropriate.

7.4.5.2  Principle of the Method

The basic piece of information needed is a table, where each site is described by 
the connexions (hereafter called “edges”, following graph-theory vocabulary) that 
it has with other sites located in the direction of the root(s) or origin(s) of the direc-
tional structure. The result is a rectangular sites-by-edges table E, where the 
sequence of edges connecting each site to the “root” of the network receive code 
“1” and the others get code “0”.

Legendre and Legendre (1998, Section 1.5.7) give an example for fish dispersal 
from the river mouth in a group of lakes interconnected by a river arborescence. In 
other cases, for instance a two-dimensional grid consisting of rows of sampling 
devices placed across a large river or a marine current at regular or irregular inter-
vals, each sampling point may influence (and hence be connected to) the one 
directly downstream of it, plus the two adjacent to the latter. If the process is 
assumed to originate upstream, an imaginary point “0” is created upstream of the 
sampling area, representing the root of the process, with connexions to each of the 
points in the first row of sites. All edges present in the network are numbered. In 
table E, the rows (i) are the sites and the columns (j) are the edges. The construction 
rule for AEM is that E(i,j) = 1 for all edges j connecting site i to the root (or site 0) 
of the graph; otherwise, E(i,j) = 0.

The edges (columns) of table E may be weighted if deemed necessary, e.g. if the 
transmission of the directional effects are supposed to be easier through some paths 
than others.

The next step consists in transforming table E into eigenfunctions. This can 
be done in different ways, but the simplest is to compute a PCA of table E and use 
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the matrix of principal components as explanatory variables. The AEM method 
produces n − 1 eigenvectors with positive eigenvalues and none with negative eigen-
values. The corresponding eigenfunctions, however, are also divided in two groups 
depicting positive or negative spatial correlation so that the selection of significant 
variables must also be run separately for these two groups, in the same way as for 
MEM variables.

A more detailed explanation about AEM construction is provided by Blanchet 
et al. (2008b). The authors address the various issues related to edge definition and 
weighting, which can greatly influence the results of AEM analysis. Blanchet et al. 
(2011) present three applications to real ecological data.

As a first example, let us construct a fictitious set of AEM variables based on the 
river arborescence shown by Legendre and Legendre (1998, Section 1.5.7). This 
example shows how to construct AEM variables in the simplest case, when one can 
easily produce a matrix of edges by hand. The construction is done by function 
aem() of the package AEM.
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Let us now construct AEM variables in a case where the number of data points 
and edges is too large to allow the use of the simple procedure presented above. The 
sampling design consists of ten cross-river transects with four traps per transect, 
and the edges are weighted proportional to inverse squared distance (Fig. 7.10). The 
procedure involves function cell2nb() of the package spdep to construct a list 
of neighbours from a grid of predefined dimensions.
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Let us now construct a set of five fictitious species observed at these 40 sites:

Fig. 7.10 Fictitious directional sampling design for AEM analysis: ten rows of four capture 
devices along a stream. A site “0” has been added upstream (bottom of the figure) to set the direc-
tion of the flow
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We are ready to proceed with the AEM analysis, using the first half (20, with 
positive spatial correlation) of the AEM variables generated earlier. Note that four 
out of five species have a random component, so the actual result of the following 
AEM analysis will vary from run to run.

In most of the runs, this small example shows that AEM analysis reveals the 
patterns formed by the species present only in the upper half of the stream, as well 
as the left–right contrast created by the species present only in the left-hand part of 
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the stream. The pattern of the more restricted species # 5 is less obvious. A PCNM 
analysis (not shown here) reveals less of the structure and has a lower 2

adjR . This 
stresses the importance of modelling directional processes adequately.

7.5  Another Way to Look at Spatial Structures:  
Multiscale Ordination

7.5.1  Principle

Wagner (2003, 2004) took an entirely different path towards integration of spatial 
information into canonical ordination. Under the well-known argument that auto-
correlated residuals can alter the results of statistical tests, she introduced geostatis-
tical methods to devise diagnostic tools allowing the partitioning of ordination 
results into distance classes, the distinction between induced spatial dependence 
and spatial autocorrelation, and the use of variograms to check important assump-
tions, such as independence of residuals and stationarity. The principle of multi-
scale ordination (MSO) is the following3:

Analyse the species by RDA. The explanatory variables can be of any kind •	
(environmental, spatial, …). This provides the matrix of fitted values and its 
eigenvectors, as well as the matrix of residuals and its eigenvectors.
By way of a variogram matrix computed for the fitted values, obtain the spatial •	
variance profiles of the canonical ordination axes (see below).
By way of a variogram matrix computed for the residuals, obtain the spatial •	
variance profiles of the residual ordination axes.
Plot the variograms of the explained and residual variances. Permutation tests •	
may be used to identify significant spatial correlation in the distance classes.

