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SPATIAL ANALYSIS
A Guide for Ecologists

The spatial and temporal dimensions of ecological phenomena have always been
inherent in the conceptual framework of ecology, but it is only recently that they
have been incorporated explicitly into ecological theory, sampling design, exper-
imental design and models. The number and variety of statistical techniques for
spatial analysis of ecological data are burgeoning and many ecologists are unfa-
miliar with what is available and how the techniques should be used correctly.
This book gives an overview of the wide range of spatial statistics available to
analyse ecological data, and provides advice and guidance for graduate students
and practising researchers who are either about to embark on spatial analysis in
ecological studies or who have started but are unsure how to proceed. Only a basic
understanding of statistics is assumed and many schematic illustrations are given to
complement or replace mathematical technicalities, making the book accessible to
ecologists wishing to enter this important and fast-growing field for the first time.

MARIE-JOSEE FORTIN is an associate professor in the Department of Zoology at
the University of Toronto. Her research focuses on investigating the spatial dynamic
processes responsible for creating and maintaining landscape heterogeneity, which
in turn facilitates the persistence of species and their conservation. She has active
research projects in landscape and conservation ecology, spatial ecology, spatial
statistics and forest ecology.

MARrK DALE is a professor in the Department of Biological Science at the
University of Alberta, and Dean of the university’s Faculty of Graduate Studies
and Research. His area of research is statistical plant ecology, most recently focus-
ing on the development of spatial pattern in plant communities, much of which
is summarized in his book Spatial Pattern Analysis in Plant Ecology (Cambridge
University Press, 1999). More generally, he works on the development and evalu-
ation of statistical methods with which to test ecological hypotheses, and on their
application in answering ecological questions.
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Preface

Spatial analysis has become the most rapidly growing field in ecology. This pop-
ularity is directly related to at least three factors: (1) a growing awareness among
ecologists that it is important to include spatial structure in ecological thinking; (2)
the alteration of landscapes around us at an increasing rate, which requires a con-
stant re-evaluation of their spatial heterogeneity; and (3) the availability of software
designed specifically to perform spatial analyses. One major problem with spatial
statistics software is that they are often not used correctly. Incorrect application
arises because: (1) ecologists have not been properly trained about issues of scale;
and (2) ecologists do not realize fully the implications of the fact that spatially
autocorrelated data are not independent, and thus violate the assumptions of the
familiar parametric statistics. The purpose of this book is to fill the gap between
the current need for spatial analysis and the uncertainty of many ecologists on how
to perform these kinds of analysis correctly.

The motivation for this book is as the title suggests; it is intended as a guide
for ecologists through the large array of methods available for spatial analysis.
Given that the scope of this book is quite broad, it is not as specialized as Dale
(1999), which concentrates on the analysis of static spatial pattern. It is crafted
as a reference book that could be used as a text in a course introducing ecology
students to spatial analysis. The intent is that the book will be a useful guide to
help both those who do not know how to start dealing with spatial analysis in
ecological studies and those who have started but are unsure how to proceed. Each
chapter is more or less self-contained but there are several treads that link them
together, including the application of methods and their usefulness in addressing
ecological questions. Our goal is to provide a broad overview, as much as possible,
of the various well-established spatial methods. Hence, we do not provide much of
the theoretical background or mathematical derivations (which are both available
elsewhere, in more specialized texts such as Cressie 1993); but we hope that we
provide sufficient detail for ecologists to apply and understand the methods. We do
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xii Preface

not cover all the methods that have ever appeared in print; we have been selective,
but we have tried to go beyond what is readily available in the ecological literature,
and to include references from fields such as geography, geology and epidemiology,
where appropriate.

Most ecological questions are aimed at a better understanding of the complexity
of nature and how it works, by testing hypotheses about ecological processes and
their interactions. This knowledge-building is based on observation, pattern detec-
tion, experimentation and modelling. Hence for ecologists, pattern recognition is
only one step in a series to disentangle the complexity of natural systems. Thus,
the ecological motivation for performing spatial analysis is to detect pattern, but
that is only the beginning of answering a bigger question. Ecologists then want
to understand the process that generates the pattern. Geographers are probably like
ecologists in that the description is of interest, but not the final goal. Epidemiology
is essentially applied ecology: looking for pattern to find the process. The classic
example is John Snow’s study in the 1850s that used the spatial pattern of disease
incidence to determine that the Broad Street pump in London was the source of
a cholera outbreak (cf. Haining 2003). Identifying the pattern leads to an under-
standing of the system that gave rise to it. In ecology, however, many of the puzzles
are of much greater complexity than tracing the source of disease. Consider the
complexities of the processes that give rise to the spatial arrangement of 20 species
of tree in a temperate forest . . . and then those for a tropical forest with hundreds
of tree species . . . and then all the insects in the tropical forest . . .

This book stems from years of teaching by both authors in their respective
universities. Also, it results from career-long learning and from collaborating with
our mentors and colleagues: Barry Boots, Ferko Csillag, Geoffrey M. Jacquez,
Pierre Legendre, Neal Oden, Chris Pielou, Robert Sokal, Tony Yarranton, the
NCEAS working group on ‘Integrating the Statistical Modeling of Spatial Data
in Ecology’, and many others.

We were fortunate to have several people helping along the way with all the
details. We thank those who helped: creating the figures: Gillian Forbes, Patrick
James, Stephanie Melles and Agnes Wong; editing the various versions of the text:
Gillian Forbes, Stephanie Melles and Rebecca Torretti; carrying out the spatial
analyses of the data: Patrick James, Yuanyuan Liang, Stephanie Melles and Agnes
Wong; with the field work: Ilka Bauer, Vernon Peters, Steve Kembel, Michael
Simpson and Agnes Wong. Also, we were privileged to have access to excellent
software packages, thanks to Mike Rosenberg (PASSAGE) and Geoffrey Jacquez
(BoundarySeer and ClusterSeer by TerraSeer 2001).

For their comments and help on earlier versions of the chapters, we are grate-
ful to: Ferko Csillag, Stewart Fotheringham, Norm Kenkel, Charles Krebs, Pierre
Legendre, Stephanie Melles, Evie Merrill, Joe Perry and Mike Rosenberg. We need
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to thank Joe Perry also for discussion on animal movement analysis. Ferko Csillag
provided indispensable technical support for the wavelet analysis example: many
thanks. Furthermore, one of us (M.-J. F.) benefited from a constant source of spatial
statistics clarification and stimulating discussion, as well as moral support, in the
person of Ferko Csillag; it was immensely appreciated.

Finally, we acknowledge the financial support that made possible the research that
contributed to the material in the book from the Natural Sciences and Engineering
Research Council of Canada and from the University of Alberta. Thanks also to the
University of Toronto and the University of Alberta (and our sympathetic immediate
‘bosses’, James Thomson and Carl Amrhein) for the time to complete this project.
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Introduction

Introduction

Processes in natural systems and the patterns that result from them occur in eco-
logical space and time. To study natural structure and to understand the functional
processes we need to identify the relevant spatial and temporal scales at which
these all occur. While the spatial and temporal dimensions of ecological phenom-
ena have always been an inherent part of the conceptual framework of ecology, it is
only recently that they have been incorporated explicitly into ecological theory,
sampling design, experimental design and models (Levin 1992). For example,
Mclntosh (1985), in describing the concepts and theory that form the background
of ecological studies, included very little discussion about the spatial aspects of
ecological processes. In recent years, however, a growing number of texts have
addressed spatial questions by providing both a spatial framework perspective and
spatial statistics to perform spatial analyses, for example Cliff & Ord (1973, 1981),
Getis & Boots (1978), Ripley (1981), Upton & Fingleton (1985), Anselin (1988),
Haining (1990, 2003), Cressie (1991, 1993), Bailey & Gatrell (1995), Manly (1997),
Legendre & Legendre (1998), Dale (1999), Fotheringham et al. (2000) and
O’Sullivan & Unwin (2003).

In this book, we will concentrate on the spatial aspects of ecological data analysis
to provide some advice and guidance to practising ecologists. Because all phenom-
ena of ecological interest have both a spatial location, which can be designated by
geographic coordinates, and other characteristics, such as measured attributes, we
can have different perspectives on how to analyse them:

* their spatial locations can be included explicitly for the purpose of understanding spatial
structure and pattern;

¢ other characteristics of these phenomena can be analysed separately by ignoring, or
controlling for, their relative positions (e.g. their topology defined by neighbours) or
absolute spatial locations (x—y coordinates); or
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e spatial locations can be incorporated directly into the evaluation of those other
characteristics.

Currently, several advanced spatial statistical books are available that cover the
formal mathematics of these methods (e.g. Ripley 1981; Cressie 1993), but they
may not be readily accessible to most ecologists and may not provide immediate
application in the ecological context. In fact, there is a potential for the misapplica-
tion of some of these techniques to lead to incorrect inferences. It is our intention
to present the concepts needed to perform valid spatial analyses and interpretation.
To enhance the presentation (we hope), we use various data sets to illustrate the
behaviour of the methods, and the relationships among them.

There is a large number of spatial statistics and new methods are constantly
being developed, and so our presentation will not cover all possible approaches
but will concentrate on those that we think are key for ecological analysis. We
acknowledge that we are omitting several important fields of research and schools
of thought. For example, we are not attempting to cover spatial issues related
to diversity, information theory and spatio-temporal modelling since these topics
would deserve and require a whole book each.

This book aims to guide ecologists through the broad field of spatial analysis
by providing the essential basics to perform spatial studies. The intended audience
is graduate students and other practising researchers. The structure of the book is
straightforward. We begin by introducing important terms and concepts, taking the
opportunity to clarify how they will be used in subsequent discussion. There are
then five main chapters that present spatial methods based on their objectives: pop-
ulation (fully censused) data methods, methods for sampled data, boundary detec-
tion, methods dealing with spatial autocorrelation and spatio-temporal analysis.
Each chapter includes a description of methods, some examples, an evaluation of
the methods’ characteristics, and concluding remarks including our advice on the
choice of method. The last chapter asks and tries to answer the question ‘Where do
we go from here?’, describing what we see as the direction for future development
in this field and the areas where we perceive the need for more work. We also
summarize our thoughts on the themes and threads that run through the book and
unify it, and we provide some advice to students of ecology on the kinds of skills
that we think they need in their future work.

1.1 Process and pattern

In ecological studies, explicit considerations of spatial structure have come to play
an important role in efforts to understand and to manage ecological processes.
Therefore, in our quest to comprehend the complexity of nature, the description
and quantification of ecological patterns, both spatial and temporal, are important
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Figure 1.1 Flow of the steps involved in the study of nature and its complexity.
As nature acts at several temporal and spatial scales, the selected sampling
design narrows down the temporal and spatial limits of the domain under study
(as indicated by the funnel effect illustrated in grey). By imposing arbitrary and
potentially inappropriate scales by means of the sampling design, the identified
spatial patterns can be distorted. From these spatial patterns, generalizations and
hypotheses can be drawn about the ecological processes. Then specific
experiments or models can be used to test the newly defined hypotheses. And
finally, some statistical interpretations and ecological understanding can be
reached. At each step, the spatial and temporal domains of inference of the
findings diminished.

first steps. Description is not usually an end in itself, but rather the beginning of a
process that leads to insight into natural complexity, and which in turn generates
new ecological hypotheses that can be tested either by experiments or by modelling
(Figure 1.1). Therefore, ecological research is an iterative process that, at each
iteration, provides some insights about the underlying ecological processes through
the quantification of ecological patterns. Unfortunately, the match between pattern
and process is far from perfect, because changes in process intensity can create
different patterns, and because several different processes can generate the same
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(a) Same process resulting in different spatial pattern due to initial spatial pattern of vegetation
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(b) Several processes resulting in the same spatial pattern
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(c) Several processes resulting in different spatial patterns
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Figure 1.2 Relations between pattern and process. (@) Given the initial conditions
of the environmental factors and the legacy of the landscape spatial structures,
the same intensity of a process can result in different spatial patterns. (b) For a
given spatial legacy, several processes can generate a given spatial pattern. (c)
Most of the time there are several spatial legacies nested within each other, which
are affected by several processes resulting in several distinct spatial patterns.

pattern signature (Figure 1.2). Furthermore, the processes may create a mosaic
of intermingled and confounded spatial patterns, and the spatial legacy of this
heterogeneity affects the intensity and types of ecological processes that act on them
through time. These feedback effects between processes and patterns are difficult to
distinguish (Figure 1.2¢). Prior knowledge of the scope of these processes can help
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to guide the scale chosen for the investigation of spatial patterns. The term ‘scale’
is used by ecologists to refer to any of several concepts including the extent of the
processes and the spatial and temporal resolution of the data. For a more detailed
presentation and discussion of the concepts of scale, we refer readers to Csillag et al.
(2000) and Dungan et al. (2002). When the scale at which the processes are realized
is unknown, analysing spatial patterns using different approaches and scales of
observation can provide an overall consensus that contributes to our understanding
of ecological complexity.

To clarify this discussion we need to define ‘pattern’ exactly and to circum-
scribe the analytic limits of detecting it accurately. One definition of ‘a pattern’ is
‘a distinctive form’ (Webster 1989), implying that a pattern can be detected and
described. Another definition (Fowler & Fowler 1976) is ‘regular form or order’
and hence the term ‘pattern’ is sometimes used as the opposite of ‘random’. Either
definition can then be qualified according to whether one is interested in spatial or
temporal component of a pattern. These definitions lack the implication that pattern
in ecological systems is dynamic, evolving and changing. Indeed, a spatial pattern
is usually ‘a single realization’” or ‘snapshot’ of a process or of a combination of
processes at one given time (Fortin ef al. 2003). This is why spatial pattern is so
important in ecology and why we emphasize its analysis. Furthermore, our per-
ception of the spatial structure of an area is directly related, and limited, to both
the study area or ‘extent’ and sampling unit size or ‘grain’ at which we analyse it
(Wiens 1989). Thus, depending on the spatial scale of observations, an area may
be considered homogeneous when the extent is small (e.g. one forest stand), or
heterogeneous when the extent is large (e.g. a mosaic of forest stands). The phys-
ical distances that determine local vs. global can be very different depending on
the system studied; just as ‘landscape’ is a level of organization with the distance
encompassed determined by the organism of interest: beetle vs. coyote.

Ecological data usually include several kinds of spatial pattern, which are con-
founded (Figure 1.3): (1) trends at larger scales, (2) patchiness at intermediate and
local scales, and (3) random fluctuations or noise at the smallest scale. Therefore,
ecological data are the result of embedded and confounded processes and, hence, as
ecologists, we are trying to disentangle the spatial scales of these processes using
spatial analysis. The components that affect our ability to identify spatial patterns
and their underlying processes accurately are numerous, but they can be organized
into three main categories (Figure 1.4; Dungan et al. 2002): (1) the extent of spatial
expression of the processes themselves; (2) the sampling design used to measure
ecological data (sample vs. population data; local vs. global level); and (3) the
statistical tools used to characterize the spatial pattern of either the entire sam-
pling area (i.e. global spatial statistics) or each sampling location (i.e. local spatial
statistics). In the following sections we will present the implications of the three
components and how they are tied together through the notion of ‘scale’. Indeed,
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Figure 1.3 Nested spatial patterns (signals) imbedded in ecological data: (a) if
the data are gathered along a temperature gradient, tree height can increase in a
linear fashion at large scale; (b) both topography and spatial dispersal processes
can generate patchy patterns at intermediate, landscape, scale; and (c) there is
only random noise at the micro, local, scale.

the identification of ecological processes through the detection of the spatial and
temporal patterns that they create vary according to the different aspects of the scale
of observation arbitrarily imposed by the sampling design and analytic tools used
(Bradshaw & Fortin 2000; Csillag et al. 2000; Dungan et al. 2002).

1.2 Spatial pattern: spatial dependence versus spatial autocorrelation

Spatial structures and patterns can take several forms: (1) trend, gradient (Figure
1.5a); (2) aggregation, clumping, patchy (Figure 1.5b); (3) random (Figure 1.5¢);
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Figure 1.4 Three main components that interact and affect our ability to identify
and characterize spatial patterns accurately: the scale of expression of processes,
the sampling design being used at the plot level or landscape level, and the spatial

statistics characterizing either the spatial structure of each sampling location
(local spatial statistics) or the entire study area (global spatial statistics).

and (4) for point patterns, uniform, regular or overdispersed patterns. Either exoge-
nous or endogenous processes can generate these patterns. In the case of exogenous
pattern generation, the identified spatial pattern is generated by factors indepen-
dent of the variable or characteristics of interest. Several factors can act at the same
time, interacting either additively when the factors are linear, or multiplicatively or
otherwise when the factors are non-linear. Several spatial patterns can be identified
when the variables of interest, such as species abundances, respond to an exogenous
process such as a disturbance or to underlying environmental conditions, such as a
moisture gradient on a slope for plants or the spatial configuration of habitats for
animals. For example, soil patchiness can result in patches of plants within which
the locations of the individual plants are randomly arranged or even overdispersed.
In these cases, the values associated with the plants are likely to be similar, not
due to internal processes, but rather because the species are responding to external
processes which have their own spatial structure; for example, these plants may
grow only on a specific type of soil that is itself patchy in its distribution. Hence
the spatial structure of plant species is due to the spatial structure of the environ-
mental variables only. On the other hand, when there are endogenous ecological
processes involved, such as dispersal, spatial competition or spatial inhibition, plant
patchiness is an inherent property of the variable of interest.

In fact, most ecological data have at least some degree of spatial structure,
often described by what is known as the first law of geography: ‘Everything is
related to everything else, but near things are more related than distant things’
(Tobler 1970). These spatial patterns usually result from a mixture of both exoge-
nous (‘induced’) and endogenous (‘inherent’) processes acting on species spatial
structure resulting in spatial dependence among individual organisms (e.g. plants).
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Figure 1.5 Spatial patterns: (a) gradient, (b) single patch and (c) random
(although the isolines seem to suggest a patchy pattern). Note that each panel has
the same number of sampling locations (5 x 5 =25), as well as the same
frequency distribution of the count of individuals (5 ones; 5 twos; 5 threes;

5 fours and 5 fives).
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Here, the term ‘spatial dependence’ is used broadly to include a mix of both the
species’ response to the underlying (exogenous) processes and the species’ spatial
autocorrelation due to endogenous processes. The term ‘autocorrelation’ refers to
the degree of correlation of a variable and itself (‘auto’). By adding the adjective
‘spatial’, it implies that the relationship among the values of a given variable is a
function of the spatial distances between them or their locations in space. Hence,
the notion of spatial dependence implies that there is a lack of independence among
data from nearby locations. This definition of spatial dependence is the most widely
used by spatial statisticians and geographers (Cressie 1993; Haining 2003). Bailey
& Gatrell (1995, p. 32) defined spatial dependence using an analogy to first- and
second-order moments: a first-order effect is due to variation in the mean value of
a process over the study area, corresponding to the large global trend illustrated
in Figure 1.3a, and second-order effects are due to spatial autocorrelation of the
process, implying that deviations of process values from the mean are more alike at
neighbouring sampling locations, and hence are equated with localized trends and
small-scale patchiness (Figure 1.3b).

Therefore, although Legendre (1993) used the term ‘false’ spatial autocorrelation
to refer to species’ response to the spatial structure of exogenous processes, we
will not use this terminology in this book for clarity and for compatibility with
other textbooks on spatial analysis in other fields. Instead, we will refer to this
phenomenon as ‘induced spatial dependence’, which is a more general term that
includes species response to spatially structured environmental processes at more
than one spatial scale.

In describing spatial dependence of plants, where exogenous processes predom-
inate, we would say that the spatial dependence is ‘induced’ by the underlying
variable that is itself spatially autocorrelated. Such spatial patterns can be modelled
by means of regression where the independent variables are themselves spatially
structured (Legendre & Legendre 1998). For cases of endogenous processes, indi-
viduals of a species are more likely to be spatially adjacent in a patchy fashion,
related to what is referred to as ‘true’ (Legendre 1993; Legendre & Legendre 1998)
or ‘inherent’ spatial autocorrelation. This means that nearby values of a variable are
more likely to be similar than they would be by chance. The spatial structure can
therefore be modelled with second-order statistics (e.g. spatial covariance rather
than just mean value) that characterize the local spatial variability of the variable.

The degree of spatial dependence can be estimated by comparing the value at
one location with those at given distances apart (termed spatial lag or distance
interval), say at 1m, 2m, and so on. In Figure 1.6, we present a situation where
spatial autocorrelation occurs only due to seed dispersal from a tree. Due to the
dispersal process, we expect to find fewer and fewer seeds as the distance from
the source increases (Figure 1.6). The degree of spatial autocorrelation in space
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Figure 1.6 Seed abundance from a tree source. The filled circle indicates the
location of the tree source from which seeds are dispersed by wind. As the
distance from the tree increases, the amount of seeds decreases (as indicated by
the grey-shaded gradient: dark grey for high abundance; light grey for low
abundance; white for no seeds). Positive spatial autocorrelation exists between
adjacent sampling units A and B; no significant spatial autocorrelation exits
between A and C; and negative spatial autocorrelation exists between A and D.

will also decrease as the spatial distance increases, for example from locations A
to D in Figure 1.6. At short distances from the tree releasing seeds, values of seed
abundance should be similar within patches or at nearby locations along a gradient,
giving positive autocorrelation, and as the distance at which the comparison is made
increases, the values are less likely to be similar. They can become either indepen-
dent, with no spatial autocorrelation, or dissimilar, with negative autocorrelation.
Over large areas, plants can have a patchy pattern that repeats itself to create spatial
structure at two scales: (1) a within-patch scale of plants and (2) a between-patch
scale of patches in their landscape.

The magnitude of the ecological process usually has a direct effect on the degree
of spatial autocorrelation in the variable that it influences (e.g. its intensity, spatial
range or sign). The intensity of spatial autocorrelation can vary according to direc-
tion (Figures 1.6 and 1.7). In the previous example of seed abundance, with the
presence of strong directional wind, because seeds are more likely to be dispersed
downwind (say northeast—southwest), an elongated, elliptical, patch of seeds results
(Figure 1.6). This kind of spatial pattern is said to be ‘anisotropic’, because the
intensity and range of spatial autocorrelation vary with the orientation or direction;
the opposite is ‘isotropic’ where spatial autocorrelation intensity varies similarly
with distance in all directions (Figure 1.7). Various types of internal and external
processes can create anisotropic pattern: topography, gradients (e.g. brousse tigrée;
see Chapter 2; Lejeune & Tlidi 1999; Wu et al. 2000), stream and riparian strips,
etc. Anisotropic spatial patterns can appear as artefacts of the shape of the sampling
units used to collect the data as will be discussed in more detail in Section 1.4.2
(cf. Fortin 1999a).
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Figure 1.7 Pattern directionality. (a) Isotropic and () anisotropic spatial
patterns. Each isoline indicates the same value of the variable decreasing from
the highest value at the centre to the lowest value at the periphery.

1.3 The concept of stationarity

The spatial pattern in a given area is a synthesis of dynamic processes operating
at various spatial and temporal scales (Figure 1.3). Hence the spatial structure at
any given time can be viewed as one realization among several potential outcomes
of the interactions among these processes (see Figure 1.2). To make meaningful
ecological interpretations of the spatial pattern, we need to make some assumptions
about the underlying processes (Figure 1.4). Similarly, spatial statistics are usually
based on the assumption that the process being studied is stationary (Figure 1.8). Ina
spatial context, a process, or the model of a process, is stationary (or homogeneous)
if its properties are independent of the absolute location and direction in space
(Haining 1990; Burrough 1987). In other words, the parameters of the process,
such as the mean and the variance, should be the same in all parts of the study area
and in all directions. This assumption of stationarity is equivalent to the assumption
of the independence of the observations for parametric statistics, implying that the
data follow a known distribution and are homoscedastic.

The property of stationarity is required for making inferences from a model that
characterizes the process of the spatial structure of data at locations that are not
sampled. This implies that the assumption of stationarity is related to a property of
the model or the process, and not to a property of the data. Note that a stationary
process can generate a spatial pattern that looks non-stationary, perhaps because
of a trend. In such cases, the data can be detrended. Furthermore, the property of
stationarity is scale dependent, as illustrated in Figure 1.8. When data values vary
from place to place, resulting in spatial heterogeneous patterns due to changes in
both mean and variance, the assumption of stationarity required for spatial statistics
is not fulfilled. The implications are that the identified spatial pattern can be distorted
and inaccurate (Boots 2002; Fortin et al. 2003), so that any subsequent spatial
inferences will be invalid (see Chapter 5; Legendre 1993; Dale & Fortin 2002).
Thus, it is important that spatial statistics are calculated over areas (or subregions of
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Figure 1.8 The concept of stationarity: a process level issue. From the west to
the east of the continental divide, the amount of precipitation varies, which
affects tree growth and diversity. While sampling this region using remotely
sensed imagery (a scene) to estimate tree net primary productivity, the extent of
the scene includes both sides of the continental divide, which are not under the
same process regime. The mean and variance of net primary productivity change
along a transect from west to east.

them) for which stationarity can be safely assumed (Figures 1.8 and 1.9). Because
stationarity is a property of the process, it cannot be tested directly, but we can
determine whether or not the landscape is homogeneous by computing the mean
and the variance of the data using sliding windows of varying sizes. When processes
are obviously not stationary (as illustrated in Figures 1.8 and 1.9b, c), we need
first to identify homogeneous subregions by means of spatial partitioning methods
(as presented in Chapter 4).



1.4 Sampling 13

(a) Homogeneous  (b) Heterogeneous  (c) Locally homogeneous
Globally heterogeneous

Figure 1.9 Homogeneous (a) versus heterogeneous landscapes (b, c). In (), the
study area includes subregions where plants cannot grow, such as a lake, on rock
or in inappropriate soil types. In (c¢) the plants can grow only in subregions where
the soil type is appropriate.

In studies where the scale of observation is at the landscape level, the spatial pat-
tern of the data may change but the assumption of stationarity of the process is still
required at the analysis stage. Data cannot usually be collected as intensively at the
landscape level as at the stand or plot level. Hence, at the landscape level, the data
are usually obtained by using remote sensing or as vegetation inventory maps cre-
ated from air photo interpretation. Such information is mostly in broad categories,
such as forest vs. water, vs. urban, or mature spruce forest vs. peatland. So, while
at the plot level, spatial statistics are used to characterize spatial pattern from quan-
titative data (among others, Haining 1990, Cressie 1993), at the landscape scale,
landscape indices (O’Neill et al. 1988; Baker & Cai 1992; McGarigal & Marks
1995; Gustafson 1998) are commonly used to summarize the spatial configuration
of categorical data.

From the plot to the landscape level, the inherent stationarity of the process
needs to be ensured to avoid distorting spatial pattern identification and incorrect
ecological interpretations. Spatial statistics, summarizing the spatial pattern for
the entire study area with a single number, should not be applied to a study area
with non-stationary processes. Instead, ‘local spatial statistics’ should be used to
estimate the spatial pattern for each sampling location (Boots 2002; Table 1.1).
Only when stationary processes prevail in all the study area, can spatial statistics
be used to characterize the study area with a single value (see Tables 1.2 and 1.3;
Appendices 1 and 2). In such cases, they are referred to as ‘global spatial statistics’
to stress the fact that the statistics are considered valid for the entire area (Table 1.1).
In this book, global spatial statistics will be referred to loosely as ‘spatial statistics’;
local statistics will be designated explicitly.