A variogram matrix is a three-dimensional array containing a separate variance–
covariance matrix for each distance class (Wagner, 2003, Fig. 2). The diagonal of 
each matrix quantifies the contribution of the corresponding distance class to the 
variance of the data. MSO computes a variogram matrix on the fitted values of a 
constrained ordination, thereby allowing its spatial decomposition. Multiplying this 
variogram matrix with the matrix of constrained eigenvectors provides the spatial 
decomposition of each eigenvalue (variance profiles). The same holds for the 
residuals.

3 Wagner (2004) describes the method for CCA, but the principle is the same for RDA.
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7.5.2  Application to the Mite Data: Exploratory Approach

Let us use the oribatid mite data as an example. Wagner (2004) also used these data, 
but in a CCA context so that the results will differ. MSO can be computed using 
function mso() of the package vegan. This function uses a result object produced 
by functions cca() or rda(), plus the table of geographical coordinates and a 
value for the interval size (argument “grain”) of the distance classes of the vario-
grams. The first example applies MCO in the exploratory way proposed by Wagner. 
An MSO plot of direct ordination can show whether the spatial structure in the 
response data can be explained by the explanatory (environmental) variables alone. 
In such a case, no detrending is necessary (H. Wagner, pers. comm.), but the confi-
dence interval of the variogram is indicative only, since a variogram should be 
computed on stationary data.

Hereunder, MSO is run using the RDA result of the Hellinger-transformed 
 oribatid mite data explained by the environmental variables. The “grain” of the 
variogram (size of a distance class) is chosen to be the truncation threshold used in 
the PCNM analysis, 1.011187.

The resulting plot (Fig. 7.11) provides several informations. In the upper part of 
the diagram, the dashed line with the crosses represents the sum of the explained 
and residual empirical variograms. The continuous lines represent the confidence 
envelopes of the variogram of the data matrix. The monotonic increase of the 
dashed line is the signature of the strong linear gradient present in the data. Note, 
however, that the variogram of the residuals (bottom of the graph) shows no dis-
tance class with significant spatial correlation (after a global Bonferroni correction 
for seven simultaneous tests: rejection threshold divided by the number of classes), 
and that variogram is essentially flat. This means that the broad-scale linear gradi-
ent is well explained by the environmental variables.
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However, an intriguing feature appears. When the species–environment 
correlations do not vary with scale, the dashed line remains within the boundaries 
of the confidence envelopes. This is not the case here (see classes 1, 2 and 5), 
suggesting that it is not appropriate to run a non-spatial, global species–environment 
analysis with the implicit assumption that the relationships are scale-invariant. On 
the contrary, we can expect the regression parameters to vary with scale, so that a 
global estimation is meaningless unless one controls for the regional scale spatial 
structure causing the problem.

As an attempt in this direction, let us run an MSO on a partial RDA of the mite 
species explained by the environment, controlling for the spatial structure, here 
represented by the seven MEM variables of our best model.

Fig. 7.11 Plot of the MSO of a RDA of the Hellinger-transformed oribatid mite data explained 
by the environmental variables. Explanations: see text
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Fig. 7.12 Plot of the MSO of a RDA of the Hellinger-transformed oribatid mite data explained 
by the environmental variables, controlling for spatial structure (seven MEM variables)

Figure 7.12 shows that the problem of scale-dependence in the model has been 
properly addressed. There is no spatial correlation in the residuals, and the vario-
gram of the residual species–environment relationship (after taking the MEM 
 spatial structure into account) stays within the confidence interval across all scales. 
Furthermore, the MEM variables have also removed the major gradient from the 
data, resulting in a globally flat empirical variogram. The console message stating 
that the “Error variance of regression model [is] underestimated by -Inf percent” 
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actually refers to the difference between the total residual variance and the sill of 
the residual variance. When the value is negative (and extreme in this case), the 
absence of significant autocorrelation causes an underestimation of the global error 
value of the regressions. A positive value (e.g. 10%), which could occur if the 
residuals were significantly autocorrelated, would act as a warning that the condi-
tion of independent residuals is violated, thereby invalidating the statistical tests 
(see Sect. 7.2.2).