1.4 Sampling

Natural complexity occurs at several spatial and temporal scales. Thus, as mentioned
above, several processes may be acting in combination, either additively or multi-
plicatively, where linear (e.g. trend) and non-linear (e.g. threshold, sigmoid) spatial
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Table 1.1 Implications of process properties on sampling
design, spatial and statistical analyses

Stationarity processes Non-stationarity processes
Random sampling design Stratified sampling design
Global spatial statistics Local spatial statistics
Parametric statistics Restricted randomization tests

patterns are confounded, making it hard or impossible to disentangle them. Any
sampling design for studying ecological processes imposes an arbitrary template,
or filter, with its own specific temporal and spatial units (Bradshaw & Fortin 2000).
To be efficient, a sampling design needs to be thought out and crafted carefully by
a series of steps to obtain meaningful insights about the ecological processes (see
Figures 1.1 and 1.2; summarized in Table 1.2 and presented in Chapters 2 and 3):
(1) define explicitly the spatial and temporal domains of expression of the pro-
cess(es) under study; (2) determine that the spatial and temporal resolution of the
sampling design is able to capture the process under study; and (3) ensure that the
spatial and statistical analyses are appropriate for the data type. These three steps
interact with each other and must be considered as a whole before going out to
do any sampling (Dungan et al. 2002). Any ecological study requires, therefore, a
comprehensive overview of all the components and the steps involved (Figure 1.1).
Indeed, once the data are gathered, one cannot obtain more information from the
data set than it actually contains. Therefore, determination of the appropriate spa-
tial and temporal domains of the study is one of the most important steps in data
analysis from which all subsequent statistical and ecological interpretations will be
either meaningful or meaningless.

1.4.1 Ecological data

Various kinds of measurements can be considered as ecological data, ranging from
qualitative records (e.g. taxonomic species), semi-quantitative (e.g. non-additive
values such as pH, ranked data with uneven interval classes), to quantitative mea-
sures (e.g. abundance data, height, weight). These measurements can be made for
individuals (point data: e.g. discrete objects, organisms), along a line (transect
data), over an area (surface data: e.g. within a sampling unit) or in a volume
(e.g. phytoplankton productivity in a water column with x, y and z coordinates);
see Figure 1.10. When sampling units are used, these can either be spatially adja-
cent, contiguous to one another or separated by a constant or variable distance
(Figure 1.10, Table 1.2). In either case, the measurements are subject to several
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Table 1.2 Classification of spatial statistics according to objectives

Data“
Population
Sample

Objectives Point (x—y) Lattice (x—y, v) Sparse (x—y, v)

Topology Networks Networks Networks
(linking (nearest-neighbour, (rook, (nearest-neighbour,
sampling relative neighbourhood bishop, minimum spanning
locations) graph, minimum queen) tree, Gabriel,

spanning tree, Gabriel, Delaunay)
Delaunay)

Exploration Aggregation indices Join count [i, r, t] Global Moran’s 1,
(detection of k-nearest-neighbours Global Moran’s I, Geary’sc [i, 1, d, t]
spatial [i, 1, t] Geary’s c [i, 1, d, t] Semi-variance [i, 1, d, p]
structure) Join count [i, 1, t] Semi-variance [i, 1, d, p] Local Moran’s 1, Getis’

Ripley’s K (uni-, Local Moran’s I, Getis’ G*,0rd’s O [i, 1, t]
bi-multivariate G*,0rd’s O [i, 1, t] Mantel and partial
[i, 1, p] Mantel correlogram Mantel tests [i, t]

Dixon’s method [i, p] [i, 1, t]

Circumcircle [r, p] Mantel and partial

Fractal dimension [i, ] Mantel tests [i, t]

Fractal dimension [i, 1]
Lacunarity [i, r]

Block variance [i, r]
Mark correlation [i, r]
Circumcircle [i, 1, p]
Spectral analysis [i, r]
Wavelets [i, r]

Inference Mantel and partial Mantel and partial
(parameters Mantel tests [i, t] Mantel tests [i, t]
estimation, Semi-variance [i, 1, d, p] Semi-variance [i, 1, d, p]
testing Autoregressive models Autoregressive models
hypotheses) Conditional annealing Conditional annealing

Interpolation Voronoi polygons Trend surface analysis Trend surface analysis
(mapping) Kriging Thin-spline

Kriging

Partition Spatial clustering Spatial clustering

(segmentation) Boundary detection [p] Boundary detection [p]

Wavelets

¢ (v: ‘value’ of a given variable (either qualitative or quantitative); i: the method can estimate
the intensity of the spatial structure; r: the method can estimate the spatial range (zone of influ-
ence) of the spatial pattern; d: the method can estimate the intensity of spatial pattern according
to the orientation/directionality (so it can differentiate isotropic from anisotropic patterns); t: sig-
nificance tests (either analytic or randomization tests); p: significance tests based on randomization

tests).
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Table 1.3 Requirements, assumptions and rules of thumb for spatial statistics

Requirements
Methods Objectives Assumption Rules of thumb/limits
Networks Linking locations Exhaustive Planar graphs are more
mapping of all useful because they
events reduce the number of
links in a network
Aggregation Testing Stationarity Cannot differentiate among
indices for spatial spatial structures
structure
Block variance  Computing the Contiguous Computed up to 1/, of the

methods

Ripley’s K

Moran’s I,
Geary’s ¢

Semi-variance

Mantel and

partial
Mantel tests

intensity and
range of spatial
structure

Computing and
testing the
intensity and
range of spatial
structure

Description of
spatial structure;
testing for the
presence of
spatial
autocorrelation

Description of the
spatial structure;
estimation of

spatial parameters

sampling units

Exhaustive
mapping of all
events

Stationarity

Pseudo-stationarity

Correlation between Stationarity

spatially
autocorrelated
data

length of the transect

Extents having rectangular
shape are favoured for
computation

Edge effect needs to be
corrected for

Statistic computed up to ;5
to %, of the shortest
distance of the extent

Edge effect needs to be
corrected for

Statistic computed up to 4
to %, of the shortest
distance of the extent

Minimum of 20-30
sampling locations

Edge effect needs to be
corrected for

Statistic computed up to 4
to % of the shortest
distance of the extent

Minimum of 50 sampling
locations

Search neighbourhood of
either the range distance
or 12-25 neighbouring
sampling locations

Overall, synthetic, value of
the linear relationship
between distance
matrices, not the raw
data
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Figure 1.10 Spatial sampling strategies to collect ecological data: (a) point data
methods: exhaustive survey of the geographic x—y coordinates of all the
individuals of a species (left panel) or of more species (right panel; here two
species, where v indicates the attribute of each individual — in this case, the
species’ name); (b) contiguous sampling units: transect (left panel) and lattice
(right panel); and (c) sparse sampling units (random, systematic, stratified
random). See text for more details.

kinds of precision and accuracy issues: (1) for quantitative measurements, their
quality is a function of the precision and accuracy of the instrument, of an observer
to count species abundance or to estimate per cent cover with the same accuracy
over time; (2) for qualitative data, the accuracy with which the attribute is identi-
fied is directly related to the ability of the observer to identify species correctly;
(3) positional accuracy of the coordinates of either the individuals or sampling units
depends on the precision and accuracy of the instrument used (GPS, telemetry,
laser, tape measure, etc.); (4) precision in data gathering and transfer to digital form
(accuracy of transcription); and (5) appropriate match between the sampling unit
size and the variable measured (Fortin 1999a; Bradshaw and Fortin 2000). All these
accuracy levels and types of errors will affect the identification and quantification of
spatial patterns (Burrough & McDonnell 1998; Hunsaker ef al. 2001; Appendix 1).
All these accuracy problems cannot be eliminated but they can be minimized or at
least acknowledged while analysing and interpreting spatial structure.
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1.4.2 Sampling design

In view of the accumulated evidence (among others, Fortin ef al. 1989; Jelinski
& Wu 1996; Qi & Wu 1996; Fortin 1999a; Dungan et al. 2002), all the steps and
decisions involved in sampling data will affect the identified spatial pattern:

(1) the sample size (the number of observations ‘n’);

(2) the size of the study area (the extent);

(3) the size (the grain) and shape of the sampling or observational units (Figure 1.11);

(4) the sampling strategy or spatial layout of the sampling units used to collect the data
(e.g. transect, lattice, random, systematic, stratified, . . ., see Figure 1.10); and,

(5) the spatial lag, spatial distance, among sampling units: (a) non-contiguous sampling
units where the spatial lag is measured either from edge to edge (L.) of the sampling
units or from centroid to centroid (L.) of the sampling units (Figures 1.10 and 1.11);
(b) contiguous sampling units having no edge-to-edge spatial lag but a centroid-to-
centroid spatial lag equivalent to the length of the sampling unit.

In any ecological study, the choice of the sample size ‘n’ is one of the most
important decisions that confront ecologists. In the context of spatial analysis, this
choice needs to be guided by the minimum requirement for subsequent spatial
statistics and analysis (Fortin et al. 1989; Legendre & Fortin 1989; Fortin 1999a;
Table 1.3). For example, a minimum of 30 sampling locations is recommended
to detect significant spatial autocorrelation (Legendre & Fortin 1989; Table 1.3).
In cases where the spatial pattern is very strong, it may be detected with as few
as 20 sampling locations, but this would be exceptional. Reliable estimation of
spatial structure and spatial model parameters may require 100 or more sampling
locations.

The detection of spatial pattern is also directly related to the spatial scale at
which ecological data are measured (Figures 1.2 and 1.11). Spatial scale has at
least two aspects: the size of the study area, or ‘extent’, and the size of the sampling
unit used to collect the data, the ‘sampling grain’. The extent is the total area
under consideration and aims to capture the domain of the ecological process under
study, while grain refers to the minimum spatial resolution at which information is
measured. Several studies have showed that spatial statistics are very sensitive to
both of these (Jelinski & Wu 1996; Qi & Wu 1996; Fortin 1999a; Dungan et al.
2002). As a guideline in determining the extent of the study area, O’Neill et al.
(1996, 1999) suggested that it should be at least two to five times larger than the
spatial extent of the largest process under study. If the study area is too small in
relation to the ecological process studied, not enough of the pattern is included,
and because it is not picked up by the data, it may not be identified. If the extent is
too large, several processes may be included and non-stationarity may become
a problem with different processes affecting the subregions of the study area
differently (as illustrated in Figures 1.8, 1.9 and 1.11a). This is especially true
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Figure 1.11 Sampling design: (a) spatial extent; (b) sampling unit size, where
the numbers to the right of each study plot are the count of individuals per
sampling unit; (c) sampling unit shape; and (d) spatial lag (L. indicates the
distance ‘edge-to-edge’ between the sampling units, L. indicates the distance
‘centroid-to-centroid’ between the sampling units). See text for more details.

for remotely sensed images because it is unlikely that the study area corresponds
exactly with naturally defined homogeneous areas. Unfortunately, the smaller the
extent, the more likely it is that a high proportion of patches will be truncated by
the limits of the study area (Figure 1.11a).

The size of the sampling unit also needs to be considered (Figure 1.1150); it sets
the smallest spatial resolution at which data are measured and at which spatial
structure can be characterized. When a landscape is analysed using a remotely
sensed image, the sampling unit size is the pixel resolution. In such cases, it is
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unlikely that the pixel resolution matches the ecological process of interest, which
affects the detected spatial pattern (Bradshaw & Fortin 2000). Again, O’Neill et al.
(1996, 1999) suggested that the sampling unit size should be two to five times
smaller than the patch or other features of interest. The sampling unit should be,
however, large enough to contain more than one individual (Figure 1.11b), but
not so big that there is too much within-unit variability, or that the smallest scale
cannot be detected (Figures 1.3 and 1.11b). For randomly distributed objects, the
size and shape of the sampling unit do not affect our ability to determine the
absence of spatial pattern (Figure 1.11b). However, when the data are not randomly
distributed (Figure 1.11b), a sampling unit that is too small (e.g. 1 x 1 in the figure)
will increase the variance and a sampling unit that is too large (e.g. 4 x 4) will
reduce the variability (unless the extent includes a non-stationary process). Here,
the optimal sampling unit size is 2 x 2. In general, if there is a choice of sampling
unit size we suggest that a smaller sampling unit should be favoured because small
units can be aggregated into larger ones without the loss of information, but the
reverse is not true.

When we use a sampling unit that is more-or-less isotropic, such as a square,
a circle or a hexagon, we may be assuming implicitly that the spatial pattern is
also isotropic. Ecologists often use rectangular sampling units (and very rarely
triangular ones) to reduce within-sampling unit variability along a gradient (Fortin
1999a). Such an anisotropic shape can alter the spatial pattern detected by artificially
generating the appearance of an anisotropic spatial pattern (Fortin 1999a). When it
is not known in advance whether the ecological data are isotropic or anisotropic, we
recommend using small isotropic sampling units so that the spatial pattern can be
characterized better (more details will be presented about this issue in Chapter 3).
In short, both the sampling unit size and shape affect the accuracy of spatial pattern
detection and using an inappropriate sampling unit to study a process at a given
scale may result in detecting less spatial structure than is actually present (Fortin
1999a; Bradshaw & Fortin 2000; Chapter 3).

Once both the extent and the grain are defined for a study, there are still important
decisions on the spatial arrangement of sampling to be made: should we use con-
tiguous or spaced units (Figure 1.10)? Using contiguous sampling units in a transect
or a lattice allows a finer description of the spatial pattern because there is no infor-
mation missing due to unsampled space. In such cases, the extent is exhaustively
sampled and the resulting data represent the entire population of sampling units
within the extent. This does not guarantee that the data are representative of the
entire ecological process being studied, ‘population of inference’ in the terms used
in parametric statistics, but rather of the spatial representation of the extent. On the
other hand, when we use a different sampling strategy, such as random, systematic
or stratified samples, the sampling units are not spatially contiguous; the extent is
not completely surveyed and information is missing about the spatial pattern. We
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Figure 1.12 Spatial sampling design. (a) Spatial lag must be set according to the
objective of the study: to detect a spatial pattern, the spatial lag should be smaller
than the patch size; (b) to perform inference statistics, the spatial lag should
exceed the patch size.

will refer to such spatial layout of the sampling units as sparse. Spatial lag between
the sampling units is directly related to the previous decisions about sample size
(n), the extent and the grain, and of the shape of the sampling unit (Dungan et al.
2002): as the sample size increases, the spatial lag decreases; as the extent size
increases, the spatial lag increases; and, as the sampling unit size increases, the
spatial lag decreases.

The goal of the study should also guide the choice of the spatial lag between
the sampling units. There are two main reasons to collect ecological data in this
context (Figure 1.12):

(1) To detect, characterize and quantify any spatial pattern in the data in order to obtain
insights about ecological processes through the spatial signature of the ecological data
(asillustrated in Figure 1.5). This implies that first the aim is to test for significant spatial
dependence. In order to detect the spatial pattern, the spatial lag among sampling units
needs to be smaller than the size of the patch or the process structure that we want to
characterize (Figure 1.12). In this way, there will be several sampling locations within
each patch.

(2) To establish the relationship between two or more kinds of ecological data. Here, we
are not so interested in the spatial structure of the ecological data but rather in, for
example, the species’ response to various environmental conditions, once the spatial
structure is accounted for. As mentioned above, spatial dependence and autocorrelation
are considered a nuisance when using inferential tests that require that the observa-
tions are independent (Legendre & Legendre 1998). As Fortin et al. (1989) showed,
random sampling designs ensure only that each sampling unit is drawn independently
from the others and will be representative of the population. It does not guarantee,
however, that there is no spatial autocorrelation in the data. In fact, in the presence
of spatial autocorrelation, it is almost impossible to obtain spatially independent data
(see Chapter 5).
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Figure 1.13 Importance of spatial lag while using a systematic sampling design:
when the spatial lag is 5 m (‘a’ sampling locations) the spatial structure identified
is uniform, flat; when the spatial lag is 4 m (‘b’ sampling locations) high and low
periodicity is detected; and when the spatial lag is 3 m (‘c’ sampling locations),
patchiness can be characterized.

Furthermore, the choice of the spatial lag is crucial while using systematic sampling
design (Fortin ef al. 1989): when the spatial lag (say 5 m) matches the spatial
pattern of the data peak as indicated by sampling locations ‘a’ (Figure 1.13), the
identified pattern of the data will be flat (uniform); when the spatial lag is 4 m
(indicated by sampling locations ‘b’), the periodicity of high and low values of
the variable starts to be detected; and when the spatial lag in smaller, say 3 m
(indicated by sampling locations ‘c’), the spatial pattern detected can better describe
the patchiness and periodicity of the data. When the spatial scale of the process is
unknown, nested sampling designs with several spatial lag distances are preferred,
so that the spatial pattern can be identified (Fortin er al. 1989; Webster & Oliver
2001).

Finally, interaction between the extent and the sampling unit size generates a
more-or-less pronounced edge effect, which in turn biases the estimation of spatial
pattern at small and large spatial distances (Figure 1.14; Haining 1990, 2003; Cressie
1993). Several of the spatial statistics as presented in Chapters 2 and 3 estimate
spatial patterns at several of the increasing distances among the sampling locations
(for example, between A and B, A and C, A and D in Figure 1.6). In Figure 1.14,
sampling units along the border of the study area (in grey) have fewer neighbours at
short distances than at intermediate ones (e.g. at 1.5 units apart there are 200 pairs
of sampling units, while close to 600 pairs at 4.5 units apart) and almost none
at the largest distance (two pairs at 10.5 units apart). The appropriate edge effect
correction procedure should be selected according to the data type and the spatial
statistics used (Cressie 1993, Haase 1995). Some generic rules of thumb can be
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Figure 1.14 Edge effect affecting the sampling units along the border of the
study area (the grey sampling units): at small distance (left panel; 1.5 units apart)
and large distance (right panel; say 10.5 units apart), where the number of pairs
of sampling locations used to estimate the spatial pattern is lower than for
intermediate distances (e.g. 4.5 units apart).

used to minimize the edge effect either at the sampling design phase or during the
analysis phase (Figure 1.15, Table 1.3). For example, during the sampling phase,
a buffer zone can be sampled around the study area (Figure 1.15a). By doing
so, estimation of the spatial pattern at small distances is based on the sampling
locations at the border, including sampling locations inside (filled circles) and
outside (open circles) the extent of the study area (Figure 1.15a). When the required
extra resources are not available, or when the surroundings of the study area are
not homogeneous, calculation of spatial statistics should be limited to the centre
of the extent (filled circles), using the sampling locations around the border (open
circles) only as neighbours at small distances (Figure 1.15a). Another technique
that can be used during the analysis, assuming that the extent is a homogeneous
area, is the computation of ‘torus distances’ (Figure 1.15b). This can be achieved
by wrapping together opposite borders, the north and south borders as well as
the west and the east, to create a doughnut-shaped structure called a torus. Then
torus distances are computed among all the sampling locations, i.e. the sampling
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Figure 1.15 Edge correction techniques during: (a) spatial sampling by
surveying a buffer area (open circles) around the extent (filled circles) or by
analysing only the centre region (filled circles) of the extent; and (b) analysis
where torus distances are used instead of Euclidean distances. See text for more
details.

locations at the northern border are used as neighbours, at small distances, for the
sampling locations at the southern border. The distribution of pairs of sampling
locations will be more uniform, minimizing the edge effect. The torus correction
should only be used when the entire study area is under a stationary process. Indeed
if, for example, at the northern edge of the study plot there is a patch that does not
occur at the southern edge, then the torus distances will artificially mix two different
spatial patterns, resulting in a distorted spatial structure. (This technique is closely
related to a restricted randomization technique known as the ‘toroidal shift’, which
will be described later in this chapter.)

In conclusion, design of an optimal spatial sampling scheme requires a care-
ful balance between sampling locations that are too close to one another, thus
not providing enough new information (data highly autocorrelated), and sampling
locations that are too sparse, so that processes at other spatial scales introduce too
much variability (Haining 1990).
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1.5 Spatial statistics

Because natural spatial heterogeneity affects most systems, it is not surprising that
many kinds of spatial statistics have emerged from a variety of disciplines (plant
ecology, human geography, mining engineering, etc.), trying to determine how
spatial patterns are generated by one or several processes (Figure 1.2). Over the
last half-century or more, a series of ‘spatial statistics’ (a generic term that includes
all statistical methods) have been developed, either building on earlier methods
or in parallel by different disciplines to describe spatial patterns, or to estimate
and predict spatial processes. Not all spatial statistics have exactly the same goal
(Table 1.2) or assume the same kind of underlying spatial processes and data type
(Appendix 1) or were developed using the same underlying mathematical approach
(Appendix 2). Therefore, each of these spatial statistics has its own requirements,
assumptions and rules of thumb for its application (Table 1.3).

Spatial exploration methods aim to identify and describe spatial patterns. This
can be done using:

* First-order statistics, such as aggregation indices based on the species abundance data.
These can detect trends in the data over the entire study area (i.e. the mean value). These
statistics can indicate whether there is a spatial pattern or not, but not its intensity. For
example, the variance-mean ratio, a concept based on the Poisson distribution, may
distinguish between only three types of spatial pattern: random, when the mean and the
variance of species abundance per sampling unit are equal; patchiness, when the variance is
greater than the mean; and uniform or regular, when the variance is smaller than the mean
(see Chapter 2 for more detail). As shown in Dale (1999, p. 226), there are some problems
with the logic of this approach to point pattern evaluation.

* Second-order statistics that measure local spatial pattern (i.e. the spatial intensity) in the
data by computing the deviations of the values at neighbouring locations from the mean
(i.e. the spatial variance).

In this book, we will not emphasize first-order statistics but we refer the readers to
other textbooks (among others, Krebs 2002). Instead, we will concentrate on the
many second-order statistics commonly used by ecologists (Table 1.2).

Spatial statistics can also be classified according to type of ecological process to
which they can be applied (Appendix 1). Some processes act on the actual locations
of individual organisms and it is the spatial pattern of these locations that is of
interest. These are called point pattern processes (see Figure 1.10a). Other processes
affect the quantitative values of variables and the spatial pattern is continuous in
space. Several spatial statistics can be used to study these continuous processes such
as spatial autocorrelation coefficients and spatial variance estimators (see Table 1.2
and Appendices | and 2). These spatially continuous processes can be sampled
using either contiguous sampling units (Figure 1.10b) or spatially separated units



26 Introduction

(Figure 1.10c¢). Then, some processes involve qualitative changes within an area
and surface pattern methods are used to analyse them (e.g. join count statistics).
Such categorical processes usually require contiguous sampling units. There are,
however, some ‘grey zones’ in the way these three families of processes can be
sampled and analysed.

Once the spatial pattern is identified and described, we may be interested in
either estimating spatial parameters to model the process for prediction or interpo-
lation purposes (see Chapter 3), or we may wish to test the relationships among
ecological data (see Chapter 6). In the cases either of estimating parameters or of
testing the relation among variables, the goal of the study and prior knowledge
about the ecological data should be used as a guide to decide whether the spatial
structure should be explicitly modelled or detrended before modelling or analysis
(see Chapters 3 and 6). For example, we could be interested in the relationship,
and potential causality, between soil moisture and plant growth. As illustrated in
Figure 1.16a, both variables have a spatial structure based on multiple regression
using the x and y coordinates of the sampling locations as independent variables.
The relationship between the two variables (Figure 1.16b) is, however, only strong
and significant when the raw data are used (left panel) but not when the spatially
detrended data (residual data where the spatial structures are modelled by multiple
regression) are used (right panel). This exercise clearly shows that before claim-
ing causality between two ecological variables, we should test whether they have
significant spatial structure. In the present case, the spatial structure is due to the
spatial dependence of both variables on the slope from which the samples were
obtained. This may be an example of spurious correlation. If the residuals from
the multiple regressions still have some degree of spatial pattern, the ecological
variables could have been both spatially dependent at one spatial scale and spa-
tially autocorrelated at another. Thus, it is important to define the spatial scale of
the question asked adequately so that the appropriate spatial statistics can be used
adequately.

1.5.1 Significance testing of ecological data

The significance of an observed measure is evaluated based on the assumption
that the statistic computed using the observed data follows a reference distribution.
When this reference distribution is known, and can be derived analytically, paramet-
ric tests can be used. Otherwise, randomization procedures can be used to generate
the reference distribution from the data (Good 1993; Edgington 1995; Manly 1997,
Figure 1.17a). When inference to the population level is required, bootstrap proce-
dures and Monte Carlo simulations can be used (Figure 1.17b; Efron & Tibshirani
1993; Manly 1997).
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Figure 1.16 Example of the relationship between soil moisture and plant growth
(artificial data). (@) Multiple regressions, using the x and y coordinates of the
sampling locations, as independent variables (soil moisture: left panel; plant
growth: right panel). (b) Relationship (linear regression) between the two
variables using the raw data (left panel) and residuals from the multiple
regressions (right panel). Note that the relationship changes from significant to
non-significant as the data are detrended for the spatial structure.

The basic procedure to generate the null reference distribution, to which the
observed statistic can be compared, is:

* to re-allocate, using a complete simple randomization procedure, the sampled values of
a variable over the sampling locations;

* to re-compute the statistic; and,

* to repeat these two steps many times (thousands).

The probability at which the statistical decision of accepting or rejecting the null
statistical hypothesis is made is proportional to the number of randomizations gen-
erated. When the number of observations is small, all permutations can be examined
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Unrelated data
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Figure 1.17 Decision trees to select appropriate significance tests at (a) the
sample level and (b) the population level.

(Good 1993). When the number of observations is large, only a subsample of all pos-
sible permutations of the data can be computed and it is recommended to perform
10,000 or more randomizations (Manly 1997). Then, this reference distribution is
used to assess the probability of the observed data where the precision of the proba-
bility depends on the number of randomizations. As an example, 1,000 values (999
randomized statistics and one observed) imply that the smallest probability can be
0.001 (i.e. 1/1,000), but the accuracy of the estimate of the probability will not be
good; 10,000 or more is the recommended number of iterations.

The presence of spatial dependence, however, can impair the use of both paramet-
ric and randomization tests (Legendre & Legendre 1998). Parametric tests require
that the errors are independent, so that each observation or data point brings a full
degree of freedom. The presence of positive spatial dependence makes nearby sam-
pling units more alike and therefore the value of a variable at location A (Figure 1.6)
is a good predictor of the value at location B. As a consequence, a spatially auto-
correlated datum does not bring a full degree of freedom, but rather a fraction
of it, which is inversely proportional to the degree of autocorrelation in the data
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(Legendre 1993; Dale & Fortin 2002). For example, the values at locations A and
B are more positively autocorrelated than the values between locations A and D
(Figure 1.6). Several techniques at the sampling design stage (see Section 1.4) and
at the stage of statistical analysis (Legendre & Legendre 1998; Dale & Fortin 2002)
can handle this issue by either correcting for it, so that parametric tests can be used,
or by explicitly incorporating the spatial pattern into the analysis. This issue, of not
having independent errors, is at the core of the analysis of ecological data and will
be discussed at length in Chapter 5.

Some randomization tests are also invalidated by data that are spatially depen-
dent. Randomization tests assume that the values of a variable are exchangeable,
so that any arrangement that might arise by shuffling them is equally likely (Manly
1997). Under a complete randomization, all arrangements of the observations
are equiprobable and this implies complete spatial randomness (CSR). In many
instances, such a null hypothesis is inappropriate when analysing spatially depen-
dent data, and thus other forms of randomness which incorporate some degree of
spatial structure can be used (Cressie 1993; Venables & Ripley 2002; Figure 1.18).
Restricted randomization procedures can also be used (Cressie 1993; Manly 1997).
There are several different ways to restrict the randomization procedure:

* Randomize only within subsets of the sampling locations, i.e. subregions, where the data
are considered spatially independent within the subregion but where there is some spatial
structure when all the subregions are considered.

* Retain the sequential spatial order of the data. For spatial data, this is achieved using a
two-dimensional torus constructed by connecting the map margins and then sliding one
variable map over the other (the ‘toroidal shift’). This procedure maintains most of the
spatial structure of the data. Hence the relationship between two variables can be tested
using this sequential restricted randomization by sliding the values of one variable over
the other, one spatial lag at a time, and re-computing the statistic of interest. Depending
on the number of restricted randomizations performed, i.e. sliding, given the shape and
size of the study area, this test can be too liberal (Fortin et al. 1996).

¢ Generate several realizations of a stochastic spatial process based on the same spatial
structure as the data. This can be achieved by first estimating the structure of spatial auto-
correlation in the observed data and then using the estimation of the parameters that will
generate simulated data with a similar spatial structure (but not the same spatial pattern).
Techniques called ‘the conditional annealing simulation algorithm’ (Journel & Huijbregts
1978; Isaaks & Srivastava 1989; Cressie 1993) and ‘conditional autoregressive modelling’
(Getis & Boots 1978; Cliff & Ord 1981; Haining 1990; Cressie 1993; Fotheringham et al.
2000) are available to do so (Fortin et al. 2003).

Note that the type of restriction appropriate for the randomization technique is
related to the null hypothesis under consideration, and we will revisit this issue in
Chapter 7.
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Figure 1.18 Different point pattern processes generating different types of
random patterns: Poisson process (i.e. complete simple randomness); Poisson
clusters (1 and 2 using different parameter values for spacing among clusters);
spatial inhibition.

1.6 Concluding remarks

The goal of this chapter was to provide the background and the concepts needed
to understand the spatial analysis of ecological processes and ecological data. The
key purpose in performing spatial analysis is to determine whether the data lack
independence: and if so, what is the nature of the spatial dependence. We rely on
independence to allow us to make trustworthy interpretations and predictions. There
are several ways in which the detection of significant spatial dependence provides
meaningful insights about ecological data and their underlying process(es) (Griffith
1992):

* The presence of spatial autocorrelation in residuals can be used as a diagnostic tool
indicating whether one or more processes are not included in the model or were not
parameterized adequately.

¢ Under some circumstances, the degree of spatial autocorrelation can be used as a surrogate
for unmeasured variables that are too expensive or too difficult to measure.
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* The presence of spatial autocorrelation is a nuisance for parametric and randomization
tests that require independent errors.

* Sometimes, the presence of negative spatial autocorrelation can indicate that the sampling
unit size or shape is inappropriate to capture the scale of the process adequately.

* The finding of weak or absent significant spatial autocorrelation at small distances can be
an indication that the sampling unit size and shape, the spatial lag among the sampling
locations, and the spatial distance class used to estimate the degree of spatial autocorre-
lation during analysis are inappropriate to capture the scale of the process.

¢ Spatial pattern in the variable of interest may be due to the variable’s response to other
spatially structured variables. Hence this is a case of induced spatial autocorrelation. Such
spatial structure should be referred to as spatial dependence.

This list of insights should convince the reader of the importance and usefulness
of detecting, testing and predicting spatial structure in ecological data. It also rein-
forces the motivation for this book, which is to guide ecologists in determining and
interpreting correctly the spatial structures of natural systems and their origins. The
following chapters will explore and provide greater detail on all these challenging
topics.
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Spatial analysis of population data

Introduction

In this chapter, we describe methods for analysing completely censused ‘population’
data. Such data can be in one of two formats. The first we will discuss is the situation
where there is a map of the locations of all ‘events’, such as individual organisms of a
particular species, in an area, with or without accompanying information about each
event, such as tree height or condition (see Figure 1.10a). This is a complete census
for the entire extent of the study area, not a sample (although we will comment on
the analysis of sample data in Chapter 3), and in most ecological examples the map
is in two dimensions (with x—y coordinates), but we can consider one- or three-
dimensional maps, as well (with only x or with x—y—z coordinates). The methods
for analysing event location data can be based on determining the neighbours of
each event and making calculations based on the distances to them, or may involve
counting the events in circles of a given range of sizes, centred on the events
or on randomly placed points. In studying the spatial structure of a one-species
population of mature trees, the analysis is univariate. When two kinds of events are
of interest, for example mature trees of a species and its seedlings, the analysis is
bivariate. Multivariate analysis is applied when there are several kinds of events,
as in a study of a multispecies forest community. If the events have a quantitative
variable associated with them (such as stem diameter), rather than categorical (e.g.
the species to which they belong), versions of what is referred to as ‘marked process’
analysis can be used.

The second form of data would be a map, in one, two or three dimensions,
consisting of information collected in each unit of an array of contiguous sample
units such as quadrats (see Figure 1.10b). The information for each unit of the array
might be a measure of density, a count of events, or an estimate of cover of all plant
species in a quadrat. Again, the data do not represent a sample of the study array;
there is information for all units. The size of the units determines the minimum size

32
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of the ‘grain’ that can be studied, like the pixels of a satellite image (as discussed in
Chapter 1). The methods of analysis may be based on combining the information
from units into larger ‘blocks’, or by calculations based on all units a particular
set of distances apart. Depending on the data, as described above, analysis can be
univariate, bivariate or multivariate.

All the methods described in this chapter are unified by the concept of analysing
the data using a window function or template, with which the data are selected or
compared (Dale et al. 2002). At the end of the chapter we provide a summary table
that illustrates this interpretation of the material we present.

2.1 Mapped point data in two dimensions

The first set of methods are those used to analyse maps of the positions (e.g. x—y
coordinates) of all points (events) of a particular type (tree stems) in a study plot. In
many of these methods, a test statistic is calculated from the data and then compared
to the expected value of the statistic under the null hypothesis of complete spatial
randomness (CSR). One theme in the analysis of a spatial point pattern is the
distinction between patterns that are random (complete spatial randomness) and
those that are underdispersed (clumped or aggregated) or overdispersed (spaced
or regular) by comparison. It is important to acknowledge that the appearance and
interpretation of pattern can change with the scale of study; for example, if the
events occur as clumps, and only one clump is examined, the events appear to be
overdispersed (see Figure 1.10 of Dale 1999, and our Figure 2.1). The classification
of spatial point patterns into the three categories is probably an oversimplification
and more sophisticated methods of analysis will address that issue, as we will
illustrate and discuss below.

2.1.1 Distance to neighbours methods

One basic approach would be to measure directly, or to calculate from a map,
the distances between neighbouring events and determine whether the average
distance is greater than or less than that expected from CSR. If the average distance
is significantly less than expected, the conclusion would be that the events are
clumped; if greater, that they are overdispersed.

There is, however, a number of different ways of defining which events are the
neighbours of a particular event (see Section 2.3). A simple definition is to determine
each event’s nearest neighbour. In some cases, pairs of events will be each other’s
nearest neighbour, but not always. Given a map of the positions of all events in a
study area, we can choose to use only a sample of them, or we can choose to use
them all.
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Figure 2.1 Artificial point pattern data where events only occur in the centres of
the four quadrants. The events are overdispersed at small scales but
underdispersed (clumped) at large scales.

Although the focus of this chapter is complete census data, we will begin the
discussion of nearest neighbour distance statistics by considering a sample of events
first. In using distances to study spatial pattern, it is often more convenient to use
the square of the measured distances for calculating a test statistic. For example,
let W;; be the distance between any event i and its first nearest neighbour, and let A
be the density of events per unit area; then for a sample of the population of events,

the test statistic
n
Q=i (Z Wﬁ) / n (2.1)
i=1

can be compared to the normal distribution with a mean of 1 and a variance of 1/n,
often designated N(1, 1/n) (Pielou 1959). This is just one of a very large number of
statistics that have been proposed, some of which compare the average distance of
an event to the nearest neighbour event with the distance between randomly placed
points and their nearest events, X;;. Upton & Fingleton (1985) provide a summary
chart of these in their Table 1.10. More sophisticated measures look at the distances
not just to the first nearest neighbour but to the first nearest, second nearest and so
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on, such as W;3 or X;4. Liu (2001) provides a comparison of methods using the first to
fifth nearest neighbours (j = 1, 2, 3, 4, 5). While different statistics have different
strengths and weaknesses, we can summarize his findings as recommending the
modification of Pollard’s (1971) statistic. It is

ij/n> — Zln (ij)} / [(6jn+n+1)(n—1)].
i=1 i=1 (22)
P(j) takes the value 1 for CSR; values less than one indicate overdispersion and
values greater than one indicate aggregation. The significance of departures from
unity is tested by comparing (n — 1)P(j) to the x 2 distribution with n — 1 degrees
of freedom.

For example, Figure 2.1 shows artificial data in which the events occur only in
the centres of the four quadrants of the study area. This pattern was evaluated using
80 randomly placed points and Pollard’s index. In this case, P(1) is 1.11, which
suggests clumping but is not significant, but P(2) is 1.31 and P(3) is 1.29, both of
which are significant either by comparison with the x 2 distribution with 79 degrees
of freedom or by a Monte Carlo test with 1,000 realizations of CSR. In fact, Liu
(2001) suggests that P(3), P(4) and P(5) are to be preferred.

In using all the mapped events, rather than just a sample of them, it is tempting to
proceed with any one of the many methods available for sampled events. That would
be wrong, of course, because if we use all of the events, the sources of information
we are using are no longer independent. In addition, we need to be concerned that
we are now using all the events that are close to the edge of the study plot, and
there should be some consideration of edge effects (see Chapter 1). These concerns
lead to a somewhat different approach to the analysis, referred to by Diggle (1979)
as ‘refined’ nearest neighbour analysis. Given a complete census of the locations
of all events, we could use just a sample of them for analysis, as described above,
provided we were willing to discard the information from those not included in the
sample. Under most situations, it is preferable to adjust the method of analysis so
that the full census can be used, in order to take advantage of all the information
available.

P(j)=12j%n |:nln(

2.1.2 Refined nearest neighbour analysis

Refined nearest neighbour analysis is a Monte Carlo procedure because it compares
a value or set of values calculated from the data, with the same values calculated
from a number of realizations of CSR using the same plot size and shape, and the
same number of events. Manly (1997) illustrates one such procedure using W;;,
the average distance between events and their jth nearest neighbours for j = 1 to
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Jj =10, and 499 realizations of CSR. In that example, the events are pine seedlings,
and only W, and W, are significantly greater than in CSR, indicating the effects of
competitive inhibition at short distances.

The approach suggested by Diggle (1979) is slightly more complicated. For any
given distance, w, calculate the proportion of those events that are further than w
from any boundary for which the distance to their nearest neighbour is less than w.
Call that proportion G(w); it is an estimate of the cumulative probability distribution
of the distance from any event to its nearest neighbour event. It is sensitive to local
clustering or inhibition of neighbours. If the events are randomly arranged in the
plot, the expected value of G(w), E(G(w)), is:

E[Gw)] =1 —e ™, 2.3)

One possible test statistic is the largest difference between G(w) and E(G(w))
over the range of values of w:

dy = max |[E[G(w)] — G(w)]. (2.4a)

The observed test statistic is then compared with the values found in a 1,000 or
more random configurations of # events in an area the same as that of the study.

A test based on the distance between random points and their nearest neighbour
event, call it u, rather than on w, can be calculated in almost exactly the same
way, d,:

d, = max |E[F(u)] — F(u)|, (2.4b)

where F is defined for u as G was for w. F(u) is an estimate of the cumulative
probability distribution of the distance from a randomly chosen point to the nearest
event. Because it is sensitive to gaps in the pattern of events, it is sometimes referred
to as the ‘empty space function’. Further insight into the spatial pattern of the events
can be gained by plotting G(w) — E(G(w)) or F(u) — E(F(u)) over the range of values
of w or u (see Upton & Fingleton 1985). Diggle (1979) also suggests the use of a
test statistic based on the differences between the two kinds of distance functions,
event—event vs. point—event:
i
Sa =Y [F(z)— G, (2.5)
i=1

where z; represents a series of distances.

Again, evaluation of the test statistic would be based on comparison with the
range of values found in a large number of CSR realizations. One advantage of this
approach is that the test can be modified to use a distribution other than that based
on CSR as the null hypothesis.



2.1 Mapped point data in two dimensions 37

1.0

Distance

Difference

-1.0

Figure 2.2 Artificial example of Diggle’s difference statistic where positive and
negative differences may cancel each other out.

Our own experience suggests that a better choice of statistic is:

J
Sa =Y |F@z)— Gl (2.6)
i=1

where z; represents a series of distances.

The reason for this suggestion is that it is possible for the positive and negative
differences to cancel each other out, even if they exceed, in places, the randomization
envelopes (Figure 2.2). Figure 2.3 shows the example of living lodgepole pine
(Pinus contorta Loudon) stems at the Fort Assiniboine site with the difference
between F and G plotted as a function of z. It illustrates the large-scale clumping
of these stems, but does not detect significant overdispersion at smaller scales.

2.1.3 Second-order point pattern analysis

The next set of methods is used to analyse the mapped positions of events in the
plane, such as the stems of trees, and assume a complete census of the objects of
interest in the area under study. One of the most commonly used methods is called
Ripley’s K (Ripley 1976). The approach is based on the concept that, if A is the
density of events per unit area, the expected number of points in a circle radius #
centred on a randomly chosen point is AK(¢), where K(¢) is some function of ¢ that
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Figure 2.3 Refined neighbour analysis on living lodgepole pine trees at Fort
Assiniboine (data in Figure 2.5a), where F,(z) — G,(z) is the difference between
event—event and point—event functions for a suitable chosen distance z.

depends on the pattern of the points. For example, if the points are overdispersed,
K(7) will be close to 0 for small radii and increase for larger distances.

The calculation of the statistic for a given radius, ¢, is based on counting all pairs
of points separated by distance less than ¢. The statistic K(?) is an estimate of K(?):

n n

Rt)y=A) "> wylG. j)/n’, (2.7a)

i=1 j=1

where A is the area of the plot, with d;; being the distance between points i and j,
I(i, j) an indicator function, taking the value 1 if d;; <t and 0 otherwise, and w;;
is a weight that corrects for edge effects. If the circle centred on i with radius d;;
is completely within the study plot, w;; = 1; otherwise it is the reciprocal of the
proportion of that circle’s circumference within the plot (Diggle 1983). A number of
authors have provided explicit formulae for the edge correction based on geometric
arguments (Haase 1995; Goreaud & Pélissier 1999). These can be complicated and
an alternative is to use a ‘quick and dirty’ numerical estimation by dividing the
circumference into many sectors, say 120, and counting how many of them are
within the boundaries of the study area.

Our own investigations suggest that the weight w;; can be replaced with a weight
that depends on i and ¢, rather than on i and j: weight A;(f) = 1 if the circle centred
on i with radius ¢ is completely within the study plot, otherwise the reciprocal of
the proportion of that circle’s area within the plot:

Roy=A) Y h®h. j)/n’. (2.7b)

i=1 j=1

i#] j#i
This approach reduces the number of calculations that need to be made: one
weight for each event and each radius, rather than one for each pair of points and
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Figure 2.4 An illustration of the edge correction method for plots with irregular
boundaries; the number of radial sectors within the plot is calculated.

each radius. Again, because of the complexities of a strictly geometric calculation,
anumerical estimation can be achieved by dividing the area of the circle into a large
number of radial sectors, say 600 (where we suggested 120 for the circumference),
and counting the number that fall within the boundary (Figure 2.4). This approach
makes it possible to deal with boundaries with irregular shapes. For further discus-
sion of edge correction techniques see Ripley (1988), Cressie (1993), Haase (1995)
and Gignoux et al. (1999).

If the events follow CSR, the number of points in a circle follows a Poisson
distribution and the expected number of events in a circle of radius tis n > /A. K(@)is
compared with this expected value by subtracting the observed from the expected:

Liy=1t—R@)/r. (2.8)

In some versions, the expected is subtracted from the observed (e.g. Bailey &
Gatrell 1995) and in interpreting results, the reader needs to be careful to determine
which version is being used! L(7), as given in (2.8), is plotted as a function of ¢, with
negative values indicating clumping and positive values indicating overdispersion.
(As a mnemonic, remember that under the line means underdispersed; over the
line means overdispersed.) For example, Figure 2.5b shows the analysis of the data
in Figure 2.5a, a map of the living lodgepole pine trees in the Fort Assiniboine
example; the features of the data are clear in the analysis: overdispersion at scales
less than a metre and clumping at all larger scales.
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Figure 2.5 (a) Map of living lodgepole pine at Fort Assiniboine, Alberta. The
plot is 50 m on each side. (b) Standardized univariate Ripley’s K-function
analysis of living lodgepole pine at Fort Assiniboine, Alberta, where L is
Ripley’s standardized statistic and 7 is distance.
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The results of the analysis can be assessed using the approximate confidence
intervals for L(r) = 0, provided by Ripley (1976) of +1.42(A'/?)/n for a = 5% or
+1.68(A'/?)/n for @ = 1%. Using that criterion, in Figure 2.5b, the value at 0.375 m
is significantly large, and values at distances greater than 2 m are significantly less
than 0. In many published accounts, authors have used Monte Carlo techniques
(cf. Manly 1997) to evaluate the significance of the results, thus avoiding prob-
lems of distribution theory (Andersen 1992; Haase 1995). This is the approach we
recommend, and Figure 2.5b shows the 99% envelope generated from 100 realiza-
tions of CSR. As in many such situations, use of the Monte Carlo approach makes
it possible, in theory at least, to use a dispersion pattern other than CSR as the
null hypothesis. For example, several authors, including Reich et al. (1997), have
used as a null model the Neyman—Scott process, which is based on completely
random clusters of events (not random events as in CSR), in each of which the
number of events follows a Poisson distribution. (Pielou 1977, p. 119, refers to this
as a Neyman Type A or Poisson—Poisson distribution.) Kenkel (1993) found that
populations of the clonal plant Aralia nudicaulis were well described by a Markov
model with an inhibition distance of 18 cm, corresponding to the radius of the plant’s
shoots.

In Chapter 1, we made the distinction between global analysis, which summarizes
the characteristics of the spatial pattern over the whole study area (perhaps with the
implicit assumption of stationarity), and local analysis, which makes explicit the
differences in the pattern observed among parts of the study area. The discussion
of second-order statistics for point patterns has, so far, been global, but the method
can be adapted to produce a spatially explicit result (cf. Getis & Franklin 1987). For
each event, 7, and distance, ¢, a score can be assigned to the position of the event that
compares the observed count of events in the circle radius 7 centred on event i with
the expected count based on the area of the circle and CSR. Contour maps of those
scores can then be drawn, for particular ranges of radii, to make interpretation easy.
Getis & Franklin (1987) suggest including the scores for randomly or regularly
placed points, as well as those of events, so that the regions where events are sparse
can be covered as well. This parallels, for K-function analysis, the inclusion of
the ‘empty space’ function in refined nearest neighbour analysis. They provide
examples of this technique, which give us the option of spatially explicit results to
Ripley’s K-function approach. Figure 2.6 illustrates this approach using artificial
data in which the events are overdispersed in the bottom left corner (hard core
repulsion of 5m) but clumped or random elsewhere in the 100 x 100 m square.
Figure 2.6 a—c show the L-transform scores of Ripley’s K-function (Eqn (2.8)) for 3,
10, and 20 m. These spatially explicit results clearly show the non-stationarity in the
pattern of events, which could be very useful in the exploration of the characteristics
of real data sets.
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(b)

Figure 2.6 (a) A ‘Getis’ map of L-function scores for artificial data (100 x

100 m) with hard-core repulsion in the lower left corner: t = 3 m. (b) As (a) for
t =10 m. (c) As (a) for = 20 m. Note that the ranges of values are different in
the three parts of the figure.
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Figure 2.6 (cont.)

In a study of the demography of a palm tree species of the humid savanna of
West Africa (Ivory Coast), Barot ef al. (1999) demonstrated the advantages of
using a complementary group of methods, rather than a single one, for spatial
pattern analysis. They applied Diggle’s F- and G-functions (nearest neighbour and
empty space functions) together with Ripley’s K-function. They commented that
the simultaneous use of all three functions found significant departures from CSR
that would not have been evident otherwise. Their findings confirm the suggestion
that it is often a good idea to use some kind of combined analysis, using more than
one method to characterize the spatial structure being investigated.

2.1.4 Bivariate data

The approaches described above can be easily modified for bivariate data, in which
we want to analyse the spatial relationship of two different kinds of events, such
as males or females, flowering or vegetative plants, diseased or healthy individuals
and so on. For example, Diggle’s nearest neighbour function, G, can be adapted for
bivariate data by examining the distance from events of type 1 to nearest neighbour
of type 2, which gives Gi,, separately from examining the distance from events of
type 2 to nearest neighbours of type 1, which gives G»;. This permits the detection
of asymmetric associations, which can be very useful in some circumstances, such
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as studying the association between mature female palm trees and seedlings (see
Barot et al. 1999). Similarly, for bivariate data, the ‘empty space function’ can be
divided into two: F; describing the distance from a random point to an event of
type 1 and F, describing the distance from a random point to an event of type 2.

For a Ripley’s K-function analysis of bivariate data, the basic question becomes
this: At what scales are the two kinds of events segregated from each other, and at
what scales are they aggregated? We proceed by calculating:

n ny

K@) =A Z ZWulz(l J)/niny

and (2.9)

n ny
Ra(t)y=AY " wiili(j, i)/mna.
i=1 j=1
i#] VE
The two are both estimates of the same function and are combined to compare
the observed and the expected:

Eia() = 1 = 1K 120) + m Ko 01/ (01 + o) (2.10)

(cf. Upton & Fingleton 1985; Andersen 1992). Values greater than O indicate
segregation and values below O indicate aggregation of the different kinds of
points (Figures 2.7a, b). This example shows the relationship between canopy
trees (mainly pine) and understorey seedlings, mainly spruce, near Grande Cache,
Alberta (Dale & Powell 2001). The trees and seedlings are segregated from each
other at small scales but aggregated at a range of larger scales.

A different, but closely related, approach was suggested by Diggle & Chetwynd
(1991), based on Ripley’s K-function, calculated separately for the two types of
events:

nj nj

Ru@) =AY wil, j)/n;
i=1 j=1
i#] j#i

and 2.11)

ny ny

R =AY wiil(, j)/nj.
i=1 1
i#j ]/751

The statistic of interest is then the difference between these two:

Dia(t) = K11(t) — Ka(t). (2.12)
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(b)

Figure 2.7 (a) Map of canopy trees and seedlings in a 50 x 50 m plot near
Grande Cache, Alberta, where closed diamonds are canopy trees and open
squares are seedlings. (b) Bivariate Ripley’s K analysis of canopy trees and
seedlings shown in (a), where L is the standardized Ripley’s K and ¢ is distance.
(c) Bivariate data re-labelling for significance testing by randomization: the
events’ positions are fixed but the labels are redistributed (left: original data;

right: labels randomized).

|
30



46 Spatial analysis of population data

° °
e o, 0 0 4
o o o ® o o °
o o ©
4 o ° 0oy © ¢ o ®,
[ ) [ ] °
e o 0o © o 5 ° o
... .OO
° .o
e, o ©
o [ )
°o0 oo o
o o e o
oo © oe ©
o ° o °
o o

Figure 2.7 (cont.)

Assessment of significance is again by a Monte Carlo approach. The distances at
which the statistic exceeds its envelope are the scales at which the events of the first
type are clustered more than all the events combined. The properties and usefulness
of this statistic require further investigation; our own informal trials suggest that
the statistic might be more stable if the square-roots of the K-functions were used.
In addition, this statistic is probably most useful when used in combination with
other methods. For example, if the statistic takes values close to zero at all scales,
all that you learn is that the two types of event have similar spatial patterns, but
what those patterns are like is not detected.

Bivariate patterns are amenable to significance testing by randomization. The
positions of events are retained but their ‘labels’ (the type to which they belong) are
randomized (Figure 2.7¢). This makes it possible to determine whether the events
of one kind, for example, diseased organisms, are more clustered than can be
explained by the overall non-randomness of the pattern as a whole. Dale & Powell
(1994) provided the example of the positions of plants of Solidago canadensis L.,
growing at the edge of a hay field, classified into two categories depending on
whether the plant had obvious signs of insect attack, in particular stem galls. In the
Solidago data, based on a comparison of K, with the results expected from CSR,
in quadrat 5, the two kinds of plants appear aggregated over a range of scales, but a
randomization of the labels shows that this is a result of overall clumping of plants of
either kind (Figure 2.8a). In contrast, quadrat 10 from the same data set gives results
for K, that seem compatible with independence (values close to 0), but random
re-labelling shows that the two kinds of plants are actually segregated (Figure 2.8b).
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Figure 2.8 (a) Bivariate Ripley’s K analysis on infected and healthy Solidago
plants, where L, is standardized Ripley’s K and ¢ is distance (Quadrat 5).

(b) Bivariate Ripley’s K analysis on infected and healthy Solidago plants with
randomization envelope (Quadrat 10).

2.1.5 Multivariate point pattern analysis

An obvious extension of the analysis of bivariate data is to consider several types of
events using some sort of multivariate analysis. In their assessment of the analysis
of multivariate point pattern, Lotwick & Silverman (1982) suggested that there
were two basic approaches:

(1) methods based on nearest neighbour and empty space functions (described above under
‘refined nearest neighbour’ methods, Section 2.1.2), and
(2) methods based on second-order analysis (such as Ripley’s K-function, Section 2.1.4).
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There is a close conceptual relationship between the two approaches, which we can
describe informally in the following way:

(1) Nearest neighbour methods are based on the following question. How big can a circle
centred on an event (or on a random point) get before it encounters another event?

(2) Second-order methods are based on the following question. Given a circle of a given
size, centred on an event, how many other events does it contain?

We will describe methods based on nearest neighbours first before proceeding to
discuss the second-order approach.

Summary statistics for quantifying several forms of dependence between events
of different types in a multivariate point pattern were introduced by van Lieshout &
Baddeley (1999). In the univariate context, we introduced the ‘event-to-nearest-
event’ function, G(¢), and the ‘point-to-nearest-event’ function, F(¢), also called the
‘empty space’ function. These can be examined separately, or they can be combined
to produce an univariate index of spatial interaction:

1—-G(@)

(2.13)
The index takes the value 1 under CSR, values less than 1 for clustered patterns
and values greater than 1 for overdispersed patterns.

To adapt this index for multivariate pattern, we consider having S types (e.g.
species) and revise the notation for the two kinds of functions (using / and J to
denote types, reserving i and j to denote individual events):

Gyy(2) is the distance function for events of type I to events of type J.

G..(?) is the distance function for events of any type to events of any type.
F(?) is the empty space function from random points to events of type J.
F.(¢) is the empty space function from random points to events of any type.

These can then be used to define two different H-functions:
1 —Gyt)

Hp(t) = ————, for a particular pair of types / and J
1 — Fy(t)
and (2.14)
1-G..(t
H.(t) = 1—7F((t)) for pairs of any type.

Last, with A; being the intensity of the Ith type, and overall intensity A., an overall
index can be defined:

S

A
=y /\—’H,,(;) — H.(1). (2.15)

I=1
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Figure 2.9 (a) Artificial multispecies point pattern data for analysis illustration.
(b) Multivariate point pattern analysis on artificial multispecies: I(7) is the
multivariate pattern index and ¢ is distance.

Figure 2.9 illustrates the use of this index. The artificial data are shown in part
(a) of the figure; Figure 2.9b, the index shows that the four species are, in general,
segregated from each other, most strongly at a distance that is 20% of the length of
the size of the sample plot.

A second approach to multivariate point pattern analysis using nearest neighbours
has recently been elaborated by Dixon (2002). With S types of events, a § x S
contingency table is created, with the entry in the /th row and Jth column, myy,
recording the number of times that the nearest neighbour of an event of type /
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was an event of type J. This approach is very much like the analysis of neighbour
contact data to detect interspecific association, as discussed by a number of authors
including Yarranton (1966), de Jong et al. (1980) and Dale et al. (1991). In addition
to being able to perform a test of the departure from expectation for the table as a
whole, individual entries can be tested, using the normal approximation:

my — E(my)
= ———. 2.16
i N ) (2.16)

Formulae for the calculation of the expected values and variances are given in Dixon
(2002).