7.5.3  Application to the Detrended Mite  
and Environmental Data

Let us apply an MSO analysis on detrended data, as an effort to meet the conditions 
of application of the calculation of the variogram confidence intervals. We know 
from Sect. 7.4.2.5 that there is a significant spatial structure only in the Y direction. 
We shall therefore detrend the mite and environmental data on the Y coordinate 
before running the RDA.

The result (Fig. 7.13) tells us a similar story, less the broad-scale gradient which 
has been removed prior to the analysis by detrending. The residual variance shows 
no spatial correlation, and the second, fourth and fifth class of the variogram of 
explained plus residual data fall outside the confidence interval. So the overall 
 variogram shows no trend, but some regional spatial variance is present. Can the 
MEM control successfully for this spatial variance?
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Fig. 7.13 Plot of the MSO of a RDA of the Hellinger-transformed and detrended oribatid mite 
data explained by the detrended environmental variables. Explanations: see text
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The answer is “yes” (Fig. 7.14). As in the undetrended example, one can see no 
spatial variance in the residuals or in the data. Compare with Fig. 7.12: the vario-
grams are very similar (although the default graphical output provides a different 
ordinate scale). The MEM variables have successfully controlled for the spatial 
variance unexplained by the environmental data.

This example shows the potential of combining multivariate geostatistical meth-
ods with canonical ordination when the aim of the study is to test for and model 
species–environment relationships while discriminating between the two major 
sources of concern related to spatial structures: spatial dependence (7.1) and spatial 
autocorrelation (7.2). Some aspects of this approach remain to be explored, how-
ever. Wagner (2004) notes “an important discrepancy between the results presented 

Fig. 7.14 Plot of the MSO of a RDA of the Hellinger-transformed and detrended oribatid mite 
data explained by the detrended environmental variables, controlling for spatial structure (seven 
MEM variables). Further explanations: see text
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here and those by Borcard et al. (1992). Borcard found that 12.2% of the total iner-
tia was spatially structured but could not be explained by the environmental vari-
ables. In the spatial partitioning of CCA results by multi-scale ordination (MSO), 
however, spatial autocorrelation appeared to be limited to distances smaller than 
0.75 m, and there was no evidence of any cyclic pattern that could account for such 
a large portion of inertia. The large portion of nonenvironmental spatial structure 
identified by Borcard et al. (1992) may partly be due to a confounding of the effects 
of space and environment (Méot et al. 1998)”. Arguing from an opposite point of 
view, we believe that the pure spatial structures revealed by canonical ordination 
(and especially in the PCNM and MEM framework which would give an even 
larger pure spatial fraction) are real and not due to confounding effects. In the latter 
case, they would have shown up in the common fraction of variation, not the pure 
spatial fraction. The question is rather: why did the MSO not reveal these struc-
tures? This may be due to the fact that no formal way of quantifying variance 
components in MSO has been devised as yet (H. Wagner, pers. comm.). However, 
this does by no means invalidate the MSO approach which, combined with the 
powerful tools developed in this chapter, increases our control over the complex 
process of extracting meaningful spatial information from ecological data.

7.6  Conclusion

Spatial analysis of ecological data has undergone huge developments during the last 
three decades. The paradigm shift announced by Legendre (1993) has been accom-
panied by an increasing awareness, not only of the importance of spatial structures 
per se, but also of the need for refined modelling tools to identify, represent and 
explain the complex structures by which ecological interactions manifest them-
selves in living communities. While an entire family of techniques aimed at predic-
tion and mapping has been developed in the field of geostatistics and some of them 
can be applied to ecological problems, the specific questions and data in ecology 
demanded other approaches more directly related to the multivariate structure of 
communities and their relationship to the environment. We have presented the most 
important among them in this chapter, encouraging readers to apply them to their 
own data in a creative way. The multiscale nature of ecological problems can now 
be addressed in a much deeper way than before, and the authors of the methods are 
themselves constantly surprised at the range of applications ecologists make of 
their statistical offsprings. Many more developments will certainly be made in the 
forthcoming years, and we wish to conclude by inviting the readers to participate 
in this effort, both by asking new and challenging ecological questions and by 
devoting themselves to the exciting task of methodological development.
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