Table 2.1 gives an example of this technique, re-analysing the data provided
in Reich et al. (1997) from a 3 x 3m study plot in short grass prairie near Fort
Collins, Colorado. The dominant species were Bouteloua gracilis (‘Bogr’), Agropy-
ron smithii (‘Agsm’), Oryzopsis hymenoides (‘Orhy’) and Stipa comata (‘Stco’),
with the dicots being lumped into the category ‘forbs’. The major feature of the
table is that individual species had a strong tendency to be their own neighbour, as
indicated by the large positive z;; values. This tendency was not observed for the
category ‘forbs’.

Dixon (2002) also provided an index of segregation of the Ith type, based on the
excess of within-type nearest neighbours:

S, = 10g|: my/my~p ] _ log[ my/(ny — my) i| ' 2.17)
E(my)/E(my~p) (ng —D/(N —ny)

This measure looks straightforward and easy to apply and Dixon (2002) provided
an example.

There are two features of Dixon’s nearest neighbour method that are noteworthy
in comparison with other techniques described in this section. The first comment
is that while the method uses the nearest neighbours of events, it does not use the
distances to those neighbours in any of the calculations. The second comment is
that because the procedure involves the development of a contingency table of the
frequencies of neighbouring pair types, the method is not necessarily limited to
the use of the first nearest neighbour. It could be extended to include the first and
second nearest neighbours together, for example, or separate contingency tables
could be set up for each of the first, second and third nearest neighbour frequencies.
In Section 2.3, we describe a hierarchy of neighbour networks, and the contingency
table approach could be applied to a full range of definitions of which pairs of
events are neighbours.
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Table 2.1 Dixon’s nearest neighbour method: short grass prairie
data from Reich et al. (1997)

I Je Obs® Exp

From: To: mpy myy Ziy Significance

Bogr Bogr 89 49.2 5.49 *
Agsm 49 64.9 —2.39 *
Orhy 28 379 —1.81
Stco 37 434 —1.12
Forbs 12 18.5 —1.63

Agsm Bogr 53 84.9 -3.62 *
Agsm 169 64.9 15.58 *
Orhy 48 49.8 —0.28
Stco 41 57.0 —2.44 *
Forbs 28 243 0.82

Orhy Bogr 28 28.9 —0.15
Agsm 44 37.9 1.12
Orhy 89 49.8 6.31 *
Stco 18 333 —3.01 *
Forbs 16 14.2 0.52

Stco Bogr 40 38.0 0.31
Agsm 44 434 0.10
Orhy 15 57.0 —6.40 *
Stco 101 333 13.34 *
Forbs 19 16.2 0.78

Forbs Bogr 14 6.8 2.33 *
Agsm 22 18.5 0.88
Orhy 21 243 —0.72
Stco 22 14.2 2.23 *
Forbs 16 16.2 —0.06

¢ The species are Bogr = Bouteloua gracilis, Agsm = Agropyron smithil,

Orhy = Oryzopsis hymenoides and Stco = Stipa comata.
b Bold font highlights intraspecific frequencies and results.

The data used to illustrate Dixon’s method were originally used in the description
of another method for multivariate point pattern analysis, developed by Reich et al.
(1997), based on all the distances between events of the same type. Let the total
number of events be N (but not all of them can be assigned to known taxa, as is
often the case in plant ecology). We have S identified groups, G; to Gg, and one
group for the unidentified, the ‘other’ category. If there are N’ identified events and

ny in the Ith group then:

C[ = I’l]/N/.

51

(2.18)
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The analysis is based on the average distance between members of a group:

N—-1 N’
. ny
& = dir|lj € G & ke Gy) ) (2.19)
=X Y anicG akean/ (7))

The test statistic is then the weighted within-group average:

S
5= Ci. (2.20)

An analytic evaluation of this statistic is possible, based on the number of possible
assignments of N events to S + 1 groups, but a Monte Carlo test or a randomization
test based on re-labelling the events is straightforward and easy to implement. One
advantage of this approach to analysis is that different species can be examined
separately using the observed values of £. Another advantage is that CSR is not the
only null model that can be used, and, as noted above, these authors made use of
the Neyman—Scott model for comparison. A disadvantage is that if there is more
than one scale of pattern in the data, the average within-group distance may not be
informative because it includes distances related to different scales in the pattern.
This disadvantage is related to the difference between local and global measures of
spatial pattern; a local version of this technique exists in which the average distances
between events of the same type is calculated and then mapped. Reich et al. (1997)
consider using an upper limit to the distances that is somehow related to ‘cluster
size’. It is not clear how effective this modification would be if there were several
scales of pattern or if different species had markedly different cluster sizes. Prior
analysis using some version of Ripley’s K or other exploratory technique might be
a useful preliminary step. We will now proceed to describe the multivariate version
of Ripley’s K.

It is clear that, given multivariate point patterns, each type or species can be
analysed separately using the univariate version of Ripley’s K-function. Pairs of
species can be analysed using the bivariate version too, but it is not clear what a
truly multivariate analysis would involve. As always, the technique used will depend
on the hypothesis that is of interest: for example, there is a difference between
‘Do all species tend to be segregated from any other species considered individu-
ally?” and ‘Do all species tend to be segregated from all other species considered
together?’. It is a matter of ‘partitioning’ the overall pattern of events into those
attributable to individual types and those attributable to the relationships among
types.

In their review of approaches to multivariate point pattern analysis, Lotwick &
Silverman (1982) made the interesting comment that ‘Not surprisingly, description



2.1 Mapped point data in two dimensions 53

and estimation of the second order structure of a multitype process requires con-
sideration of only two of the types at a time.” This statement is not quite true,
in our opinion, because while there are insights to be gained from looking at all
possible intraspecific statistics of type Ky (¢), there is also much to be learned from
examining interspecific statistics of type K;~;(f) or K;.(f). In effect, we suggest
partitioning K..(f), which includes all events pairs of any species combination, into
Kxx(1), which considers all conspecific pairs of events, and Kx ~x(#), which con-
siders all interspecific pairs of events. Kyx(f) can be partitioned into S possible
Kji(1); and Ky ~x(f) can be partitioned into all (5) possible Kj(f). As in the original
version of Ripley’s approach to point pattern analysis, these estimated partitioned
K statistics would be transformed into the equivalent L statistics for easier inter-
pretation. Figure 2.9a shows the artificial data for four species used to illustrate
the multivariate pattern index /(7) described above. Figure 2.10a analyses the same
data and plots the estimates of Ly ~x(#) (upper), L..(#) (middle) and Lxx(#) (lower).
These results show that while the arrangement of events is random, events of the
same type are clustered, on average, and segregated from events of a different type.
The next part of the figure illustrates the different scales and intensities of clumping
of the individual species, with type 2 having the smallest scale of strong clumping
and typel differing little from random (Figure 2.10b). Figure 2.10c summarizes the
interspecific analyses for individual species, showing that species 3 and 4 have a
high degree of negative association with events of other types over all scales. These
could be further partitioned into particular species pairs, 1 and 2, 1 and 3, and so on.
Although this analysis is more complicated than other approaches, it is also able
to provide the most detailed information on the characteristics of the multispecies
pattern.

Condit et al. (2000) suggested analysing multispecies point pattern using a mod-
ification of Ripley’s K, based on counts in circular bands or annuli of width At
centred on individual events, rather than in circles. The statistic they suggested is:

Q1) = [Ky(t + At) — Ky()] = (A [t + At — wt2]). (2.21)

While the divisor looks complicated, it is just the area of the circular band used to
make the counts multiplied by the unit density of species /.

The use of rings rather than circles for event counts allows the isolation of
specific distance classes, rather than including the short distances with the larger,
as occurs with large-diameter circles. One disadvantage of this method is that the
distance classes need to be broad, particularly for rare species, in order to avoid
erratic-appearing curves due to zero counts. In addition, the choice of the width
of the circular band used may be somewhat subjective. The difference between
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Figure 2.10 (a) Multivariate standardized Ripley’s K analysis (L): bottom
line, conspecific pairs; middle line, all pairs; top line, interspecific pairs.
(b) Standardized Ripley’s K analysis for each species: conspecific pairs.

(c) Multivariate standardized Ripley’s K analysis (lt,ywl): interspecific pairs.
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using circular bands rather than complete circles is that what is being studied
is distance, rather than scale of pattern, as in the relationship between PQV and
TTLQYV described later in Section 2.5.1.

Given the large range of methods available, a choice of method may seem diffi-
cult. Methods based on Ripley’s K are popular, and for good reason: they are easy
to use and to interpret and there is a range of such techniques that cover most kinds
of point data. In general, they look at scale of pattern and they can deal with situ-
ations in which several scales of pattern are present. The hierarchy of neighbours
approach (described in Section 2.3 below) does not use distance explicitly in the
way that Ripley methods do and would provide a good complement to that set of
methods. No single method can tell us everything we may want to know and so the
use of two or three complementary methods is recommended, as usual.

2.2 Mark correlation function

The following methods presented are designed to investigate the interactions of
neighbouring trees in a forest and appear in the works of Penttinen et al. (1992),
Gavrikov & Stoyan (1995) and Stoyan & Penttinen (2000). This approach follows
on from the bivariate methods described above, to take account of a quantitative
characteristic associated with events, m;, for example for the diameter of a tree.

If u is the mean value of m;, then

m m

Ko@) =" wiIG, jymim;, (2.22)

i=1 j=1

and the observed value is compared with the expected value by calculating

Lo(t) =t — ) K(2)/ 70 12 (2.23)

When L is plotted as a function of 7, large positive values indicate overdispersion
of the marks and large negative values indicate their aggregation. Parallels with
the interpretation of Ripley’s K-function are obvious. The authors also pointed out
that replacing ‘m;m;” with ‘(m; — mj)z’ in (2.22) produces what is essentially the
equivalent of the sample, experimental, variogram (see Chapter 3).

Figure 2.11 presents an artificial example (data in part (a)) in which the events
are not clumped, but the values associated with them (diameter) are. Ripley’s
K-function analysis (Figure 2.11b) shows no evidence of clumping, but the mark
correlation analysis does (Figure 2.11¢). The authors suggested using a ‘kernel’
(smoothing) function as part of the calculation, but that may not be necessary since
its only effect is to smooth the differences exhibited by different distances.
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Figure 2.11 (a) Artificial univariate point pattern data with diameter
characteristics (the dots indicate the size of the study area). (b) Standardized
Ripley’s K analysis on artificial univariate diameter data (positions only).
(c) Mark correlation analysis on the same artificial univariate data, using
diameter and position, where L (?) is the mark correlation statistic.
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Goulard et al. (1995) provide an excellent example of the usefulness of this
approach in a study of the clumps of sprouts of sweet chestnut, Castanea sativa
Mill., in the Limousin region of France. In addition to the locations of coppiced
clumps, four variables were measured: diameter, number of shoots before cutting,
height at one year after cutting and height at three years after cutting. These were
the ‘marks’ used in the analysis. The authors also measured soil depth to the granite
beneath, at 120 locations, and produced an interpolated (kriged) estimated surface
(see Chapter 3) of soil depth for the whole study area. They found that the clumps
were regularly dispersed, with diameter and number of shoots displaying negative
autocorrelation at smaller distances. Heights were not strongly correlated. The
analysis showed that small clumps were aggregated in gaps between larger clumps
and that heights could be related to their spatial correlation with local soil variables.
This study provides a good example of the sophisticated and detailed analysis that
the marked point process approach can offer.

2.3 Networks of events

In Section 2.1, we began the discussion of analysing point patterns with the concept
of nearest neighbours. If the nearest neighbours are joined by lines on a map of
the events’ positions, a picture of the network of nearest neighbours emerges.
Figure 2.12 shows the network of neighbours that results from the first nearest
neighbour definition (artificial example). In technical terms, the network is a graph,
consisting of the points or vertices, v;, joined by lines or edges, e; = (v;, vj). A
graph is connected if there is a sequence of vertices joined by edges (a path)
between any two vertices in the graph. (Imagine tracing a route from one vertex to
another following the edges.) In its purest form, a graph is a combinatorial entity,
depicting only structure, so that the vertices do not have positions and the edges do
not have lengths (or weights, or directions, or shape), except for the purposes of
depiction. A graph as a geometric entity, drawn on a surface with vertex positions
and edge lengths (that is to say embedded in the plane), is sometimes referred to
as a topological graph (Harary 1967), but we will be informal and use the term
graph for either kind of object. A graph of first nearest neighbours is almost never
connected, as in Figure 2.12. A path that begins and ends at the same vertex without
using any edge twice is a cycle; a graph that has no cycles is called a tree.

The nearest neighbour definition can be narrowed to include only those pairs
of events (vertices in the graph) that are mutually nearest neighbours, producing
a graph with fewer edges (the heavy lines in Figure 2.12). Some events will have
no neighbour at all. This graph of mutually nearest neighbour pairs (MNNG5) is a
subgraph of the graph of all first nearest neighbours (NNs) because all edges in
MNNS are also included in NNs. Under complete spatial randomness, about 62%
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A

Figure 2.12 Network of first nearest neighbours for an artificial example of point
pattern. Mutual nearest neighbour pairs have bold lines.

of the events are members of reciprocal nearest pairs (Pielou 1977) and so the
expected number of neighbours per event (or edges per vertex) is about 0.62.

Table 2.2 Hierarchy of neighbour networks®

. Mutually nearest neighbour pairs (*0.62)
. All nearest neighbours (*1.4)

. Minimum spanning tree (x2.0)

. Relative neighbourhood graph (*2.4)

. Gabriel graph (=4.0)

. Delaunay triangulation (6.0)

NN AW =

¢ With approximate average number of neighbours.

The first nearest neighbour graph can be extended in several ways: for example,
to include the first and second nearest neighbours. We can describe a neighbour
hierarchy that begins with a graph of mutually nearest neighbours and ends with the
Delaunay triangulation (Table 2.2). The advantage of using several networks for
analysis is that a range of numbers of neighbours and a range of average distance
to neighbours are used. This approach should provide more insight, for example,
into the characteristics of segregation or aggregation of a bivariate pattern.
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Figure 2.13 Minimum spanning tree for the same pattern as shown in Figure
2.12. The bold lines are those in the nearest neighbour graph.

The third network in the list is the minimum spanning tree (Figure 2.13). A span-
ning tree is a graph with no cycles that includes all vertices; the minimum spanning
tree is the one with the smallest total length of edges. The minimum spanning tree
(MST) contains all nearest neighbour edges and so the nearest neighbour network
is a subgraph of it. One way to visualize the relationship is to consider that the
minimum spanning tree is formed by connecting up the disconnected components
of the nearest neighbour graph, using the shortest edges available. A spanning tree
on n vertices must have n — 1 edges, producing an average number of neighbouring
vertices of 2 — 2/n, or approximately 2 neighbours for each event.

The fourth network is the relative neighbourhood graph (RNG; Toussaint 1980),
formed by joining all pairs of vertices, A and B, for which the lens formed by
the radii of the two circles AB, centred on A and B, contains no other vertex
(Figure 2.14). Figure 2.15 shows this fourth network and the minimum spanning
tree, which is a subgraph of it. The average number of neighbours in this network
seems to be about 2.4 under CSR.

Next is the Gabriel graph (GG; Gabriel & Sokal 1969). It is formed by joining
all pairs of vertices, A and B, for which the circle with diameter AB is empty
(Figure 2.16). The relative neighbourhood graph is a subgraph of the Gabriel graph
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Figure 2.14 The definition of edges for the relative neighbourhood network.
A and B are joined if the central lens contains no other points.

Figure 2.15 The relative neighbourhood graph for the same pattern.

(see Figure 2.17). Matula & Sokal (1980) showed that the average number of
neighbours in the Gabriel network approaches four, under CSR.

The most complex neighbour network in the hierarchy is the Delaunay triangu-
lation (DT; Okabe ef al. 1992). It is formed by joining all triplets of vertices A,
B and C, for which the circumcircle of the triangle ABC contains no other vertex
(Figure 2.18). The Gabriel graph is a subgraph of this triangulation (see Figure 2.19).
This triangulation is closely related to a familiar spatial structure, the tessellation
of polygons variously known as Dirichlet domains, Thiessen polygons or Voronoi
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Figure 2.16 The definition of edges for the Gabriel graph network. A and B are
joined if the circle on AB contains no other points.

Figure 2.17 Network of a Gabriel graph for the same pattern as shown in
Figure 2.12.

polygons (Figure 2.20). Any pair of events, the polygons of which have a common
boundary in the tessellation, are joined by a line in the triangulation, indicating that
they are first-order neighbours in that structure. The ecological application of the
tessellation comes from the fact that each polygon contains all parts of the plane
closest to its own event than to any other. Where the events are plants, the polygon
associated with each plant determines the resources it can pre-empt and its success
may depend on the size of its polygon (Mithen et al. 1984). It can be shown that the
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Figure 2.18 The definition of edges for the Delaunay triangulation network. A
and B, B and C, and A and C are joined if the circumcircle on ABC contains no
other points.

Figure 2.19 Network of a Delaunay triangulation for the same pattern.

average number of neighbours in the Delaunay network approaches six, no matter
what the spatial arrangement of the events (Upton & Fingleton 1985).

The hierarchy of networks given in Table 2.2 is unified by the fact that each
network is a subgraph of the next most complicated, so that in going up through the
hierarchy, lines are only added, never removed or replaced. In ecological terms, this
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Figure 2.20 The Delaunay network (fine lines) as Dirichlet domains (bold lines),
Thiessen polygons or Voronoi polygons.

means that more and more events are considered to be neighbours, but no event that
was counted as a neighbour is removed from consideration when there are more.

For example, Figure 2.21 shows the positions of plants of Solidago canadensis
L. growing at the edge of a hay field near Edmonton, Alberta (quadrat 2; Dale &
Powell 1994). They are of two types: those that have obvious evidence of attack
by insects (stem galls) and those that do not. We used the hierarchy of networks to
define which pairs of plants are neighbours, and used a randomization procedure
to determine whether there was a significantly large number of neighbour pairs
that were of the same type. The results were not significant for the first mem-
ber of the hierarchy (MNN), but they were for the next two (NN and MST); the
results were not significant for RNG and GG, but they were for the Delaunay
triangulation (DT).

This hierarchy of neighbour networks can be used in a number of other ways. It
can be used for multivariate point pattern analysis and for the analysis of marked
point patterns, for example by looking at the number of like—like joins (multivariate)
or correlation coefficients (marked) in the range of networks available. In most
applications, ‘re-labelling’ randomization will be an obvious technique to evaluate
the significance of any result. This description of the hierarchy is not intended to
provide advice on which is the ‘best’ network for ecological analysis. The sugges-
tion is to use the entire hierarchy of six networks because the differences among
them can provide valuable insights. Even more useful to ecologists would be com-
parison of the results of this hierarchical analysis with the results from artificial
data that are designed as realizations of the hypothesized underlying ecological
processes, such as dispersal and mortality. Other applications of this hierarchy, as
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Figure 2.21 Map of Solidago canadensis in a 2 x 2 m study plot (quadrat 2) near
Edmonton, Alberta. Closed diamonds are ‘clean’ plants, and open squares are
those with galls or other forms of insect attack.

well as of extensions or modifications, will be found useful by ecologists for the
spatial analysis of various kinds of point patterns.

2.4 Network analysis of areal units

There are two obvious extensions to the preceding discussion of the analysis of
patterns of events in a two-dimensional plane using neighbour networks. The first
is to look at areal units, such as habitat units (‘patches’) in a landscape, rather than
events that can be treated as dimensionless points, and the second is to look at
patterns of events in fewer, or in more, than two dimensions. We will follow that
order.

Our treatment of analysing patches in the plane is, in part, prompted by the graph
theoretic approach to studying landscape connectivity (Cantwell & Forman 1993;
Urban & Keitt 2001, among others). That series of papers brought renewed attention
to graph theory as a useful context for the evaluation of ecological structure, which
is a favourite topic of the authors (cf. Dale 1977; Fortin 1994)!

A frequent underlying assumption in landscape ecology is that an area can be rep-
resented by a set of identifiable landscape units of habitat, referred to as ‘patches’.
Studies of fragmentation consider patches of habitat suitable for the focus organisms
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(e.g. an endangered species) situated within a matrix of unsuitable landscape ele-
ments (e.g. woodlots in an agricultural region). In the graph theoretic approach to
evaluating this kind of structure, habitat patches are represented by the vertices of
a graph and the edges that join them represent connections between the patches
related to ecological processes. That is, the landscape is represented as a func-
tional network, with colonization or dispersal often being the process of primary
concern in conservation-oriented studies. In the preceding section we provided a
non-technical introduction to some of the terminology used in graph theory. We
need to provide a few more terms here. Recall that a graph is connected if at least
one path exists (a sequence of vertices joined by edges) between any two vertices
in the graph. The degree of a vertex is the number of edges that it has. The most
extreme form of a connected graph is a complete graph, in which each vertex has
an edge to every other vertex, so that all vertices have degree n — 1. A planar graph
is one that can be drawn in the plane without the edges intersecting; the complete
graph of order 4 is planar, but the complete graph of order 5 is not (try it!).

In a connected graph, a cut-point is any vertex, the removal of which causes the
graph to be no longer connected. Similarly, any edge, the removal of which discon-
nects the graph, is called a cut-edge or bridge. Obviously, a complete graph has no
cut-points and no cut-edges. A graph that is not itself connected will be made up of
a number of connected subgraphs, called components. The order of a component
is just the number of connected vertices it contains. For a connected graph, there
are (at least) two measures of how strongly it is connected: vertex connectivity
(sometimes called node connectivity) is the minimum number of vertices that must
be removed to disconnect the graph. Edge connectivity is the minimum number of
edges that must be removed to disconnect the graph. Figure 2.22 illustrates these
various terms. There is an obvious analogy between the connectivity of a graph and
the number of dispersal routes, made up of corridors and patches, available in the
landscape it represents.

Graph theory is about the structure of connections and, in general, the edges of a
graph do not have properties like length or weight, but in some applications of graph
theory, it is useful for the vertices and edges to have properties of their own. For
example, each edge in the graph may have a length associated with it, d(e;), which
could be the physical distance between vertices which have locations, as drawn in a
diagram or on a map, or some other property of the network, such as cost of transport
or resistance to movement. The graph theoretical distance between two vertices in
the graph, §;;, is the minimum path length (smallest sum of edge lengths) of any path
between the two vertices. This means that a minimum spanning tree (MST), which
we constructed in the previous section using the criterion of minimum physical
distance, could use the criterion of minimizing any other measure of edge length.
For many applications in ecology, for example in the analysis of landscapes, we
can think of a graph of landscape objects as being embedded in the plane, with the
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(d)

Figure 2.22 Tllustration of graph theoretical definitions: (a) original graph,

(b) the point now isolated is a cut-point because its removal disconnects the
graph, (c) two lines removed disconnect the graph but (d) the line removed is a
cut-edge because its removal disconnects the graph. The edge connectivity is 1
and the vertex connectivity is also 1.

vertices having geographic locations or positions, and the edges having the length
of the (Euclidean) distances between the vertices they join. Whatever the measure
of length, the eccentricity of any vertex, £(v;), is the maximum graph theoretical
distance to any other vertex in the graph. Last, the diameter of a graph is the
maximum eccentricity of any node in the graph.

Urban & Keitt (2001) examine the properties of landscape graphs by considering
the effects of removing edges from the graph and of removing vertices, analogous
to the loss of dispersal corridors in the first case and of habitat patches in the
second. The characteristics they suggested for evaluating edge removal are purely
graph theoretic: the number of components that result, the diameter of the largest
component and the order of the largest component. The procedure they suggested is
to start with a complete graph (one in which all possible pairs of vertices are joined
by edges) and then to use a series of threshold distances and to remove edges, leaving
only those shorter than that threshold, thus creating a series of threshold distance
networks. The response of the graph theoretical properties of these networks to the
threshold distance then provides an evaluation of the landscape patch structure.
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As an example, Figure 2.23a shows the approximate sizes and locations of 21
lakes in an extensive peatland near the Alberta—Saskatchewan border (55° 45" N,
110° 45" W) and their distance-based minimum spanning tree. There are no direct
permanent surface-water connections between these lakes, and it is reasonable to
take as a working hypothesis that dispersal between them is inhibited by distance.
Figure 2.23b shows their Delaunay triangulation (DT) graph. Using the Urban &
Keitt (2001) approach on this graph, Figures 2.23c—f show the series of threshold
distance networks for 7, 6, 5 and 4 km. At 7 km, the graph is a single component
of all 21 vertices, with no cut-points or bridges. The diameter of the single com-
ponent is slightly larger than that of the original complete graph (30.3 rather than
26.5), because (for example) there is no longer an edge between Lakes 5 and 21,
and the path between them goes through Lake 4. At 6 km, the graph is no longer
connected, but the largest component includes 20 of the 21 lakes, and its diameter
has decreased (27.6) due to the loss of the most isolated lake. The main component
contains several cut-points (e.g. Lake 8) and cut-edges. The 5 km threshold network
is similar to the 6 km graph, with only the loss of two more lakes (6 and 7) from
the largest component. The change from 5 to 4 km, as the network threshold, is
dramatic. There are now nine components, of which the largest has only five lakes
and a diameter of only 6.1. This behaviour of a fairly abrupt transition from a few
components, some of which are large, to many small ones is similar to Urban &
Keitt’s (2001) observations on a hypothetical but realistic landscape of patches.

If we return to the Delaunay triangulation of the example landscape depicted in
Figure 2.23b, we can suggest a simple measure of the importance of any edge, e;;,
in the graph. That measure is the minimum ‘cost’ of its removal, either in absolute
distance of edges required to replace the connection between v; and v;, or as a
proportion of its length:

caleij) = l(eix) + L) — U(eij) (2.24)

or

l(eir) + I(exj) — l(eif)
l(eij)
For example, the shortest replacement path for ess is through v, so that

(2.25)

cr(eij) =

cqless) = l(ezq) + l(eygs) — l(ezs) = 3.8 4+ 6.1 —3.3 =6.6;
cr(e3s) = 6.6/3.3 =2.0.

For ey 11, the cost of its loss is much less:

caleq 11) = l(eq 10) + l(e10,11) — l(e9 11)
=17+21-22=1.6;
cr(eg 1) =1.6/2.2 =0.73.
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5 km

(a)

Figure 2.23 (a) The minimum spanning tree for 21 lakes in a peatland, with
approximate distances between them (in kilometres) and their relative sizes
(arbitrary scale). (b) Delaunay triangulation graph of the same set of lakes. (¢)—(f)
Network of lake neighbours using a 7, 6, 5 and 4 km threshold, respectively.
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To evaluate vertex removal, the criteria that Urban & Keitt (2001) suggested are
more explicitly ecological than those for edge removal:

(1) a recruitment index, R (a weighted sum of patch areas, with the weighting being a
measure of patch quality);

(2) an index of dispersal flux, F (a weighted sum of patch areas, as for recruitment, but
including the probability of dispersal from the focal patch to another); and

(3) ameasure of traversability, 7 (the diameter of the largest component that remains after
the vertex is removed).

They examined the iterative removal of nodes from the complete graph by three
different procedures: random choice for removal; removal of the node with smallest
patch area; and removal of the smallest area node i.e. a ‘leaf’ in the current MST
(i.e. attached only to one other node, as Lake 4 in Figure 2.23a). Not surprisingly,
they found that small-leaf removal degraded the characteristics of the network less
rapidly than did random removal. The same three measures, R, F' and 7, could be
used to evaluate the importance of individual nodes according to each criterion.
This was done by examining the difference in the measure before and after the
node’s removal from the entire graph. Because this evaluation is based on the
complete graph, which includes all possible edges, evaluation of importance may
be very different from one based on the DT or on the MST itself. For example,
in a complete graph of our landscape of lakes, removing Lake 8 would have little
effect on the graph’s diameter, whereas the removal of Lake 21 would make a big
difference. In the MST of the same landscape, the removal of Lake 21 reduces the
graph’s diameter somewhat, but the removal of Lake 8 has a profound effect on the
graph’s characteristics.

Again, as with edges, other measures of the importance of individual nodes in the
landscape can be considered. For example, we could compare the average length of
edges attached to a node in the DT graph, with the average length of new edges in
a DT graph when the node is removed. Thus, the average length of edges attached
to Lake 5 in Figure 2.23b is 5.5 km; when Lake 5 is removed, and the DT graph
is reformed, the average length of the all edges is 8.4, a ratio of 1.51. On the other
hand, if Lake 14 is removed, no new edges are required in the DT graph, and the
ratio is 0.

If we use a complete graph of the landscape and treat it as a purely combinatorial
structure, there is no ‘topological’ distinction among the points or among the edges.
Once the graph is embedded in the plane, as a map, the points are differentiated, with
some more central in location and some more peripheral. More specifically, we can
define the perimeter vertices of the graph as those that are in the convex hull (Lakes
21, 4,20, 18, 16, 13, 7 and 6 in our example), with the rest being interior nodes. In a
complete graph, there are few ways to evaluate the importance of a particular node
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to the overall connectedness of the graph, because there are no cut-points, cut-edges
and so on. To discuss node importance, we should turn our attention to the minimum
spanning tree, threshold distance network graph or Delaunay triangulation graph.
The importance of a node will be related to its position in the graph (perimeter
or interior), its degree (number of edges) and the distances to the neighbours to
which it is joined. The removal of a perimeter node reduces the network extent
(its “footprint’); the removal of particular perimeter nodes will reduce the graph’s
diameter, and the removal of interior nodes will reduce the number of alternate
paths between other pairs of nodes. In the DT graph, node removal does not result
in disconnection, but it often does in the MST. The removal of an interior node
with a degree of three or more from the MST will result in the creation of more
components of considerably lower order and smaller diameter than the original
graph. For example, the removal of Lake 8 in Figure 2.23a would have a large
potential impact on dispersal or colonization in this group of lakes.

This is an interesting area of research and, clearly, there is more work needed,
particularly on evaluating which features of habitat patch networks are most impor-
tant to the dispersal of particular kinds of organisms.

2.5 Point patterns in other dimensions
2.5.1 One dimension

The arrangement of events in one dimension can arise in many different ways
in ecology: the positions of species boundaries along an environmental gradient,
the heights of epiphytes up a tree trunk, encounters with plants or nests along a
line transect and so on. Based on studies of boundaries on gradients, Dale (1999)
describes several methods to study the arrangements of events in one dimension.

We can standardize the total length under study to the value 1, and then the
n events, the xs, divide the interval O to 1 into n + 1 pieces of length u; (see
Figure 2.24a). Two statistics can then be used to help distinguish among different
arrangements of the events:

n+1
Wu=Y u} (2.26)
i=1
and
hy =) uittiy - (2.27)

i=1

Tables of approximate critical values and guidance for the use of these two statis-
tics are presented in Dale (1999). The statistic W,, detects the pairwise clumping of
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Figure 2.24 (a) Illustration of standardizing one-dimensional transect data. (b)
Illustration of a line segment with n events, and the ‘#-bar’ used for calculating
the one-dimensional version of Ripley’s K-function.

boundaries that produce unexpectedly short segments, because large values indi-
cate a greater inequality of segment lengths. The statistic 4, measures the serial
autocorrelation because large values indicate that short segments tend to be adja-
cent to other short segments and large segments tend to be adjacent to other large
segments. A more detailed discussion of these statistics is provided in Dale (1999).
For the purposes of this chapter, however, which has so far emphasized methods
related to Ripley’s K-function analysis, it is of interest to provide a one-dimensional
version of that familiar technique.

Figure 2.24b shows a total sample line segment of length B in which n events
occur. For a range of values, ¢, the number of events within distance ¢ of each event
is counted:

n n
R(ty=BY Y wiLG. j)/n’, (2.28)

i=1j

where w;(f) is a weight that corrects for edge effects. If a bar of length 2¢ centred on
event 7 is completely within the segment, w;(f) = 1, otherwise it is the reciprocal of
the proportion of that bar that is within the line segment (Figure 2.24b). Because
the number of events expected to fall inside a bar of length 2¢ if the events occur
randomly is 2nt/B, we plot

Lty=1—K(@)/2 (2.29)

as a function of ¢. Values above 0 indicate overdispersion of the events and val-
ues below zero indicate clumping. An artificial example is given in Figure 2.254,
b, and a field example of the sequence of rapids on the Winisk River in
Northern Ontario (53° 30" N, 87° 20" W) is given in Figure 2.25¢, d. In this
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Figure 2.25 (a) Artificial one-dimensional transect data (clumps).

(b) Standardized Ripley’s K analysis on one-dimensional transect data. There is
overdispersion at both very small and very large scales. (¢) Rapids on the Winisk
River. (d) Standardized Ripley’s K analysis of the Winisk River rapids data.

(e) Rapids on the Morris/Pipestone River. (f) Standardized Ripley’s K analysis of
the Morris/Pipestone River rapids data.
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example, W,, = 0.043 and #h, = 0.024, neither of which are significant.
Figure 2.25e, f give a second example from the Morris/Pipestone River, also in
Northern Ontario (52° 15’ N, 90° 45" W); here W,, = 0.089 and 4,, = 0.027. The
first is significant, indicating that the rapids are clumped, but the second is not,
indicating that there is no tendency to have clusters of short inter-rapid sections of
the river.

A simple and obvious modification of (2.28) produces a bivariate version of
Ripley’s K in one dimension. As an extension to calculations in one dimension,
Okabe & Yamada (2001) explained the univariate and bivariate forms of Ripley’s
K-function analysis when the events occur in a two-dimensional space, but are
constrained to a network of one-dimensional structures. The example they gave is
of fast-food stands on a network of streets, or fast-food stands and subway stations
for the bivariate case. Applications to ecological studies such as the occurrence of
species of aquatic macrophytes or aquatic invertebrates in the water channels of a
delta are obvious. We are not aware of any so far in the ecological literature.

Lacunarity

The term ‘lacunarity’ is derived from the Latin ‘lacuna’, meaning a literal or
metaphorical hole, and so the concept of lacunarity refers to the characteristics
of the holes or gaps in a spatial structure. Several different methods for calculating
a measure of lacunarity have been proposed, but Plotnick ef al. (1996) recommend
the ‘gliding box’ (or ‘moving window’) method of Allain & Cloitre (1991). Picture
a string of events in one dimension; a box of length r is placed at the beginning of
the set and the number of events that lie within it are counted. The box is moved
one unit along the series and the number counted again, and so on, as illustrated
in Figure 2.26. The first and second moments for the frequency distribution of the
number of events per box are then determined for boxes of size r, call them m;(r)
and m;(r). The measure of lacunarity for box size r is

A(r) = ma(r)/Imi (r)]*. (2.30)

The graph of lacunarity as a function of box size is usually presented in a double-log
form: log[ A(r)] as a function of log(r), as in Figure 2.27.

Plotnick et al. (1996) provided guidelines for the interpretation of the lacunarity
index as a function of box size. Random data produce a curve that is concave upward;
clumped data of the same density produce curves that have greater lacunarity and
that are initially concave downward; and regularly spaced data of the same density
produce curves that are initially straight and have lower lacunarity (Figure 2.27). The
shape of the double-log curve depends only on aggregation and is independent of
the overall density; density determines the curve’s maximum (Plotnick ez al. 1996).
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Figure 2.26 In lacunarity analysis, a ‘gliding box” moves along a string of events
in one dimension (redrawn from Dale er al. 2002).

log(A)

log (n

Figure 2.27 A graph of lacunarity as a function of box size. Top: clumped
events; middle: random data; bottom: regularly spaced events.

Plotnick et al. (1996) suggested that for data consisting of randomly placed
clumps, the log—log lacunarity curve declines gradually with increasing box size to a
break point corresponding to the size of the clumps. Beyond this break point, the plot
declines more rapidly and is concave upward. They suggested that lacunarity curves
of one-dimensional sets have distinct breaks in slope corresponding to distinct scales
within the sets. Our own investigations (Dale 2000) suggested that the method is
not that precise in determining the scale or patch size in these kinds of patterns,
but the method is still popular, particularly in its two-dimensional form, as we will
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illustrate below, and lacunarity remains part of the conceptual frameworks of spatial
analysis.

2.5.2 Three or more dimensions

The analysis of patterns in three dimensions has received less attention than two-
dimensional analysis, in part because such data may be encountered less often.
Many of the methods described for two dimensions can be adapted for use in
three, for example, the comparison of event—event nearest neighbour distance dis-
tribution with the distribution of random point—event distances can probably be
transferred directly. Konig ef al. (1991) describe the adaptation of many of the
methods described above for two dimensions for use with three-dimensional data.
Mugglestone (1996) describes an approach that uses the Dirichlet tessellation for
analysing such data. The tessellation is used as the basis for a randomization test
of the arrangement of labels for bivariate data. In both these studies the subject
of discussion was cellular: the position of cells in tissue or of the centromeres of
chromosomes within cells.

We can also modify Ripley’s K-function analysis for three dimensions, as
described by Baddeley et al. (1987) and Konig et al. (1991) among others. With
the usual notation, and V being volume, calculate:

n n

R)y=V Y > wiL. j)/n*. (2.31)

i=1 j=1

i#] j#i
That is, count the number of events centred on an event within a sphere of radius
t of each event. The edge correction factor w;(¢) is 1 if the sphere, centred on i and
radius ¢, is completely within the study volume; otherwise, it is the reciprocal of
the proportion of the sphere that lies within the study volume. Because the volume

of the sphere is 4713/3, calculate:

Lt)y=1t—/3K(@1)/4n. (2.32)

Under CSR, the expected value is 0 and significant departures from O are interpreted
in the usual way. Extensions of this approach to bivariate and multivariate analysis
will proceed with simple modifications as described for two-dimensional data.

In addition to the adapted Ripley’s K, Konig et al. (1991) described three-
dimensional versions of the ‘event-to-nearest-event’ and ‘random-point-to-nearest
event’ statistics, the G-function and F-function described in Section 2.1.2. They also
introduced a three-dimensional marked point process analysis such as we discussed
in Section 2.2 above. These three-dimensional approaches have, so far as we know,
been applied in the context of the positions of cells in tissue, and not to ecological
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examples. Once it becomes well known that methods for three-dimensional pattern
analysis are available and easy to apply, we expect to see applications of these
methods in ecological studies. As only one example, characterizing the three-
dimensional positions of leaves in a forest canopy would be an important first step
toward evaluating and modelling the infiltration of light to lower strata of the forest.

2.6 Contiguous units analysis

We will begin this section with a discussion of analysis in one dimension; the basic
form of data is to have a series of values, x; to x,, representing the density of a
particular species in a transect of n contiguous sampling units, here quadrats. The
density will often be measured in per cent or may be expressed as a proportion,
running from O to 1. In presence : absence form, the data take only the values 0
for absence and 1 for presence. The methods we describe in the following sections
can apply to density data, presence : absence, or to ‘count’ data such as the number
of stems found in each quadrat. Spatial pattern of a single species is often studied
using one of several methods that examine the effects of distance or block size
on a calculated variance, with low variance indicating similarity and high variance
indicating dissimilarity.

2.6.1 Quadrat variance methods

Two ‘blocked quadrat’ methods of pattern analysis were published by Hill (1973)
in which the quadrats are combined in groups or blocks of a range of sizes. Both use
a continuous range of block sizes and average over all possible starting positions
for the blocking. The first of these is ‘two term local quadrat variance’, TTLQV
(Hill 1973), which can be thought of as a method that uses a two-part window, each
containing b units for its calculation. The block size affects both the size of the
window and the distance between the two parts of the template.
The variance in TTLQYV is:

nt1-2b [ith—1 i+2b—1 2
Vab)y= > (Z Xj— Y. xj) /2b(n+1—2b). (2.33)
Jj=i

i=1 j=i+b

This variance is calculated for a range of block sizes and, when plotted, peaks in
the variance are interpreted as being indicative of scales of pattern in the data (Hill
1973; Dale 1999), as illustrated in Figure 2.28. This method is most often used with
density data or estimated cover, but it can be used for presence : absence data, or
for counts.

An alternative is to have a two-part template for which only the spacing changes
with each half containing only a single original sample unit; this method is known
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Figure 2.28 The data are derived by the addition of two square wave patterns,
with scales of B and 2B (as in Figure 2.24). Variance (TTLQV) as a function of
block size; peaks (at scales B and 2B) are interpreted as corresponding to scales
of pattern in the data.

as paired quadrat variance, PQV (Ludwig and Goodall 1978):

n—d
V) = Y (xi = xi0)*/2(n — d). (2.34)

i=1

As with TTLQV, peaks in the plot of V), as a function of d are interpreted as being
scales of pattern in the data (cf. Ludwig and Reynolds 1988). TTLQV and PQV are
similar in that they both use a two-part window, but in PQV, the size of the window
does not change, only the spacing changes; whereas in TTLQV, both the size
and distance between the centres of the two parts change. Ver Hoef et al. (1993)
showed that there is a close, but not simple, relationship between TTLQV and
PQV:

1 b—1
Va(b) =V (b) + 5 2{2(1' —b)Vp(i) + (b — DIV, (b +1) + V(b — D]}

= (2.35)
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Both TTLQV and PQV can be extended to three-part forms, ‘three term local
quadrat variance’, 3TLQV (Hill 1973), and ‘triplet quadrat variance’, tQV (Dale
1999).

The equation for 3TLQYV is:

nt1-3b [i+b—1 i+2b—1 i+3b—1 2
Vi)=Y (Z =2 Y x4 Y x,) /8b(n—|—1—3b).

i=1 j=i+b Jj=i+2b
(2.36)

For tQV, it is:

n—2d
Vild) = Y (5 = 2xipa + Xi20) /40 — 2d). (237)
i=1

In both these methods, peaks in the variance indicate scales of pattern in the data,
as in the previous two methods (cf. Figure 2.28b). The two-part window methods
can filter out the addition of a constant and the three-part window methods can filter
out a linear trend. Therefore, 3TLQV and tQV are less sensitive to trends in the
data (Dale 1999).

The concept of lacunarity was introduced above in the discussion of one-
dimensional point pattern analysis. The gliding box algorithm for calculating a mea-
sure of lacunarity can be applied to the kind of data we are describing here, whether
they are densities counts or presence : absence in the quadrats (see Dale 2000).
In fact, that approach can be seen as something like a one-part window equivalent
of the methods we have just described (Figure 2.29). We commented above, how-
ever, that the lacunarity analysis does not give results as precise as those of the
quadrat variance approach for patterns of known characteristics (cf. Dale 2000).

Another approach to the analysis of spatial pattern that is based on Hill’s (1973)
quadrat variance methods is Galiano’s (1982) new quadrat variance, which was
proposed in both two- and three-term form. In the two-term form it is:

n—2b

Vva= Y |Ta(b,i) = To(b.i + 1)|/(2b(n — 2b),
i=1

where

i+b—1 i+2b—1 2
Ta(b, i) = (Z Xj— Y x ) : (2.38)

Jj=i+b

In the three-term form it is:

n—2b
Vs = Z |T3(b, i) — T3(b, i + 1)[/(8b(n — 3b),

i=1
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Figure 2.29 Gliding box techniques for one-dimensional data (TTLQV, 3TLQV
and lacunarity).

where

i+b—1 i+2b—1 i+3b—1  \ 2
T3(b, i) = (Z =2 Y x4 Y x,) : (2.39)

j=i+b Jj=i+2b

Dale (1999) provided a discussion of the properties of these two statistics, but
recommended against the use of the three-term version until its properties are better
understood. In two-phase pattern of patches and gaps, the two-term version gives
a variance peak at the average size of the locally smaller phase. As with many
other methods, careful interpretation is necessary if there is non-stationarity in the
data.

2.6.2 Significance tests for quadrat variance methods

Before proceeding to consider adaptations of these quadrat variance methods to
more than one species or in more than one dimension, we should discuss the inter-
pretation of the results. In almost all other kinds of data analysis, the principal
approach to interpretation is a test of statistical significance, whether in evaluating
a single data set or in comparing data sets. In spatial pattern analysis, evaluating
statistical significance is made difficult by several forms of lack of independence
in the data and in the ways the data are used. First, the values found in adjacent
quadrats will tend to be more similar than those at some distance from each other.
That fact is part of the underlying logic of spatial pattern analysis, but it also repre-
sents spatial autocorrelation in the data which can make the evaluation of statistical
tests difficult. Positive spatial autocorrelation, in general, tends to make tests too
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liberal: they give more apparently significant results than the data actually justify
(see Chapter 5).

The second form of lack of independence is the fact that each piece of data may
be used more than once in the analysis, both in calculating the variance at a single
block size and in calculating the variances at different block sizes. The overall result
of the lack of independence is that it is difficult to provide statistical tests to evaluate
the results of a single analysis or to compare results.

Randomization procedures can be used to help evaluate the ‘significance’ of
detected pattern in data, but because that kind of assessment requires both the
data and a considerable number of re-analyses, it is not always feasible. Second,
complete randomization destroys the spatial structure of the data, so that we can test
only the null hypothesis that there is no pattern at all (often not very interesting!)
In some cases, restricted randomizations in which the spatial structure is preserved
are possible, as we will describe in more detail in Section 2.4.3. In this section,
however, we will evaluate the results of quadrat variance analysis, based on the
characteristics of the analysis of random data in which there is no pattern. This
provides an alternative to permutation methods for which the data themselves and
re-analysis are necessary for an evaluation of the results.

Because of its mathematical simplicity, we will begin by considering how we
might develop statistical tests for PQV. We start with a string of data, x;, i =
1,2,3,...,n, which we assume are independent and random following some
particular probability distribution. There is a number of possible distributions to be
considered, including the normal distribution, but for the purposes of illustration
we will use the uniform probability distribution. PQV averages a number of terms
of the form (x; — xi44)” for a range of distances, d. For independent and random
data, (x; — x;14)> will have the same mean and variance for any value of d and,
therefore, in PQV, V,(d) will have a constant mean and variance.

For the uniform probability distribution, we can show by integration that:

E[(x; — x;)*]1 = 1/6,
and
El(x; —x))'1 =1/15,
so that
Var[(x; — x;)*] = 1/15 — (1/6)* = 7/180. (2.40)

Because V),(d) is half the average of n — d similar terms, we might be tempted
to suggest that: (1) E(V,(d)) = 1/12 = u and Var(V,(d)) = 7/720(n — d) = o2
and (2) being an average of independent terms, V),(d) should approach the normal
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distribution, with the given mean and variance, so that a significance test of the
variance for any distance could be based simply on the interval p &£ 1.645¢0 . Unfor-
tunately, both parts, i.e. points (1) and (2) of the preceding sentence, are not quite
true.

Point (1) is wrong because the terms contributing to V,,(d) are not completely
independent. For example, for d = 3, the calculation includes both (x; — x4)? and
(x4 — x7)%, which share the variate x4, and therefore have a non-zero covariance.
For uniform distribution, those non-zero covariances increase the variance from
7/720(n — d) to approximately 9/720(n — d).

Point (2), also, is not quite right, because of the re-use of the same data. Because
calculations of V,,(d — 1) and V,(d) use the same variates, they are not independent
and with some effort, we can show that:

(2n —3d + 1)(1/90)

CovV,(d = . Vyd)] = oo = F S 1/180n. 2:41)

This value may seem small, and it is; but not only will the variances of successive
distances have non-zero covariance, such as d = 4 and d = 5, but so will d = 4
and d = 6,d =4 and d = 7, and so on. This lack of independence is an important
obstacle to the development of statistical tests.

That being said, however, we can use our understanding to provide some guid-
ance to the interpretation of PQV plots, specifically to do with the position of the
first variance peak. Because E(V,(d)) is constant and the distribution of V,,(d) is
independent of d, V,(d;) > V,(di) with probability of about 0.5 for all values of
d; and dy. For d = 1 to be the first peak, all that is required is V,,(1) > V,(2) and,
with random data, that occurs with a probability of approximately 0.5. For d = 2
to be the first peak, we need V,(2) > V,(1) and V,(2) > V,(3), which occurs with
a probability of 0.5 x 0.5 = 0.25. In general, then, the first peak for random data
occurs at distance d, with probability (0.5)?. The probabilities are not exact because
of non-zero covariances, but this provides a direct explanation of the observation
by Campbell et al. (1998) that, for random data, variance peaks occur at block
sizes 1, 2 and 3 with frequencies of approximately 50, 25 and 12% (their Figure 1).
A second comment is that there is an important distinction to be made between
testing whether the data as a set are non-random and have significant spatial pattern
in them and providing significance tests for the variance at a particular block size
or spacing.

If we turn our attention from PQV to TTLQV, it is obvious that the problems of
derivation will be greater. The blocking of data introduces more dependence and
more covariance to the calculations for any single block size and more dependence
and more covariance to the calculations at successive block sizes. It could be done,
but is it worth the effort? NO!
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Figure 2.30 Covariance (3TLQC) analysis on Ellesmere Island sedge meadow
data. The association of Carex aquatilis and Eriophorum triste cycles between
positive and negative. b is the block size.

Itis not worth the effort for TTLQV; and it is not worth the effort and ingenuity we
putin for PQV either. The reason is that the values derived for the mean and variance
depend strongly on the underlying distribution of the data. The real problem for
deriving statistical tests of the significance of results from pattern analysis is that we
never know for certain the true underlying distribution or whether the distribution
is stationary for the length of the transect. For that reason alone, notwithstanding
analytical complexities, these methods will remain techniques for data exploration,
not for statistical testing unless some meaningful restricted randomization approach
is available.

2.6.3 Adaptations for two or more species

An obvious extension of single species pattern analysis is to examine the scales
of the association of pairs of species by looking at the effect of scale on species
covariance (Greig-Smith 1961, 1983; Dale & Blundon 1991). Adoption of these
quadrat variance methods for examining covariance proceeds on the basis that the
covariance of two variables can be derived from their individual variances and the
variance of their sum (cf. Dale 1999):

Cov(A, B) = [Var(A + B) — Var(A) — Var(B)]/2. (2.42)

This formula can be applied to any of the methods just described to produce
TTLQC, 3TLQC, PQC and tQC. For example, Figure 2.30 shows an example of the
application of 3TLQC to presence : absence data from a study of sedge meadows
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on Ellesmere Island (Young et al. 1999). The relationship between Eriophorum
triste and Carex aquatilis changes with block size from negative to positive and
back again. The negative association at small block sizes can be attributed to the
ecological ‘preferences’ of the two species, one more mesic and one semi-aquatic,
coexisting in a wet hummock-hollow habitat.

In many cases, it may be of interest to study the spatial pattern of the whole
community, and the analysis of all possible pairs of species may be confusing and
difficult to interpret. Therefore, to evaluate the spatial pattern of all the species
at once, researchers have proposed a variety of methods with which to examine
multispecies pattern in vegetation.

The concept of multispecies pattern in vegetation may have arisen because of
a perception that a plant community is like a mosaic of distinguishable phases or
vegetation types, defined by the combinations of species densities or occurrence.
Each phase need not be homogeneous, but there must be greater similarity within a
phase than among phases, even if the boundaries between phases are not sharp. Local
similarity is not sufficient to give true multiple species pattern with a detectable
scale; it requires the repetition of similar species combinations. It is possible for
different phases of a mosaic to have different scales and so the scale of multiple
species pattern for the whole community can be defined as half the distance that
maximizes the probability of finding the most similar combination of species’
densities (Dale & Zbigniewicz 1995).

The recommended method for the evaluation of multispecies pattern is that intro-
duced by Noy-Meir & Anderson (1971) and modified by Ver Hoef & Glenn-Lewin
(1989) and by Dale & Zbigniewicz (1995). The method is based on a combination of
quadrat (co)variance calculations and ordination methods of principal components
analysis (PCA), and is usually called multiscale ordination (MSO).

For analysing data for k species, we need first to calculate the k x k variance—
covariance matrix for each block size, b, from 1 to a maximum, B: C(1), C(2), ...,
C(B). The variances and covariances can be based on any of the methods described
above, and Ver Hoef & Glenn-Lewin (1989) used TTLQV and its covariance
TTLQC. We recommend using 3TLQV and 3TLQC because they are less affected
by trends in the data. The matrices, C(b), for block sizes 1 to B are all added
together and the sum matrix is eigenanalysed as in principal components analysis.
Eigenanalysis can be described as creating linear combinations of the original vari-
ables, the species densities, x| to x;, that are all mutually orthogonal and with the
condition that the new linear combinations, y; to y, in order, explain as much of
the total variance in the data as they can. For each new y;, its eigenvalue measures
the proportion of the total variance that it explains, usually designated as X; and its
‘eigenvector’ is the vector of the weights of the linear combination of the xs used
to produce y;.
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Having completed the eigenanalysis, the largest eigenvalues are each partitioned
into the amounts of variance contributed by each block size using the weights of the
eigenvectors (for details see Ver Hoef & Glenn-Lewin 1989 or Dale & Zbigniewicz
1995). Peaks or plateaux in each plot of variance as a function of block size are
interpreted as being to scales of pattern in the vegetation (cf. Ver Hoef & Glenn-
Lewin 1989).

Because larger block sizes tend to dominate the analysis, the covariance matrices
should be weighted prior to summing and Dale & Zbigniewicz (1995) suggested
weighting of the variance—covariance matrices calculated for each block size, b, by
the factor 662 /(b + 2). Dale (1999) provided a detailed example of this multispecies
analysis, using artificial data, which illustrates the ability of the method to recover
the important properties of the data.

One feature of multispecies pattern may be the relative strengths of the contri-
butions of the various species to the pattern. If one species overly dominates an
eigenvector, the pattern detected is not truly multispecies. A measure of species’
contributions can be based on the fact that each new variable produced by the eigen-
analysis is a linear combination of the original species densities with weights given
by the eigenvector:

k k

j=1

J=1

We can propose a measure of how evenly the species contribute to pattern using
the variance of the absolute values of the weights, u;;. If all species have equal
weights, the variance will be 0, and if one weight is 1.0 and the rest are 0, then
the variance is (k — 1)/k*. Let C be the coefficient of variation, the square-root of
the variance divided by the mean. Its maximum value is the square-root of &, and a
measure of the evenness of the weights in the ith eigenvector is therefore:

E;=1-Ci/Vk. (2.44)

We established six 50 m transects at a site near Fort Assiniboine, Alberta, dom-
inated by Jack Pine and Aspen, and sampled the understorey in each with 200
contiguous 25 x 25 cm quadrats. The species list is typical of the boreal forest
including vascular plants, such as Linnaea borealis, Maianthemum canadense and
Aralia nudicaulis, species of Vaccinium, and feather mosses, such as Ptilium crista-
castrensis, Pleurozium schreberi and Hylocomium splendens. We analysed the data
with a version of multiscale ordination based on 3TLQV/3TLQC, as described
above. We have chosen one of the six transects, the southern east-west transect,
as an example to discuss. Based on the 12 most common species, the first three
axes explained 22.6, 16.8 and 15.2% of the variance (55.6% for the first three axes,
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which in our experience is a high proportion). The evenness of the eigenvector
weights was also high, 0.868, 0.801 and 0.819, indicating true multispecies pattern,
not dominated by any one species. Figure 2.31a shows the data for this transect
and Figure 2.31b shows the partitioned variances as a function of block size for the
first three eigenvalues. The three axes show clear evidence of pattern in the range
of 17-27 units (8.5-13.5m). This is in agreement with an informal evaluation of
the data, which seem to have a pattern of about 10 m.

2.6.4 Two or more dimensions

The basic concepts of the quadrat variance methods can also be extended to two-
dimensional data collected on a grid of contiguous units. Again, any of the methods
can be adapted for this purpose.

For example, tQV had the formula:

n—2d
Vid) = ) (& = 2Xi4a + Xi20)* /400 — 2d). (2.45)

i=1
Expanded to two dimensions, it could become:

n—2d m—2d

Vs(d) = Z Z (Xi,j + Xitd,j — WXitd, j+d

i=1 j=1
+ Xitad,j + Xij24)/20(n — 2d)(m — 2d).  (2.46)

The other possible extensions to two dimensions are similar and equally simple in
concept, but the equivalents of TTLQV and 3TLQV require somewhat long and
complicated equations (see Dale 1999). They may be more intuitively understood
from diagrams showing the templates used for their calculation. Figure 2.32a shows
the template used for the calculation of Vs5(d) and compares it with the template for
Vo(b), which is the two-dimensional equivalent of 3TLQYV, Figure 2.32b. Expansion
of the concept of Vs5(d) to compare any sample unit with all units that are very
approximately a distance d away from it, as in Figure 2.32¢, comes very close to
the estimation of the omni-directional variogram, as described in Chapter 3.

Dale (1995, 1999) described a ‘random paired quadrat frequency’ method for the
analysis of two-dimensional mosaics such as communities of crustose saxicolous
lichens. As the name suggests, it compares the frequency of particular species
combinations in randomly chosen pairs of quadrats, as a function of the x and y
displacement between them, with the expected value based on occurrence in the
entire data set. This approach provides an easy assessment of anisotropy; for details
see Dale (1995) or (1999).
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Figure 2.31 (a) Presence: absence of 12 understorey species along a 50 m
transect at Fort Assiniboine, Alberta. (b) Partitioned variances as a function of
block size for the first three eigenvalues in multiscale ordination of the data in
(a). Key to species abbreviations: Aralia, Aralia nudicaulis L.; Brachy,
Brachythecium sp.; Cor Can, Cornus canadensis L.; Grass, Poaceae; Lin bor,
Linnaea borealis L.; Mai can, Maianthemum canadense Desf.; Ple sch,
Pleurozium schreberi (Brid) Mitt.; Ros aci, Rosa acicularis Lindl.; Rub pub,
Rubus pubescens Raf.; Vac ida, Vaccinium vitis-idaea L.; Vac myr, Vaccinium
myrtilloides Michy; Viola, Viola sp.
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Figure 2.32 (a) Template used for the calculation of Vs(d). (b) Template used for
the calculation of Vy(b). (c) An illustration of extending the Vs(d) concept to
compare a sample unit to all others at a distance of approximately d.




94 Spatial analysis of population data

SADIE

One set of methods we have yet to introduce is that referred to as the SADIE
techniques, from ‘spatial analysis by distance indices’, developed by Perry and
coworkers in a series of papers (Perry 1994, 1995, 1996, 1999). The basic concept
begins with the counts of individual events (e.g. insects) in a grid of contiguous
sampling units (e.g. a field divided into quadrats). The approach then uses either the
total distance that individuals would have to move in order to for each to occupy a
single quadrat (distance to crowding) or the total distance they would have to move
in order to have equal numbers in all quadrats (distance to regularity). The two
different versions can be seen as maximizing or minimizing the variance-to-mean
ratio of the counts, but the spatial arrangement of the counts is used to evaluate the
distance characteristics of those processes. To consider the ‘distance to regularity’
approach in greater detail, let m be the mean of the counts of N events in a grid of
quadrats. Each unit that has a count of more than m events, call it ¢;, mustlose ¢; — m
events, and each unit that has a count of fewer than m events, call it ¢;, must gain
m — cj events. If there are p units with counts greater than m, and g units with counts
less than m, there are pq pairs of units between which a movement of numbers might
take place from a source unit, i, to a sink unit, j, with magnitude v;; (which is not
necessarily an integer). Although there are many different ways in which the flow
of numbers from sources to sinks could produce complete regularity, the SADIE
algorithm finds the combination that has the smallest total flow distance. That is,
where d;; is the distance between the two units, the algorithm minimizes the value
of the sum, D:

D =Y vd. (2.47)

i=1 j=1

The observed value of D from data can be tested for statistical significance using
a randomization procedure. There are several elaborations and modifications of
the basic method available, as described in the literature. For example, a spatially
explicit result can be obtained by either creating a diagram of the flow of numbers
or by colouring the hot spots of high density one colour (red) and the cold spots of
low density another (blue), producing ‘red—blue’ plots of the data (see Perry 1999).
The method can also be modified to deal with point pattern data, rather than the
quadrat count data described here.

Another method for the analysis of two-dimensional grid data is the technique
of lacunarity analysis which was introduced above in Section 2.5.1 in the context
of a one-dimensional point pattern, and was then alluded to in Section 2.6.1 in the
discussion of one-dimensional contiguous unit arrays. The technique is most pop-
ular for use with two-dimensional arrays of contiguous units, the pixels of satellite
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images, in particular. For example, there have been several recent publications using
the ‘gliding box’ algorithm on air photographs or Landsat images to calculate mea-
sures of lacunarity for the study of fragmentation in tropical landscapes (Peralta &
Mather 2000; Wu et al. 2000; Weishampel et al. 2001).

The extension of these methods to three dimensions is certainly possible,
although we have not found many examples in the ecological literature. The units in
a three-dimensional sample array are usually referred to as ‘voxels’, to parallel the
term ‘pixel’. Fukushima et al. (1998) counted the leaves of trees in 972 1.8 x 1.8 x
0.9 m (vertical) cells in order to test methods of estimating foliage profiles. They did
not apply the kinds of methods we have described here; they looked at foliage height
diversity. As we noted above, however, in the discussion of three-dimensional point
pattern analysis, as these approaches become better known, ecologists will quickly
see their usefulness and take them up for application in ecological studies.

2.6.5 Spectral analysis and related techniques

Spectral analysis is a technique that detects repeating pattern in spatial density data
by fitting sine and cosine functions to the data, thus determining which frequencies
or wavelengths best fit the data (Ripley 1978). The data to which this analysis is
usually applied are quantitative measures in continuous or evenly spaced series. This
approach is most suitable for ‘rich’ data sets, with large numbers of observations,
and in situations in which the assumption of stationarity is justified. One technique
for spectral analysis is the Fourier transform, which decomposes the ‘signal’ into
sine waves of various frequencies and positions (Figure 2.33; see Legendre &
Legendre 1998). Spectral analysis has been applied to two-dimensional ecological
data by Renshaw & Ford (1984) and although originally developed for the analysis
of continuous signals, it can also be applied to point pattern data (see Mugglestone
& Renshaw 1996).
For a transect of n values, x;, the values are expressed as a weighted sum:

n/2—1
xi=%+ Y c,cosQ2mip/n)+s,sinQmip/n), (2.48)
p=1
where
2 ¢ . 2 . .
cp=— Zx,- cos2mip/n) and s, = - Zx,- sin@mip/n).  (2.49)
ni3 i3

A closely related technique, is the Walsh transform which decomposes the sig-
nal into square waves instead of sine waves, of various frequencies and positions
(Figure 2.34; see Ripley 1978).
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Figure 2.33 The concept of Fourier transform: the combined pattern of sine and
cosine waves is resolved back into its original components.
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Figure 2.34 A Walsh transform resolves a combination of different frequencies
of square waves into its components.

2.6.6 Wavelets

Wavelet analysis, as an approach to analysing spatial data, is closely related to
spectral analysis, but it uses a finite wavelet as the template rather than sine or
cosine functions applied over the entire data sequence. This approach provides
both local evaluation of spatial structure and a global analysis using the wavelet
variance, which gives variance peaks at scales of pattern in the data like those in the
quadrat variance methods. The analysis evaluates how well the wavelet template,
of different sizes, matches the data over a range of positions. The data used for this
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b —

Figure 2.35 Mexican hat wavelet with relative width b.

are typically quantitative in a continuous or evenly spaced series. Where g is the
wavelet function, its transform, 7, is a function of the wavelet size and position:

1 n
T(byui) =3 gl —u)/bl, (2.50)
j=1

where b is the wavelet’s relative width (Figure 2.35), y(u;) is the data value at
position u;. The transform is essentially calculating the inner product of y(u) with
the wavelet function localized in size and position (Daubechies 1993). T(b, u;)
takes large positive values when the match of the wavelet function and the data
centred at u; is very good and large negative values when the match is very poor
(see Dale 1999, Figure 9.8, or Dale et al. 2002, Figure 6). As a technical note, the
wavelet transform given in (2.50) is the discrete form, using summation, whereas
a continuous wavelet transform would use integration.

Wavelet analysis can use a range of different functions, but the ‘Mexican hat’
template (Figure 2.36) is one of the most common, e.g. Bradshaw & Spies (1992).
For b = 1, its equation is:

2
gm() = gm0 (1 — duPe (2.51)

We can define a wavelet variance, based on the transform, as:
n
Vi(b) =Y T*b.u;)/n. (2.52)
i=1

A great variety of shapes are possible, but they must have an integral of zero;
three more are shown in Figure 2.36: the Haar, the French top hat (FTH) and the
Morlet. The wavelet variance based on the Haar wavelet is equivalent to TTLQV
and that based on the French top hat wavelet is equivalent to 3TLQV (Dale & Mah
1998). Both are also related to spectral analysis using the Walsh transform, which
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Figure 2.36 Wavelet shapes: Mexican hat, Haar, French top hat, Morlet.

decomposes a signal into combinations of square waves of different frequencies
(cf. Ripley 1978).

We can also use the wavelet approach to perform a local equivalent of spectral
analysis by using a sine wavelet:

sin(mu), if—-1<u<I;

0, otherwise. (2.53)

gs(u) = {
If the sine wavelet was expanded into more cycles, indefinitely, the resulting very
long wavelet would produce something very much like Fourier analysis.
Whatever wavelet is used, wavelet variance analysis can be modified to give a
wavelet covariance for bivariate data using (2.42), and thus to multivariate analysis,
but we will not describe this feature in detail. Wavelet analysis can also be applied
to two-dimensional data such as densities measured in a plane, e.g. vegetation cover
in an area of grassland (Csillag & Kabos 1996). One wavelet for such an analysis
is that created by rotating the Mexican hat wavelet in Figure 2.35 about its centre,
which resembles a true three-dimensional sombrero. In this three-dimensional form
the ‘brim’, the negative part of the template, must be narrower so that the integral
of the whole remains zero.

2.7 Circumcircle methods

The next set of methods presented are conceptually closely related to several of the
approaches already described, including Ripley’s K-function, neighbour networks
and wavelets. Continuing with the idea of counting events in circles for completely
mapped point data, we can consider other ways of locating the circles, as well
as centring them on single events in the pattern. Each triplet of events defines a
triangle and each triangle has a circle that goes through all three corners, called the
circumcircle (Dale & Powell 2001). If we count the events in circumcircles, there
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is a close relationship with Ripley’s approach because both count events in circles.
There is also a relationship between the use of the circumcircle with the neighbour
networks described in Section 2.3, because the Delaunay triangulation is defined
by empty circumcircles (Section 2.3, Figure 2.18).

2.7.1 Univariate analysis

For a total area of mapped plot, A, and n events in it, the average density is A = n/A.
There are approximately n*/6 triplets of events and therefore the same number of
circumcircles. For the kth circumcircle, let n; be the number of events inside it
(exclusive of those that define it) and let a; be the area of the circle that is within
the sample plot. The expected number of events in the circle is e, = (n — 3) ai/A,
based on the usual hypothesis of CSR. The Freeman—Tukey standardized residual
can be used to compare the observed and expected numbers of events:

= e+ Vg + 1 —de + 1. (2.54)

Values of z less than —1.96 can be considered to indicate gap circles and values
greater then 1.96 indicate patch circles, but any region of low density may have
many overlapping ‘gap’ circles and any region of high density may have many
overlapping ‘patch’ circles. To distinguish among the overlapping patch or gap
circles indicated by high or low values of z, we can seek the ‘best’ patch and
gap circles defined as those that have the greatest contrast with their immediate
surroundings. To find these, count the number of events in a ring around circle k that
has an area equal to the circle; if the radius of the circle is ry, then the ring has width
(v/2 — 1)ry.. If the number of events in the ring is p; with expected value f;, then
the standardized residual for the outer ring is:

k=P V1= Vafi+ 1 (2.55)

The circle’s residual, z;, can then be combined with the ring’s residual, ¢y, to
produce a measure of the contrast between the densities of the circle and the ring:

Zr = (zx — 1)/ V2. (2.56)

Z is calculated using a double-circle template, which can be considered to be a
wavelet, closely related to the French top hat, but in one more dimension, which we
have termed the ‘boater’ wavelet (Figure 2.37, Dale & Powell 2001). (The boater is
not just a rotation of the FTH; the ‘brim’ is narrower so that the integral of the entire
template is zero.) As in other forms of wavelet analysis, the value of Z for a given
circle measures how well the data match the shape of the template. The average Z*
can be plotted as a function of the circle radius, and peaks in this graph will reflect
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Figure 2.37 The ‘boater’ wavelet used in circumcircle analysis.

the sizes of patches and gaps in the pattern. To distinguish between the two, we can
plot Z* as a function of the radius for positive residuals only, Z%, which will show
patch sizes, and then separately for negative residuals, Z3,, which will show gap
sizes. Dale & Powell (2001) gave an example of this technique.

In some situations, we will want to achieve results that are spatially explicit. To
do so, the z or Z score of each circle is associated with the centre of the circle,
and a contour map of the scores can be produced for each of several size classes
or scales. Figure 2.38 provides an illustration of the circumcircle technique where
the shaded polygons indicate clusters of the centres of significant gap circles and
empty polygons indicate clusters of the centres of significant patch circles.

2.7.2 Bivariate analysis

The bivariate version of this approach is a straightforward adaptation of the uni-
variate version: type 1 and type 2 events are counted in circles based on triplets of
type 1 events, and type 1 and type 2 events are counted in circles based on triplets
of type 2 events. The four different counts are kept distinct; this procedure makes
the analysis truly asymmetric, unlike Ripley’s K-function approach. For example,
when used with the positions of canopy trees and seedlings, we can determine
whether seedlings tend to be found in canopy gaps and whether their occurrence is
affected by gap size. We can also use this approach to determine whether there
are tree gaps that have significantly few seedlings in them. This method provides
somewhat different information from the bivariate K-function, which detects the
scales at which the two types of events are aggregated and the scales at which they
are segregated.

Let n; be the number of type 1 events in a circumcircle based on type 1 events,
with area a;, and a standardized residual of z;. Let m; be the number of type 2 events
in the same circle and with y; as the standardized residual. The response of type 2



2.7 Circumcircle methods 101

e

® o
* oo. ° 4 ..
] ° [
° b N ° ¢ °
o © * b L4 oo ¢ [)
. * * %
. % °
° 4 °
t 4 * o
° L4 oo.
° ° ° L4
% L) .° ®
... * ® o o .. [
°
. °

Figure 2.38 Contour map of significant patches (‘+’) and gaps (‘—’) based on
Z scores of artificial univariate data.

events to type 1 gaps can be examined by graphing the mean and variance of y; as
a function of ¢; for circles with n; = 0, or by graphing the same values for circles
with z; < —1.96. This asymmetric analysis reflects the asymmetry of the biological
processes; the positions of the canopy trees, for example, are expected to influence
the presence of seedlings, but not the reverse. For different ecological situations, for
example in studying the spatial relationships of two different species of canopy tree
or alpine meadow forb, the counts in both kinds of circle (based on types 1 and 2)
could be used in the analysis.

A second evaluation of the relationship between the two kinds of events is to
calculate covariance as a function of circle area, using either the basic circumcircle
or the ‘boater’ wavelet. For the latter, if there were no edge effects, the covariance
could be based on the squares of the differences between the observed counts of
events in the inner circle and outer ring, such as (n; — p;)* for type 1 events, (m; — g;)*
for type 2 events and (n; + m; — p; — g;)* for both types, using (2.42). Because the
circles can intersect the edge, we need to adjust for the area within the study area,
again using standardized residuals.
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In the univariate case, the circle and ring counts, n; and p;, were converted to
standardized residuals, z; and ¢;. In the same way, counts of the second type of
event can be converted to standardized residuals, y; and 1;, and the total counts of
both kinds to w; and &;. For an individual circumcircle, a covariance score can be
calculated, using only the inner circle, as:

¢ = (2w; —yf —z7) /2. (2.57)

Using the boater wavelet, in the univariate case, the standardized residuals, z;
and ¢, are combined to form a residual of their difference, Z;. For the bivariate
situation, the other residuals are also combined to form difference residuals:

Yi =i —m)/V2 (2.58)
and
Wi=w; —§), (2.59)
and the overall covariance score is:
Ci= (W —Y?-2z})/2 (2.60)
For a particular range of radius values, R, the variances are then:
Vz(R) = average of Z; for all i with r; in R,

Vy(R) = average of Y,-2 for all i with r; in R,
Vw(R) = average of W} for all i with r; in R. (2.61)

The covariance for the range R is then:
C(R) = [Vw(R) — Vz(R) — Vy(R)]/2. (2.62)

The covariance of the two kinds of event is graphed as a function of R, and positive
and negative peaks in that graph are interpreted as indicating the scales of aggrega-
tion and segregation of the events of the two kinds (cf. Dale & Powell 1994).
Again, we may wish to generate spatially explicit results. As described above,
Getis & Franklin (1987) made contour maps of the K-function values of the events
and interpolated points, for each of several radii. Extending that approach, the z or
y score of each circle is associated with the centre of the circle, and a map of the
scores is produced for each radius range. More simply, we can plot the centres of
circles of a particular radius class, using two different symbols or colours, one for
values less than —1.96 and one for values greater than 1.96. The resulting maps,
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‘circle score maps’, show the positions and extent of the centres of significant
patches and gaps, and using Z, Y or C, instead of z, y or ¢, will reduce the number
of scores to be plotted and will make the maps more informative.

2.7.3 Multivariate analysis

As with other univariate and bivariate analyses described in this chapter, the
extension of circumcircle analysis to multivariate data is both straightforward in
application and complex in interpretation. For the analysis using Ripley’s K, we rec-
ommended partitioning the total counts into ‘conspecific’ and ‘interspecific’, and
then into components ‘I, I’, ‘I, ~I’, and ‘I, J’; the same recommendation applies to
the circumcircle approach to multivariate spatial analysis.

Figure 2.39 shows two examples of multivariate circumcircle analysis. The data
are from one quadrant of the Lansing Woods data set (cf. Gerrard 1969; Diggle
1983). For maples we give the range and average value of z as a function of cir-
cumcircle area for /, I and I/, ~I combinations. The results consistently show larger
numbers of congenerics in smaller circles and fewer stems of different genera in the
smaller circles. This approach provides some insights that complement the results
from different kinds of analysis.

2.8 Concluding remarks

Although, in this chapter, a wide range of data types and approaches to analy-
sis have been discussed, the coverage is not exhaustive. It is very possible that
the practising ecologist will encounter situations in which different kinds of data
are met or different techniques of analysis are needed. These situations may be
completely novel, in which case ingenuity and advice from analytical specialists
may be required, or they may have been encountered before, but are not easy to
find in the literature. We will describe a few such situations for the purposes of
illustration.

Many of the methods used for the analysis of the positions of events in two
dimensions are based on the assumption that the events can be adequately repre-
sented as dimensionless points in a plane. In the analysis of a particular set of data,
it may become clear that that assumption is not sufficiently realistic and the events
should be treated as circles of non-zero radius: what then? This is one situation
that has been encountered before, and the researcher can follow the treatment by
Simberloff (1979), who studied the nearest neighbour assessment of the patterns
of events that are circles, not points. The approach is illustrated using data such as
the positions of ant-lion pits and ant nests. There is even a discussion of solving the
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Figure 2.39 (a) The z scores, mean and range, as a function of circle size, for
maples: congeneric analysis. (b) The z scores, mean and range, as a function of
circle size, for maples: intergeneric analysis.
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same problem in three dimensions, considering the dispersion of spheres, instead
of circles.

Another unconventional type of data an ecologist might encounter would be
linear objects such as downed logs on the forest floor or ungulate paths across a
grassland. Clearly, the positions of such objects cannot be reduced to dimensionless
points or isotropic circles. Such data can be considered as planar ‘fibre processes’
and a helpful discussion of these is provided by Stoyan et al. (1995). Chadoeuf et al.
(2000) provided an interesting illustration, looking at the relationship between the
pattern of plant roots and the density of the soil in which they occur. Where the
linear features are streams or rivers, there is already an abundance of literature on
how these can be characterized (cf. Morisawa 1985), and the applications in aquatic
ecology are obvious.

In some situations, a modification of the way in which the data are collected
may help solve an apparent problem. For example, if the objects under study have
no well-defined centre or patch boundary, such as in a lush grassland, it may be
possible to adapt grid sampling to deal with them (see Fehmi & Bartolome 2001)
and then proceed to analysis with one of the methods already described here.

We have not included, in this chapter, a discussion of how data that are a mosaic of
polygons or other shapes are to be analysed, although such data might be considered
for inclusion here. Instead, we have treated them in Chapter 3 (simple analysis) and
Chapter 6 (changes through time). We have also not discussed the spatial aspects
of species diversity, for example in a plant community, although it would fit well
in the discussion of multispecies point pattern analysis. We will save that topic for
another time and place.

In considering the material that has been included in this chapter, we can identify
three themes:

The first is the ‘relatedness’ of the various approaches used, both conceptually
and mathematically. The basic concept of wavelets, the comparison of the data with
some kind or shape of template, recurs and unifies many of the approaches. Not
just wavelets, but Ripley’s K-function, TTLQV and many of the other techniques
(almost all!) can be considered to follow this approach. Table 2.3 illustrates this
fact. (Mathematically this can be expressed as using a cross-product approach, see
Getis 1991; Dale et al. 2002.)

The second is the concern for using null hypotheses other than CSR for the
evaluation of spatial structure. We noted some examples where the Poisson—Poisson
distribution or a Markov inhibition model seemed appropriate for comparison. More
needs to be said about this theme and more work needs to be done on this topic,
especially in areas other than univariate point pattern analysis.

The third is the usefulness of Monte Carlo and randomization techniques to solve
or circumvent problems with analytical approaches. Again, more could be said
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Table 2.3 Summary of the spatial analysis methods presented in Chapter 2

Spatial analysis method Template

Points

Nearest neighbour

P

Expanding circle Simple link
based on event

Refined nearest neighbour

e

Expanding circle based on Simple link
event or random point

Univariate K

Expanding circle based on event

Getis

Expanding circle based on
event or random point

Condit

Rings centred on events
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Table 2.3 (cont.)

Spatial analysis method Template

Bivariate K

Multivariate K

Expanding circle

Simple link Network of neighbours

Reich et al. %

Links to own type

Mark correlation ‘

Expanding circle

Events networks ® ®
Links
One-dimensional Ripley’s K I t t I ‘t-bar’
—>

One-dimensional lacunarity

Moving window/gliding box
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Table 2.3 (cont.)

Spatial analysis method Template

Three-dimensional nearest
neighbour

/

Expanding sphere Simple link

Three-dimensional Ripley’s K

Expanding sphere

TTLQV and TTLQC b b
+ —
d
PQV and PQC + |- _
b b b
3TLQV and 3TLQC * —2X *
tQV and tQC IR < P A

Lacunarity I:I One-part window

@
2DIQV = 5QV
g

2D3TLQV = 9TLQV
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Table 2.3 (cont.)

Spatial analysis method Template

—>
Two-dimensional lacunarity Ifl \ Gliding box

Spectral analysis: Fourier /" \/ XU\ X\  Sine wave
Walsh transform I I N A Square wave

Wavelets \/\f Mexican hat
One-dimensional data

French top hat

1
L
—’\/\/\/V— Morlet

/\/ Sine

Two-dimensional data Sombrero

Circumcircle Simple

B o

Double = boater wavelet
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on this and more work followed up, but it is clear that this approach has found its
time and place in this age of fast and easy computation. This comment applies not
only to the methods described in this chapter, of course, but is a common thread
through the entire book.

In developing recommendations on which methods to use, it will have become
clear to the reader of this chapter that the set of methods based on the concept of
Ripley’s K-function covers a lot of different kinds of data and a range of situations.
That set of methods has much to recommend it. On the other hand, the set of
methods based on wavelets has flexibility, based on the choice of the wavelet, and
a conceptual sophistication that is also very appealing. The decision on the method
to use will depend, of course, on the data and the question being asked, but our
recommendation is to suggest the use of two or more complementary approaches,
S0 as not to miss important features of the data.



3

Spatial analysis of sample data

Introduction

Chapter 2 presented the spatial methods used to analyse patterns generated by
point pattern processes, i.e. point pattern methods. Point pattern processes generate
a spatial distribution of events, which can then be analysed for their spatial pattern.
The x—y coordinates of all events (e.g. individuals, objects, entities) in a given study
area are required for analysis. In ecological studies, a number of point pattern
processes take place, one of the most common being seed or spore dispersal. There
are, however, several other types of ecological and environmental data that are
not discrete, like individual trees, but rather are continuous, like soil moisture.
The processes that generate such continuous variables are called surface pattern
processes and the spatial statistics that analyse them are called ‘surface pattern’
methods or ‘area pattern’ methods. There are, however, grey zones between point
pattern and surface pattern analyses, as when point pattern data are transformed
into surface pattern data by summarizing the number of events per sampling unit
as density. In doing so, point data are converted into quantitative data such that
surface pattern methods can be used to analyse their spatial structure. When the
entire study area is surveyed using contiguous sampling units, these quantitative
data represent the entire population of data in the study area and can be analysed
using the spatial methods for contiguous sample unit data presented in Chapter 2.
However, given the sampling effort required to census an entire area in the field,
much of our understanding of natural complexity is based on sample data. The term
‘sample data’ refers to the fact that, within a study area, not all the area was studied
explicitly, but only portions of it. Hence, the aim of this chapter is to present a wide
range of spatial statistics that explore, characterize and quantify spatial patterns
from sample data, and then to model their spatial structure. Although most surface
pattern statistical methods were developed to analyse sample data, they can also be
used with population data to characterize and quantify their spatial pattern.

111
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The use of sample data implies that information about a variable is measured
using sampling units distributed according to some sampling design. By using a
sampling design, researchers are consciously or unconsciously making implicit
and explicit assumptions about the process under investigation. The most impor-
tant underlying assumption that is shared by many of the spatial statistical methods
presented in this book is the notion that nearby values of a variable are more likely
to be similar than distant ones (Tobler’s first law of geography). In Chapter 2, the
definition of ‘near’ was sharing an edge, because the sampling units were contigu-
ous. In this chapter, sampling units are not contiguous and there is a spatial distance
between them, the separation being determined by the sampling design used (e.g.
random, systematic, stratified random, etc.). Hence, in order to perform spatial anal-
ysis with sample data, it is important to understand how various spatial statistics
methods determine and treat the spatial relationships among sampling units. Given
that this is at the heart of most of the spatial statistical analyses introduced in this
chapter, we will begin by describing how spatial neighbourhoods can be determined
for sampling units (see Section 3.1).

Another often forgotten assumption is that the smallest spatial scale to which
a measured value of a variable (quantitative or qualitative) can apply is limited
to the size of the sampling unit (spatial resolution). Therefore, a measured value
is assumed to represent the entire sampling unit, as if there can be no spatial
heterogeneity within sampling units. In fact, the sampling design can distort our
ability to identify spatial pattern due to confounding effects of:

(1) the size of the sampling unit, i.e. setting the spatial resolution (also known as the grain)
limits the precision with which we can identify spatial pattern (Jelinski & Wu 1996;
Qi & Wu 1996; Bellehumeur et al. 1997, Fortin 1999a);

(2) the shape of the sampling unit, which can minimize the within-sample unit variance,
reducing the effects of environmental gradients, and which can over- or underestimate
the intensity of spatial structure (Fortin 19992);

(3) the number of sampling units and their spatial configuration, which have a direct relation-
ship with the spacing between sampling units (also known as the spatial lag), affecting
our power to detect significant spatial pattern (Fortin 1999a; Webster & Oliver 2001);
and

(4) the size of the study area (also known as the extent), which can incorporate several
subregions, each having different underlying ecological processes and environmental
conditions, making the response variable non-stationary over the entire area (Fortin
1999a).

Given that these issues are shared by several spatial statistics, we discuss the effects
of sampling design decisions (i.e. the number of sampling units, their size and shape
as well as their spatial layout) on the detection of spatial patterns in Section 3.3.
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Connectivity matrix Distance class connectivity matrix
A BCDEFGHI J A BCDEFGHI J
Al- A
B|1]- B|1]-
Cl1|1]- Cl1|1]-
D{1{0]|1]- D{1|2|1]-
E|1{0|0|1]- E{1(2]|2]|1]-
FlO|O|O|1|1]- Fl2(3|2|1]|1]-
G{Oo|O|1|1]|0|1]- Gl2|2(1|1|2]1]-
H|0|O0|O[O|O|1]1 H|3|2|2[2|2|1]1
I {0[1]|1]0|0|0]|1]1 I [2{1|1]2]|3|2]1]1
J|Of1{0(0|O|O|O]| 1|1 J|2|1]2(3|3|2|2]1]|1

(b) (c)

Figure 3.1 (a) Connectivity based on the topology among 10 sampling locations
(A-J). Here, the x—y coordinates of the centroid of each sampling unit are used
to determine a tessellation network linking all the sampling locations. From

this series of links, a binary connectivity matrix (b) of first nearest neighbours
(1, connected; 0, not connected) can be defined as well as a distance class
connectivity matrix (c) of k nearest neighbours (1, first nearest neighbour;

2, second nearest neighbour; and so on).

3.1 How to determine ‘nearby’ relationships among sampling units

To determine the spatial neighbourhoods of sampling units, we will use the con-
cepts and terminology already outlined in Chapter 1 (see Figures 1.11 and 1.12) and
Chapter 2 (see Figures 2.12-2.20). Specifically, two different representations of
space can be used to describe the spatial relationship among sampling units: topolog-
ical space or Euclidean space. In topological space, sampling units can be reduced to
simple points in the plane, using the x—y coordinates of their centroids (Figure 3.1),
and then any of the neighbour network algorithms presented in Chapter 2 can be
used to establish the ‘connectivity matrix’, which lists the links between sampling
units. For example, the first-order neighbours of sampling unit A are B, C, D and E,
which is indicated by code 1 in the connectivity matrix (Figure 3.1). Such a
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Rook Bishop Queen
Al B| C A|lB|C A|B| C
I I
D+E—+F D|E|F D+—E-+F
| |
I I
G| HJ|I G| H]|I G| H]|I
A BCDEFGHI A BCDEFGHI A BCDEFGH I
Al- Al- Af-
B|O] - B|O] - B|O| -
c|0|0]- Cc|0|0]- Cc|0|O0f-
plojojoj-| | | [ [ | ©ojojojoi-| | | | [ | Dlojojoj-| [ | |||
E|O0|1]0[1]- E|1]0]|1][0] - E|1|1[1|1]-
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H|O|O|Of1|[1[O0|O] - H|oO|O|O|O|OfO|O] - H|O|O|OflO|[1][O(O]-
| [0]0]Of[O]O[O|O]|O] - I {0]0]OfO]|1][O|O]|O] - I |0ojo]O|O]|1][0]|O]|O] -

Figure 3.2 Connectivity based on chess moves among nine sampling locations
on a lattice (A—I). The targeted sampling location E has four neighbours while
using the rook and bishop moves and eight neighbours with the queen move as
shown in the plots and translated in the binary connectivity matrices of first
nearest neighbours (1, connected; 0, not connected).

connectivity matrix indicates which pairs of sampling units have first-order con-
nections, by an entry of 1, and those that do not, by 0. The connectivity matrix can
be extended to higher level neighbours such that spatial connectivity among the
sampling units can be divided into d neighbours, called a distance class connec-
tivity matrix (Figure 3.1¢), where d = 1, 2, . . ., m, and where m is the number
of neighbours needed to link the two most distant sampling units. There may be
cases in which the sampling units are contiguous squares, or form a regular spaced
lattice. In such circumstances, the tessellation links between sampling units can be
described as chess piece moves (Figure 3.2): the rook makes links in four cardinal
directions, the bishop makes only diagonal links, and the queen makes links in
all eight directions. By using topological space to establish the spatial relationship
among sampling units, we are assuming implicitly that Euclidean distances among
sampling units are not important, such that we are interested only in their relative
positions. When absolute distances among sampling units are important, or their
absolute positions in some frame of reference (e.g. the study area limits), then
Euclidean space should be used.

Euclidean distances among sampling units can be computed using the x—y coor-
dinates of the centroid of the sampling units, resulting in a matrix of straight-line
distances (Figure 3.3a). Based on these Euclidean distances, a distance class con-
nectivity matrix can be created for a number of distance classes (Figure 3.3b).
When other kinds of a priori knowledge of the point or surface pattern process
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Figure 3.3 Connectivity based on Euclidean distance among 10 sampling
locations (A-J). (a) The Euclidean distance matrix among the 10 sampling
locations and the corresponding distance class matrix when using a distance
interval class of 1.5 units. (b) The binary connectivity matrix based on first
nearest neighbours and the corresponding weight matrix as a function of distance
(1/d = 1/1.41 units, which gives a weight of 0.7).
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are available, one may not just want to use a connectivity matrix (Figure 3.3c)
that indicates in a simple binary fashion which sampling units are neighbours
(1, neighbours; 0, otherwise), but a more sophisticated weight matrix where real
values (usually between 0 and 1) stress that nearby neighbours are more important
than ones located further away in the estimation of spatial structure (Figure 3.3d).
The most common weight used is the inverse distance (1/d) or the inverse of
distance squared (1/d?).

There are some rules of thumb that can facilitate choosing the number of dis-
tance classes, based either on sample size or spatial lag. For example, Legendre
& Legendre (1998; p. 717) suggested using Sturge’s rule, based on sample size,
to determine the number of histogram classes: for n samples the recommended
number of classes is:

3.1

nn —1)
D=1+33xlog)y| ——1.

2

Once the number of distance classes is selected, there are two ways of distributing
the Euclidean distances among them. The first view is that they should be divided
by equal distance intervals (also referred to as spatial lag or the spatial interval,
Figure 3.4a) and the second is that distance classes should have equal numbers
of pairs of sampling units in them (as proposed by Sokal & Wartenberg 1983;
Figure 3.4b). The equidistant approach is the most frequently used and is more
intuitive, allowing comparison of results among different studies at a given distance
interval. However, the number of pairs per distance class varies, which in turn
affects the reliability of the estimation of spatial structure (Figure 3.4). The equal
frequency approach provides a better estimation of spatial autocorrelation at each
distance class because each distance class must contain the same number of pairs,
thus minimizing the edge-effect problem presented in Chapter 1. This implies,
however, that the values estimated to describe the spatial structure are not at regular
distance intervals (Figure 3.4). The equal frequency distance class approach is less
common, either because it is not widely known (software packages lack this option)
or because the results are not as easy to compare from one study area to another
when the distance intervals differ.

When using equidistant classes, one can select the distance interval instead of
the number of distance classes. The minimum distance interval must be equal
to or larger than the sampling unit length (or the longest side length in the case
of a rectangular sampling unit). When the sampling units form a regular lattice,
this minimum distance interval (i.e. the length of a sample unit, say 1m) will
make links equivalent to the rook’s move, so that each sample unit has only four
neighbours (Figure 3.4). In order to include all eight neighbours (equivalent to
the queen’s move), the minimum distance interval needs to include the diagonal,



3.1 Determining ‘nearby’ relationships 117

(a) Equidistant (b) Equifrequent
(Equal distance) A (Equal number of pairs)
120 120
100 100 1
@ I
T 80 g 807
2 60 © 60
] (] -
Ke] Qo
£ 40 £ 404
2 2 ]
20 20
0 0
12 24 36 48 6.0 141 224 3.00 361 6.00
15 3.0 45 6.0
Distance Distance

Figure 3.4 Distance class determination based on distance (a) or number of pairs
(b) of sampling locations. (a) When defining the distance interval class at

1.2 units (in solid black), there are five equidistant classes (where the diagonal
locations are not included in the first distance class — 1.41 units apart); while
when the distance interval class is 1.5 units (in solid grey) there are only four
equidistant classes (including the diagonal locations in the first distance class —
1.41 units apart) such that there are more pairs of sampling locations in the first
distance class. (b) With the equifrequent distance class approach, each distance
class has more or less 50 pairs of sampling locations, but the Euclidean distance
from one distance class to another varies in interval (i.e. 1.41, 0.83, 0.76, 0.61
and 2.39).

i.e. v/2 = 1.414 (Figure 3.4). There are some trade-offs to consider in selecting a
distance interval (Fortin 1999a): too small a distance interval will result in a very
large number of distance classes and there will be fewer pairs of observations in
each distance class making the estimation of spatial structure less reliable. Too large
a distance interval will lead to too few distance classes where each distance class
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(a) (b)

N0

Figure 3.5 Spatial adjacency of polygons. (a) Arbitrary political boundaries
among counties make it possible to have adjacent counties with the same
category. (b) Natural forest stands have, by definition, different types of adjacent
forest surrounding them.

will cover more area and the magnitude of spatial structure will be diminished.
All these issues will be made more obvious throughout this chapter and will be
revisited in Section 3.3.

3.2 Join count statistics

The characterization and testing of the spatial association of categories (e.g. nomi-
nal, qualitative, categorical, binary data) can be obtained using join count statistics
(Moran 1948; CIiff & Ord 1981). In essence, and as the name of the method sug-
gests, join count statistics test whether or not the occurrence of categorical attributes
at spatially adjacent sampling locations can be accounted for by randomness alone.
These statistics were first developed by human geographers to test whether or not
adjacent counties (i.e. areas delimited arbitrarily; Figure 3.5a) showed a spatial
pattern of disease. In such analyses, each county was given a binary nominal value
(black indicating disease or white indicating no disease) and it was assumed that
the nominal attribute prevailed for the entire county. Adjacency is defined by the
‘join’ between counties, or any data polygons (Figure 3.5b) that share boundaries.
The join count statistics can also be used with lattice data (i.e. adjacent sampling
units as illustrated in Figure 3.2). With lattice data, and as presented in Section 3.1,
three types of neighbourhood rules can be used to determine which sampling units
are joined to one another, as inspired by the chess board moves of the rook, the
bishop and the queen (Figure 3.2). When sampling units are not spatially contigu-
ous, adjacency can be established using any of the connectivity network algorithms
presented in Chapter 2 (nearest neighbour, Delaunay triangulation, etc.) and the
order of neighbourliness in that network (first order, second order and so on), or
using Euclidean distances (see Section 3.1).

There are three join count statistics for binary data that count the numbers of
pairs of adjacent sampling units having the same category (Jpp and Jyy; B for black
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and W for white) or not (Jgw). The statistics Jgp and Jyy assess the presence of
spatial association (positive spatial association) between adjacent sampling units,
while Jpw assesses the presence of spatial repulsion (negative spatial association).
The total number of joins (J) among sampling units is determined by the spatial
arrangement of the sampling units, as well as by the connectivity algorithm used,
and is the sum of the three join count statistics:

J = Jpg + Jww + Jws. (3.2)

Therefore, only two of the three statistics are independent, while the third one can
be derived from the other two.

The observed join count statistic, Jpp, counts the number of joins in adjacent
regions (or cells) having the same category (black—black):

JBB_ ZZal]x,xj : (3.3)

l?éj j;ﬁz

where i and j are the two sampling units compared, x; is the attribute of a sampling
unit (black = 1 and white = 0) and §;; is the entry in the connectivity matrix
indicating the adjacency of sampling units i and j: 1, when i and j are adjacent;
0, otherwise. The statistic Jpy counts the number of adjacent sampling units with
unlike categories (black—white), and is computed as follows:

JBW—— Zzal,(xl )7 (3.4)

and Jyw can be computed using the two previous statistics:

Tww = Z Z 8ij | — (s + Jsw). (3.5)

i=1 j=1

i#] j#i
The null hypothesis of complete spatial randomness (CSR) of categories can then
be tested, assuming stationarity, by computing the expected values of joins based
on the proportion of each category and the number of joins (links) in the study area.
Then, using the observed and expected values, z values can be calculated for com-
parison with the standard normal distribution, N(0, 1). Normality is approximately
ensured when the number of sampling units is at least 20 and the probability of
neither category is less than 0.2 (Cliff & Ord 1973). One of two assumptions are

required to establish the probability of each category:
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(1) we assume that the assignment of the categories (here black and white) are indepen-
dent for each sampling unit (free-sampling assumption, with replacement) such that
p=q=0.5;o0r

(2) we assume that they are dependent (i.e. the category in one county affects the category
type in other counties, non-free-sampling assumption, without replacement) such that
p =np/nand g =n,/n = (1 — p), where n,, is the number of black sampling units, n,,
is the number of white units and 7 is the total number of sampling units.

Mathematical details about the equations for the expected values and variances are
presented in Cliff & Ord (1973, 1981) and in Sokal & Oden (1978).

Using simulated data with known spatial patterns (random, uniform or regular
and patchy), Figure 3.6 illustrates the effects of the three most commonly used
connectivity algorithms for lattice data (rook, bishop and queen) on the detection
of significant spatial associations. In this example, there are 100 sampling units
(50 black and 50 white) and the total number of joins varies according to the con-
nectivity criteria used (180, 162 and 342, respectively). For randomly distributed
data, the join count statistics calculated using the rook directional joins indicate
that the pattern is significantly different from random, while for the two other con-
nectivity algorithms the statistics are not significant, as expected. For uniformly
distributed data, both the rook and bishop connectivity algorithms result in sig-
nificant statistics using the null hypothesis of the absence of spatial association.
However, with the queen algorithm, the null hypothesis was not rejected. Finally,
for patchy data, all three connectivity definitions produced join count statistics that
were significantly different from a random distribution.

3.2.1 Considerations and other join count statistics

Join count statistics have been extended beyond the binary case to the analysis of the
spatial association of k categories (Cliff & Ord 1973, 1981; Sokal & Oden 1978).
Also, join count statistics can be computed not only for the first neighbour but at
several spatial distances defined either in terms of neighbour links, using neigh-
bour network topology as a way to measure distances among sampling units (see
Chapter 2 for connectivity network algorithms), or in terms of Euclidean distance
(as illustrated in Figures 3.1, 3.2 and 3.3). Combining these two extensions, (3.3)
can be rewritten as:

1 n n
Trd) =5 | 32D iy | (3.6)
2
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Type of connectivity

Rook Bishop Queen
[+] G [e] I3
=1 X PR
] - :
Random
J 180 162 342

Observed values (z values)
Jss 52 (z=2.06) 35(z=-1.24) 87 (z=0.39)

Jow ~ 54(z=261) 39(z=-0.26) 93 (z=1.39)

Jws 74 (z=-254) 88(z=0.98) 162 (z=-1.19)

Uniform

Jss 0(z=-12.32) 81(z=10.03) 81 (z=-0.60)
Juw 0(z=-12.32) 81(z=10.03) 81 (z=-0.60)

Jug 180 (z=13.40) 0 (z=-12.98) 180 (z=0.81)

Jos 82(z=10.36) 76(z=8.80) 158 (z=12.20)
Juww  75(z=8.42) 63 (z=5.61) 138 (z=8.87)
Jug 23 (z=-10.21) 23(z=-9.33) 46 (z=-14.11)

Expected values

Jps 44.545 40.090 84.636
Jww 44.545 40.090 84.636
Jws 90.909 81.818 172.727

Figure 3.6 Join count statistics (Jpp, Jww and Jyg). The expected values are
based on the number of joins (rook = 180, bishop = 162 and queen = 342) and
the number of black and white values (ng = 50; ny = 50). The observed values
of the three statistics (and corresponding z values) are computed according to the
three chess moves (rook, bishop and queen) based on binary data from a 10 x 10
lattice from three types of spatial patterns (random, uniform and patchy). This
example stresses how the numbers of joins (i.e. the connectivity rule) affect the
observed statistics and their significance. For example, in the case of the random
pattern, the observed statistics based on the rook move are significant (values >
|—1.96]), while these statistics are not significant with the bishop and the queen
moves.
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and (3.4) as:

n n
Jrs(d) = % D0 s d)xnixg | (3.7)
i=1 j=I
i#] j#i
where r indicates one category and s another, (d) indicates the distance class either
in terms of d neighbours or d Euclidean distance classes at which the sampling
units are to be considered connected (1) or not (0); and x,; is an indicator function
that takes the value 1 when unit i belongs to category r, and 0 otherwise. Epperson
(2003) presented a mathematical description of these k-category join count statistics
and applied them to genetic data.

Up to this point, the spatial units we have considered were either arbitrarily
determined a priori, as in the case of political counties, or as regularly or irregularly
spaced sampling units. The implication of this is that adjacent counties (Figure 3.5a)
or sampling units (Figure 3.6) can belong to the same category. There are cases,
however, where this is not so. For example, while using forest inventory maps based
on photographic interpretation, the delineation of each forest stand implies that it is
different from neighbouring stands (Figure 3.5b). Lowell (1997) showed that with
such forest inventory data, there are never any joins of the same category (/) and
he demonstrated, based on simulations, that when there is a minimum of five or so
categories, the join count statistic (J) is robust and provides unbiased results.

There are, however, circumstances where the join count statistics are not robust.
This occurs when there is an obvious lack of stationarity over the entire study
area (see Chapter 1), for example in the presence of a gradient or trend, implying a
difference in the mean (known as first-order heterogeneity). The likelihood of using
data showing properties of first-order heterogeneity is becoming more and more
prevalent since ecologists are using remotely sensed data that cover large areas. To
address the issue of first-order heterogeneity over a study area, and violation of the
stationarity assumption, Kabos & Csillag (2002) developed an H Moran statistic (or
heterogeneous Moran) to analyse lattice data. This statistic assesses the probability
of each category at each sample location given the values of neighbouring locations.
By doing so, the significance of the estimated statistic at each sampling location is
not influenced by the lack of stationarity over the entire study area.

3.3 Global spatial statistics

Ecologists are used to the notion of covariance and correlation between two vari-
ables x and y where one is testing whether the two variables covary positively,
negatively or not (i.e. testing the null hypothesis of no relationship between two
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variables resulting in a correlation value of 0). Linear correlation between quan-
titative variables can be estimated using Pearson’s product—-moment correlation
coefficient. This coefficient is the standardized covariance between two variables
(e.g. x and y) which measures the deviations of the variables from their respective
averages (X and y):

Z(x,» — i — )
plx, y) = —=1 (3.8)

D i =22 (i — 3
i=1 i=1

which estimates

Cov(x, y)

p(x,y) = N eVa)” (3.9)

Stemming from this notion of covariation between two variables, human geog-
raphers proposed estimating the covariance and the correlation of the values of a
single variable with itself (auto) for all pairs of sampling units that are separated
by a given spatial lag (spatial autocorrelation) or temporal interval (temporal auto-
correlation). The spatial autocovariance, C(d), of the variable x can therefore be
estimated by computing the product of the deviation of the value of the variable x
at the location i with the expected value (E(x;)) with the deviation of the value at
the location i + d, where d is a given distance:

C(d) = E{lxi — E(x)][xiva — E(xi)]}- (3.10)

The spatial autocorrelation, p(d), of the variable x at a distance class d, is the
autocovariance divided by the variance of the variable (i.e. when C(d) is at d = 0):

_ca@
p(d) = co)’ (3.11)
where
C(0) = Var(x) = 0% (3.12)

The estimation of spatial structure of a variable can be computed using various
statistics derived from Pearson’s product-moment correlation (Eqn (3.8)) as pre-
sented in this section. These statistics are based on the assumption of stationarity.
We refer to these statistics as ‘global’ because they estimate the intensity of spatial
dependence for the entire study area and summarize it with a single value.
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As stressed in Chapter 1, spatial patterns (i.e. lack of independence among data
at nearby locations) are often the result of several processes. Consequently, the
observed spatial structure is a mix of both induced spatial dependence (i.e. variable
response to the spatial structure of exogenous process) and inherent spatial autocor-
relation (i.e. inherent in the ecological process of the variable of interest). In fact,
most of the time, it is difficult to disentangle them. The first spatial statistics were
developed to estimate the degree of spatial autocorrelation in the data. Through the
years it became more and more obvious that spatial autocorrelation coefficients,
presented in this section, actually estimate the degree of spatial dependence (i.e.
induced spatial dependence and inherent spatial autocorrelation). Hence, although
we are going to use the term ‘spatial autocorrelation’ in this section, keep in mind
that spatial autocorrelation coefficients cannot discriminate between the spatial
structure induced by spatial dependence and that inherent to the variable itself.

3.3.1 Spatial autocorrelation coefficients for one variable

The first coefficient of spatial autocorrelation was proposed by Moran (1948) and
can be computed at each d distance class:

D0 wid)xi — B)(x; — X)
1 ] i) T2
W(d)

I(d) = [ ) (3.13)

where w;;(d) is the distance class connectivity matrix (also called the weight matrix)
that indicates whether a pair of sampling locations are in distance class d (Figure
3.3b); x; and x; are the values of the variable x at sampling location i and j; and
W (d) is the sum of w;;(d), here being the number of pairs of sampling locations per
distance class. As with Pearson’s correlation coefficient, positive autocorrelation is
indicated by positive values (usually ranging from O to 1), negative autocorrelation
by negative values (usually ranging from 0 to —1) and the expected value for the
absence of spatial autocorrelation is close to 0: E(I) = —(n — 1)~! (Cliff & Ord
1973, 1981). When there are too few pairs of sampling locations in a given distance
class d, and the spatial layout of the data looks non-stationary, the estimated value is
unstable and can fall outside the expected bounded range of —1 to 41 (usually this
occurs at the largest distances where there are fewer pairs of distances, as illustrated
in Figures 1.4 and 3.4).

When estimating spatial autocorrelation using (3.13), the researcher needs to
understand that the estimation of spatial autocorrelation is computed by first
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Figure 3.7 Example of how to compute Moran’s [ for the first distance class 1)
(where the distance interval class corresponds to 1.5 units as in Figure 3.3a)
among 10 sampling locations A-J. Iy is the sum of the /(;) values computed at
each of the 10 sampling locations (e.g. I(a,1 at location A to Iy 1) at location J);
Iia1) 1s the sum of deviations of the Z, with the values of its two first nearest
neighbours C and D, respectively, divided by the number of neighbours, here 2;
Zx indicates the quantitative value of the variable Z at the sampling location A
(and so on for all the other sampling locations); Z is the average value of the
variable Z. Consequently, to estimate /(;), it is necessary to compute /(1) at each
sampling location first.

summing the covariation between sampling units a given distance apart, d, as illus-
trated in Figure 3.7. Then, this sum of covariations from each sampling location
of the entire study at a given distance class d, is divided by the actual number of
pairs of locations, W(d), in that distance class, d. Hence, the spatial autocorrelation
coefficient, for a distance class d, is the average value of spatial autocorrelation at
that distance (in all directions) for the entire study area: a global average isotropic
estimated value of spatial autocorrelation.

Note that, in some circumstances, the spatial layout of the data looks non-
stationary as the estimated value is based on fewer pairs and can reflect an extreme
spatial pattern of high or low spatial autocorrelation resulting in estimated values
higher than 1 (or lower than —1). Furthermore, by computing the deviation of each
value from the average of the variable, the estimation of spatial autocorrelation
can be biased when the data are not normally distributed. Indeed, a skewed dis-
tribution resulting from the presence of a few outliers (either extremely low or
high values) may bias the estimate of the average, which in turn will result in an
under- or overestimation of the degree of spatial autocorrelation because the devi-
ations are computed using a biased average. This is why some researchers (mostly
geostatisticians) do not like to use Moran’s / coefficient. It is favoured, however, by
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ecologists as it is easier to relate to the notion of correlation and it is more intuitive
given that it behaves like a Pearson’s correlation coefficient.

To avoid the use of average, another spatial autocorrelation index was proposed
by Geary (1954). Geary’s coefficient, c, measures the difference between values of
a variable at nearby locations, so that the degree of spatial autocorrelation is based
on differences as a function of distance:

DO wid)i = x;)

i=1 j=1

(3.14)

Geary’s ¢ behaves like a distance measure and varies from O (highest value of
positive autocorrelation) to 2 (strong negative autocorrelation). The expected value,
E(c), is 1, indicating the absence of spatial autocorrelation. As for Moran’s I, the
estimated values of Geary’s ¢ based on too few pairs of sampling locations will
result in strange values, here values greater than 2. Also, the estimated values of
spatial autocorrelation with Geary’s ¢ will be biased in the presence of skewed data
(as for Moran’s 1, but for another reason) because the differences between adjacent
locations are squared (see Eqn (3.14)). The squared difference between an outlier
and other values will have more effect on the index and may distort the estimation
of spatial autocorrelation.

The significance of each individual value of spatial autocorrelation estimated at
a given distance class can be tested using either a randomization procedure or a
normal distribution approximation test. Mathematical details about the respective
variance equations used to test the significance of these coefficients can be found in
Cliff & Ord (1973, 1981). The significance testing of the coefficients estimated at
several distance classes is, however, problematic due to the lack of independence in
the data. Indeed, the same data are used to estimate the coefficient values at different
distance classes. This problem is inherent to all multiple testing analyses such as
the quadrat variance methods presented in Chapter 2. Several procedures have been
proposed to address this issue. The most widely used because of its simplicity and
robustness (Oden 1984) is the Bonferroni correction that adjusts the probability
level, at which to test the significance, by dividing o by the number of distance
classes, k:

o = —. (3.15)

For example, when using a probability level of @ = 0.05 and a number of distance
classes of k = 10, o’ = 0.005. Thus in order to consider all the coefficient values
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as significant, given the number of distance classes (here 10), the probability value
of each coefficient needs to be smaller than &’ = 0.005. The Bonferroni-corrected
level value is directly related to the number of distance classes selected, however.
As usual, the selection of the number of distance classes is more or less arbitrary.
This can affect our ability to detect significant spatially autocorrelated pattern. To
diminish this effect, we can use a progressive (sequential) Bonferroni correction
(Legendre & Legendre 1998), where the Bonferroni-corrected level is computed
for each distance class separately. This is done by using for each distance class the
number of tests actually performed up to that distance class. For example, using
the same values as above (o« = 0.05 and k = 10), the progressive Bonferroni levels
for each distance class are: o'(d = 1) = 0.05, &’(d = 2) = 0.025 and so on up to
o'(d=10)=0.005 (the Bonferroni corrected level ). Equation (3.15) can therefore
be rewritten as:

o
o/(d) = -, (3.16)

where d is the distance class of interest (d = 1 to 10).

Significance testing allows us to determine which coefficient values can be used
to interpret the spatial structure of the data. Characterization of the spatial structure
includes its intensity (magnitude, degree), its spatial range and its shape (isotropic
or not). Determination of the pattern’s characteristics can be facilitated by plotting
the values of spatial autocorrelation against the distance classes d. This plot is
called a spatial correlogram (e.g. Figures 3.8 and 3.9), where the significance of
each individual coefficient value can be indicated by a specific symbol (solid circles
for significant values at « = 0.05 and open circles for non-significant ones). Note
that when distance d equals zero (i.e. correlation of the variable with itself), the
value of Moran’s I is 1 and of Geary’s c is 0. Given that most ecological data
show some degree of positive autocorrelation, at short distances, the values of
autocorrelation are generally positive. In fact, most of the time, the strongest value
of spatial autocorrelation is within the first distance class. As the strength of the
process decreases with distance (e.g. in the case of seed dispersal, most of the seeds
are found close to the seed tree), the values of spatial autocorrelation decrease with
distance. The way in which this occurs and is displayed by the spatial correlogram
can be used to characterize the spatial pattern: thus a trend in the correlogram, from
positive through zero to negative spatial autocorrelation with increasing distance,
is indicative of a gradient in the data. A plot (Figure 3.8b) showing levelling off of
values around the expected value of no autocorrelation (E(/)) is characteristic of the
absence, or non-detection, of spatial pattern. When the values at short distances are
positive and then, at a given distance, show fluctuation around the expected value,
this can be interpreted as an indication of patchiness (Figure 3.8c—f). Repeated
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Figure 3.8 Moran’s I spatial correlograms corresponding to simulated spatial
patterns (a 20 x 20 lattice where the values increase from 0 to 10 from white to
black). (a) Gradient: the correlogram shows the corresponding characteristic
trend of significant positive values at short distances to negative ones at large
distances. (b) Random: the values are oscillating along the zero value (i.e. the
absence of significant spatial autocorrelation). (c¢) One big patch: the values are
all significant and positive at short and large distances, while negative at
intermediate. The spatial range (zone of influence, patch size) is around 7.5 units,
a distance at which the sign of the values changes from positive to negative.

(d) 16 patches: a first change of sign from positive to negative values occurs
around 2.0 units, which corresponds to the spatial range of the patches. Then the
correlogram repeats this oscillation in decreasing amplitude with distance
revealing a repetitive spatial pattern of patches. Note here that the patches all
have the same size and distance among them.
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Figure 3.8 (cont.) (e) 9 patches: as described previously, the sign change of the
values indicates that the patch size is around 3.0 units and that there is a repetitive
pattern of patches. Note here that the patches have the same size but not the
same distance among them. (f) 12 patches: the sign change of the values indicates
that the patch size is around 2.5 units. Here the repetitive pattern of patches is not
detected by the correlogram as both the patch size and distance among the
patches vary. Solid circles indicate significant coefficient values at « = 0.05;
open circles indicate non-significant coefficient values; open squares indicate
coefficient values that are non-significant after progressive Bonferroni correction.
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Figure 3.9 Moran’s [ spatial correlograms. (@) Omnidirectional correlogram
based on 10 isotropic equidistant classes. The trend in the 10 x 10 lattice data is
detected by the characteristic shape of the correlogram (see Figure 3.8a). The
histogram of the pairs of sampling locations per distance class shows well the
edge effects at short and large distance classes (as mentioned in Chapter 1), but,
with the exception of the last distance class, there are many more than 20 pairs.
(b) Directional correlograms computed in four directions (0°, 45°, 90° and 135°)
using a search angle of 45° (22.5° on each side of the direction). The directional
correlograms are based on five equidistant classes; because with 10 equidistant
classes, the number of pairs of locations per distance and angle class lower than
in the isotropic case. By using fewer equidistant classes, here five, instead of 10,
the number of pairs per distance and angle class increases such that the
coefficients based on them are more reliable and comparisons among them can
be carried out. Here, the four directional correlograms allow us to detect the
presence of an anisotropic spatial pattern because the values of Moran’s I do not
overlap one another (only the 45° and 135° ones are perfectly overlapping) and
the correlograms have different spatial ranges (0°: no spatial range, 45° and 135°:
around 5.0 units and 90°: 3.8 units).
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alternation of values, from positive to negative, is indicative of patch structure in
the study area (Figure 3.8d, e). The distance at which the value of autocorrelation
reaches, or crosses, the expected value is considered the ‘spatial range’, the ‘zone
of influence’ or the ‘patch size’ of the spatial pattern under study.

To interpret the shape of the correlogram as an indicator of the type of spatial
pattern (intensity, spatial range, shape, etc.), the significance of the entire correlo-
gram needs to be considered. This can be determined using either the Bonferroni
correction, where at least one value needs to be smaller than the corrected level o,
or the progressive Bonferroni correction. In the former type of correction, it is rec-
ommended that we do not consider the values estimated at large distances because
these estimations are based on very few pairs of observations. Use of the progres-
sive Bonferroni correction avoids the arbitrary selection of non-interpretable values
such as these (see Figure 3.8). Consequently, the interpretation of the spatial pattern
is facilitated if non-significant values at the progressive corrected «’(d) levels are
not considered.

Another approach that minimizes the effect of multiple tests is to compute a
partial spatial correlogram instead of a spatial correlogram. This is the spatial
equivalent of the partial time series analysis using Durbin’s autoregressive proce-
dure. The mathematical details are briefly presented in Cliff & Ord (1981).

Up to now, we have only considered the case where the values of spatial autocor-
relation are estimated solely by comparing the distance between sampling locations.
This therefore assumes that the process of interest is isotropic (i.e. the same in all
directions, see Chapter 1). This is why these spatial correlograms are often referred
to as ‘omnidirectional’, ‘all directions’ or simply ‘one-dimensional’ (Figure 3.9a).
There are, however, several ecological processes (e.g. species responses to environ-
mental conditions, downwind seed dispersal, etc.) that can generate spatial patterns
that vary with direction, such as along a gradient, resulting in elongated patches.
These spatial patterns are called anisotropic (i.e. the pattern varies with direction,
see Chapter 1). To determine the degree of anisotropy in a spatial pattern, spa-
tial autocorrelation can be estimated by considering both the distances among the
sampling locations (using a distance class matrix) and their orientation using an
angle class matrix (Oden & Sokal 1986). As for the distance class matrix, we can
select the number of angles, directions, in which we want to compute the degree of
spatial autocorrelation. The angle class matrix indicates, therefore, which sampling
locations are in a given orientation with respect to one another given a specified
search angle (this is equivalent to spatial lag). Hence, for example, we could be
interested in determining the spatial structure downwind in the 90° direction using
a search angle of 45° that is divided equally on both sides of the selected direc-
tion (i.e. 22.5° on each side of the selected direction as illustrated in Figure 3.9b).
Spatial autocorrelation can be computed in several directions and the resulting
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spatial correlograms are called ‘directional’ correlograms (Figure 3.95). The detec-
tion of spatial anisotropy is then established by comparing whether or not the
shape and spatial range of the directional correlograms coincide. For example, in
Figure 3.9b, while two directional correlograms (45° and 135°) coincide perfectly,
both in shape and spatial range, this is not true for all four directional correlograms
because the shapes and spatial ranges differ (e.g. the 0° correlogram does not have
a spatial range). Note that the estimation of spatial autocorrelation based on both
distance and direction is computed with fewer pairs of sampling locations than in
the omnidirectional case, and so we recommend using fewer distance classes (see
Figure 3.90) and only four angle classes (usually the four directions: 0°, 45°, 90°
and 135°).

To avoid having to compute spatial autocorrelation at fixed distances, by means of
distance classes, Bjgrnstad & Falck (2001) proposed a continuous non-parametric
estimator of spatial covariance resulting in a spline correlogram where the signif-
icance is based on a bootstrap confidence interval envelope (this is comparable to
significance testing for Ripley’s K as presented in Chapter 2).

3.3.2 Variography

Parallel to the development of spatial statistics by human geographers, mining
engineers (Matheron 1970) built a family of spatial statistics, known as geostatistics.
Geostatistics use the spatial structure estimated, from sampled data by computing
the spatial variance (as presented in this section) to predict values at unsampled
locations by modelling the spatial structure using kriging techniques (as described
in Section 3.5). In this section, we provide a brief overview of the notions related
to the estimation of spatial variance, referred to as variography. More information
about the wide range of geostatistics techniques can be found in numerous textbooks
(among others, Journel & Huijbregts 1978; Isaaks & Srivastava 1989; Haining 1990,
2003; Cressie 1993; Goovaerts 1997; Chiles & Delfiner 1999; Webster & Oliver
2001).

Geostatistics are based on ‘regionalized variable theory’, which assumes that the
value of a variable z at a given location x is a particular realization of a random
function Z(x). This value, z(x), is composed of three components:

72(x) = m(x) + e(x) + €, (3.17)

where m(x) is the deterministic structural function of the variable at location x; £(x)
is the spatially dependent residual from m(x), i.e. the spatial variance component;
and &’ is the spatially independent normally distributed residual component. When
the data are stationary, m(x) is the average value of the variable within the study
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area. Estimation of the spatial structure of a variable from sampled data is based
on the assumption that the regionalized variable respects the intrinsic hypothesis
of stationarity. That is, the expected difference between the values at two sampling
locations at a given A distance apart is 0, and that the variance of this difference
varies only according to 4. Given that it is rare to have a process that is station-
ary over the entire study area, the spatial variance can be estimated only when
quasi-stationarity (also called weak stationarity) prevails. Weak stationarity implies
that the first-order moment, E(Z(x)), and second-order moment, Var(Z(x)), are
assumed to be stationary only within the range of a relatively small neighbourhood
(i.e. within a moving window).

The notation used in geostatistics differs slightly, however, from the notation
used in spatial statistics. For example, in geostatistics, the spatial lag parameter
is ‘4’ (when it in bold, h denotes a vector of both distance and direction) rather
than ‘d’. Hence (3.11) for spatial autocorrelation can be rewritten using 4 instead
of d:

p(h) = C(h) (3.18)

Then, there is a direct relationship between spatial covariance, C(h), and spatial
variance, y (h), where the spatial variance is the variance, o2, of the variable minus
the autocovariance function:

y(h) =0 — C(h). (3.19)

When the assumption of stationarity is met, spatial autocovariance and spatial
variance are mirror images of one another. Similarly, the relationship between
spatial autocorrelation and spatial variance is:

o(h) = V( ). (3.20)

The spatial variance of a quantitative variable is then estimated using the semi-
variance function, 7 (h):

ph) = Z—(h)Z[zoc, — z2(xi + b, (3.21)

where z is the value of the variable x at the sampling location i, and n(h) is the
number of pairs of sampling locations located at distance 4 from one another. Some
geostatistics books use h instead of & to indicate the more general case where
the spatial variance is computed according to both spatial lag, 4, and direction, 6.
Since the summation is from 1 to n (the number of sampling locations), each pair
of sampling locations is considered twice in the calculation. This is why the value
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Figure 3.10 Variogram. Experimental variogram (solid circles linked by the
dashed line) and corresponding theoretical spherical variogram (solid line) and
its parameters: the range, the nugget and the sill (% indicates the spatial lag; y (h)
is the semi-variance).

is divided by 2 and the function is called semi-variance. Technically, the plot of the
semi-variance values against the spatial lag & is a semi-variogram. However, for
simplicity, we will refer to it as only a ‘variogram’ as the majority of the literature
on the subject does. When a variogram is computed from sampled data, it is called
an experimental variogram (also called a sample or observed variogram); when it
is modelled to fit the experimental variogram, it is called a theoretical variogram
or a variogram model.

The equation for the semi-variance function (3.21) is quite comparable to the
one of Geary’s ¢ (3.14) except that it lacks the division by the standard deviation in
the denominator, which standardizes the spatial autocorrelation value. Hence, the
semi-variance function is in the same units as the data, and is not bounded as are
Moran’s I (—1 to 1) or Geary’s ¢ (0 to 2) values. At short distance lags, the values
of semi-variance are also small (close to zero) indicating that the spatial structure
is at its strongest intensity. As the distance lags increase, the semi-variance values
rise to level off at a plateau called the sill. Three key parameters are estimated from
an experimental variogram to fit a theoretical variogram (Figure 3.10): the nugget
effect, cy, the spatial range, a, and the sill, ¢;. The nugget is the intercept at the
origin that is greater than zero. Theoretically, at 4 = 0, the semi-variance is also
equal to 0. However, based on the shape of the experimental variogram, it can be
unrealistic sometimes to force the theoretical variogram to go through 0. The nugget
parameter is therefore used to account for the observed variability at short distances
due to local random effects or measurement errors (e.g. accuracy of measurements,
inappropriate sampling unit size, etc.). The spatial range indicates the distance up to
which the spatial structure varies. In other words, the range indicates the maximal
distance at which the variable is spatially autocorrelated. Beyond the range, the
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distance among sampling locations does not affect the spatial structure of the data
and the semi-variance values level off, forming the sill. There are cases where the
experimental variogram does not have a sill. This also implies that the range is
undetermined (Figure 3.11a). This can happen when the extent of the study area is
smaller than the spatial pattern, i.e. the spatial range, of the variable of interest.
As Geary’s c, the semi-variance is affected by outlier values from skewed data
because their estimation is based on the squared differences among the values of a
given variable. This is why geostatisticians recommend that the data should be:

(1) plotted at different spatial lags to identify outliers using % scattergrams (Rossi ef al.
1992); and
(2) transformed to reduce the degree of skewness in the data.

Furthermore, as for spatial correlograms, the experimental variogram is a plot of
semi-variance versus spatial lag s, where the number of pairs of distances decreases
as distance increases. It is a rule of thumb to interpret only the first two-thirds of a
variogram in order to determine the spatial structure of the sampled data.

As mentioned above, h is used to denote a vector including both spatial lag and
direction. Anisotropic pattern can therefore be determined by computing directional
variograms. In geostatistics, three types of anisotropy are distinguished:

(1) when the ranges differ but the sills are the same (geometric anisotropy),
(2) when the ranges are the same but the sills differ (zonal anisotropy), and
(3) when both the ranges and the sills differ.

Geometric anisotropy can be modelled, using a linear relationship, to predict the
values of a variable at unsampled locations. It is not as straightforward for the two
other types of anisotropy where more than one variogram model is needed in order
to model spatial structure. This can be achieved by determining different models as
a function of distance, as illustrated in Figure 3.11b, where up to the range a linear
model is used and beyond the range, the sill is used.

Ecological data are rarely stationary and often show some trend or gradient
called drift in geostatistics. The presence of drift in the data implies that m(x)
is not a good estimate of the average value of the variable over the entire study
area. Drift can be detected by comparing the values of m(x) computed using only
the values at the sampling locations at the beginning of vector h (i.e. at z(x;),
called ‘head’ locations) with those computed with sampling locations at the end
of vector h (i.e. at z(x; + h), called ‘tail’ locations). When these average values
differ, the covariance is said to be non-ergodic (where ergodic covariance implies
that m = Mm_pmead) = Myh(uail); 15aaks & Srivastava 1989; Rossi et al. 1992). In
the presence of drift, the use of generalized random intrinsic functions of order
k is recommended to estimate the spatial variance rather than the experimental
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Figure 3.11 Theoretical variograms: (a) without a sill: showing the pure nugget
effect, linear and exponential models; (b) with a sill: showing spherical, Gaussian
and nested models (linear and a sill), and the hole effect. See text for equations
describing these conditions.
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variogram (see more advanced geostatistical textbooks for mathematical details,
Journel & Huijbregts 1978; Goovaerts 1997; Chiles & Delfiner 1999; Webster &
Oliver 2001).

It is often the case that ecological data are binary (e.g. presence : absence) or
that threshold values are used to indicate state responses that are of interest. Spatial
variance of such qualitative data can be estimated using indicator functions, where
k is the threshold value at which continuous data are considered as the response
of interest (e.g. presence) and are set to 1 or otherwise are set to 0. Continuous
variables can therefore be transformed into binary indicator variables /(x; z), where
the average of the indicator variable is the proportion of the variable in the study
area (Rossi et al. 1992). The indicator function is computed as in (3.21):

1 - . . 2
o) ;[I(xi, 2) — I(xi; 2 + ). (3.22)

The indicator function can be extended to several thresholds, k values, correspond-
ing to multiple-state variables, or to explore the sensitivity of the selected thresholds
(Webster & Oliver 2001).

Determination of the experimental variogram is only the first step in a series
leading to the prediction of values at unsampled locations using kriging (i.e. a fam-
ily of spatial interpolation techniques as presented in Section 3.5). The next step
involves fitting the best (derived analytically) theoretical variogram to the exper-
imental variogram. The most commonly used unbounded theoretical variograms
(without a sill) are (Figure 3.11a):

?I(x;z)(h) =

¢ the nugget model:
y(h) = co, (3.23)
¢ the linear model:
y(h) = co + bh, (3.24)

where b is the parameter of the slope,
e the exponential model:

a

y(h) =co +ci [1 — exp (ﬁ)] (3.25)

and bounded variograms (with a sill, Figure 3.115b):

¢ the spherical model:
3h 1 (kY
y(hy=cotc | ——=z |~ , forO<h <a,
2a 2 \a

(3.26)
y(h) =co+c, forh=>a,
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¢ the Gaussian model:
h2
y(h) =co+c [1 — exp <—3—2>], (3.27)
a
¢ the linear model with a sill:

y(h) =co+bh for0<h <a,

(3.28)
y(h)=cy+c, forh>a,

()
asm | —
- — (3.29)

h

¢ the hole-effect model:

y(h) =co+c

Given that the strongest spatial variance occurs, usually, at short distances (i.e.
up to the spatial range), it is important (as much as possible) to fit the theoretical
variogram model at short distances. Adjustments of the theoretical variogram, and
its parameters, are needed for the next step, which is spatial interpolation of the data
using kriging techniques (see Section 3.5). Inappropriate parameter estimations can
result in very different predicted values. For example, when the spatial range is too
small, the spatial structure will be modelled for only small distances generating
small patches, and when the spatial range is too large, the resulting spatial structure
will be overly smoothed.

Selection of the best variogram model, and its parameters, used to be determined
by eye. The reliability of these parameters can be evaluated using cross-validation
techniques that require withholding some sampling locations and then compar-
ing the variogram models’ performance in predicting these values using kriging.
Nowadays, generalized least-squares and maximum likelihood (e.g. Akaike infor-
mation criteria, AIC) can be used to select the parameters making the process more
objective (Cressie 1993; Goovaerts 1997; Chiles & Delfiner 1999).

To conclude this brief overview of variography, it is important to stress that
variograms aim to determine the parameters used to model spatial pattern. Hence,
to keep the same measurement units as the data, semi-variance values are not
standardized. Furthermore, while no significance tests have been developed for
semi-variance function values, randomization and bootstrap procedures can be used
to assess their significance. Finally, there is a much wider range of geostatistics
techniques available than those presented here but further details are beyond the
scope of this book. We refer the reader to more advanced textbooks for greater
detail (see among others, Deutsch & Journel 1992; Cressie 1993; Goovaerts 1997;
Chiles & Delfiner 1999).
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3.3.3 Fractal dimension

When dealing with landscape features and entities that can be delineated, such as
rivers, islands, patches, etc., we can be interested in characterizing and quantifying
their spatial structure. The most fundamental property of these landscape entities is
their geometrical dimension. In fact, objects can lie either in Euclidean space, with
an integer number of dimensions (0 for points, 1 for lines, 2 for surfaces and 3 for
volumes), or in a fractal dimension (fractal for fractional), introducing a new way
of characterizing the occupancy of space by objects (between 0 and 1 for clusters
of points, 1 and 2 for curves, 2 and 3 for surfaces and 3 and 4 for volumes). The
fractal dimension is therefore a mathematical coefficient that measure the fractal
geometry (i.e. non-integer dimension) of objects in physical space (Mandelbrot
1983). Intheory, fractal objects have several interesting properties such as having the
same fractal dimension at all scales of observation: the property of self-similarity.
Furthermore, the fractal dimension is independent of units of measurement (e.g.
metres, kilometres), allowing comparisons among objects, organisms, community
structures and so on. The fractal dimension value can also be seen as a measure of
the degree of occupancy of a low-dimensional object in a higher-dimensional space.
The concept of fractal dimension has since been extended to include quantification
of the spatial structure of continuous data using statistical fractals. Ecologists have
been exploring the potential usefulness of the concept of fractal dimension for
spatial characterization of landscape patches (Gustafson 1998), for modelling of
an organism’s geometric growth such as exhibited by plants and shells, as well as
for modelling of landscape spatial structures (Milne 1992; Palmer 1992; Kenkel &
Walker 1993; Hargrove et al. 2002).

One of the simplest ways of computing fractal dimension is to measure the
length of the object using several different sizes of a divider (e.g. a ruler). Hence,
the geometric fractal dimension of objects, D, can be estimated using a simple
relationship between the number of units, N, needed to measure either the length
(divider dimension, Figure 3.12a) or area occupied (grid dimension, Figure 3.12b),
and the size of the ‘divider’ or the ‘box’, n, used. Using the box method:

N(r) x r 2, (3.30)

where the slope of the log of N(r) against the log of r, is an estimate of —D, the
fractal dimension.

Similarly, the statistical fractal dimension of ecological patterns from continuous
data can be computed as the slope of a log variogram (assuming that the variogram
is isotropic, linear and without a sill):

29(h) = h*?P, (3.31)
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Figure 3.12 Fractal dimension templates. (a) Divider method: three sizes of
sticks, r, and the respective number of sticks needed to measure the shaped line.
(b) Grid method: the grey shaded boxes indicate those that include the shaped
line and their number.

where the slope is (4—2D). Consequently, there is a direct relationship between both
spatial variance (variogram) and fractal dimension as defined in (3.31), as well as
between spatial autocorrelation (correlogram) and fractal dimension as illustrated
in Figure 3.13. This figure shows, by comparing the fractal dimensions estimated
from a variogram based on eight spatial lags (none are linear) with those based on
a variogram with only four spatial lags (more linear), how fractal dimension values
can be distorted when the variogram is not linear. We recommend plotting the
variogram before estimating the fractal dimension with continuous data to evaluate
the relevance of using this method.

While examining the geometric fractal of objects, what is perhaps most
interesting is to find scales of observation at which the fractal dimension values
change (Burrough 1981; Allen & Hoekstra 1992, Figure 3.14). Indeed, this is
because at these critical scales, ecological processes that act upon the variable of
interest may also be changing (Dungan et al. 2002). Thus fractal dimensions may
be used to distinguish the range of influence of a process, implying different levels of

Figure 3.13 Moran’s I correlogram: (a) omnidirectional and (b) directional.
Solid circles indicate significant values at 0.05 (open circles indicate
non-significant values). The experimental variogram (solid circles) and fractal
dimension (based on a linear variogram with eight semi-variance values (solid
and dashed lines) or four values (solid line only) record sassafras abundance data
(n = 84 sampling locations from a woodlot sampled on Long Island, NY (Fortin
1992)). Key features to notice are: (1) Moran’s I correlograms show significant
values but the variogram does not; (2) the shapes of the correlograms and
variograms are more or less comparable; (3) by computing the fractal dimensions
using a variogram, it is important first to determine whether or not the variogram
is linear. Here most of the variograms are non-linear when eight semi-variance
values are considered, but are more linear when only four values are used.
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Iy Change in fractal dimension
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Figure 3.14 Change in fractal dimension values as divider size increases. In the
left-hand panel, the shape of the aquatic network is smooth (no branching) at
short distances as indicated by the middle slope (i.e. low fractal dimension), and
complex (branching) at intermediate distances as indicated by the steeper slope
(i.e. higher fractal dimension). The scale at which the change in fractal dimension
(i.e. pattern) occurs can be used as an indicator of change in ecological processes.

organization of organisms in space; furthermore, in moving from one scale to
another, we may be sure that we are changing between levels of organization. There-
fore a shift in the fractal dimension could be interpreted as a change in ecological
processes, reflected by a re-organization in the structural scale of the parameters
measured from the data.

3.3.4 Sampling design effects on the estimation of spatial pattern

As presented in Chapter 1, regardless of the type of spatial analysis used, the
sampling design (including the determination of three components: sample size,
sampling unit size and their layout in space) determines the power to detect signifi-
cant signal in the sample data. Furthermore, determination of one of the components
of the sampling design affects the other two (Dungan ef al. 2002). The first com-
ponent to be determined is usually the sample size as it is directly related to our
sampling effort or ability (usually limited by cost and time). In time series analysis,
it is recommended that at least 100 data points be sampled in order to detect tempo-
ral patterns. In geostatistics, the recording of at least 100 sampling locations is also
recommended. In ecology, it is quite rare to have such large sample sizes when field
work is involved. In fact, when a spatial signal is strong, fewer sampling locations,
say around 50, can detect it. Moreover, if the spacing among sampling units is such
that it is within the spatial range of the pattern, then even fewer sampling locations,
say between 20 and 30, may be able to capture the essence of the spatial pattern.
We stress that the spatial pattern needs to be clear in order to detect it with so
few sampling locations (Fortin 1999a). Indeed, this does not hold when the pattern
is weak to start with, as illustrated by Figure 3.15: the spatial pattern is detected
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Figure 3.15 Sample size effect on the estimation of spatial autocorrelation.
Moran’s I omnidirectional correlograms of sassafras abundance data using (a) 84
sampling locations (indicated in grey), (b) 42 sampling locations (indicated in
grey) and (c) 24 sampling locations (indicated in grey). Solid symbols indicate
significant values at 0.05; open symbols indicate non-significant values.
Correlograms were computed using eight equidistant classes (distance interval =
17.4 m; circles) and four equidistant classes (distance interval = 34.8 m;
squares). Significant values only occur when 84 sampling locations with eight
equidistant classes are used for the analysis. All other subsampling combinations
(n = 42 or n = 24) and numbers of equidistant classes do not detect the patchy
structure of the sassafras data.
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only when 84 sampling locations are used and not when the sample size is reduced
to 42 or 24 (while keeping the sampling unit size constant). This holds true, even
when different equidistant classes are used (here 17.4 and 34.8 m; Figure 3.15).
Therefore, failure to detect significant spatial pattern does not necessarily imply
that there is no spatial pattern and a revised sampling design may be able to detect
it (Fortin et al. 1989, Fortin 1999a).

There are two ways to revise the sampling design: (1) by changing the spac-
ing among sampling units and (2) by changing the size of the sampling unit.
The spacing of the sample locations can be arranged to maximize, as much as
possible given the sample size, the number of locations within the spatial range
of the variable (see Figure 1.12). Spatial layouts where there is more than one
spatial lag seem to be more efficient at capturing spatial pattern with relatively
small sample sizes (Fortin et al. 1989; Webster & Oliver 2001). Interestingly, a
random sampling design is able to detect significant spatial pattern because there
is a wide range of spatial distances among the sampling locations (Fortin et al.
1989).

The other aspect to consider is whether the choice of sampling unit size is the most
appropriate one. For example, when spatial autocorrelation at the first distance class
is not significant (high nugget effect in the variogram) or negative, this can indicate
that the sampling unit size is larger than the spatial range of the spatial pattern, or
that it includes more than one spatial pattern (Fortin 19992). In such circumstances,
a smaller sampling unit size should be used. The question is: how small? When
no prior knowledge is available about a system, we recommend using the smallest
sampling unit size that is large enough to include more than one object of interest (as
presented in Chapter 1). Then, with this relatively fine spatial resolution, the data can
be aggregated into a coarser resolution (Figure 3.16; Qi & Wu 1996; Fortin 1999a).
By doing so, the spatial domain of a pattern (and the underlying process(es)) can be
identified, as well as the size (distance) at which it changes. This is comparable to
searching for a change in fractal dimension value (Figure 3.14). Indeed, for a range
of sampling unit sizes, estimation of spatial autocorrelation will be comparable up
to a given size at which the intensity of spatial autocorrelation will change (Fortin
1999a). For example, in Figure 3.16, as the sampling unit size increases from 5 x 5
to 10 x 10 m, the autocorrelation value in the first distance class increases from
0.113 (significant) to 0.250 (significant); then at a sampling unit size of 15 x 15 m,
it reaches its maximum value of 0.303 (significant), and begins to decrease there-
after to 0.154 with a 20 x 20 m sampling unit (not significant). Although the values
in the first distance class using 5 x 5 and 20 x 20 m units are quite alike, the rea-
sons for obtaining these values are different: the 5 x 5m unit is too small and
includes only one or two tree stems, so several sample units are empty, resulting in
a weak spatial autocorrelation structure because we are almost at a random spacing
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Figure 3.16 Sampling unit size effect on the estimation of spatial autocorrelation.
Moran’s I omnidirectional correlograms of sassafras abundance data using (a) a
5 x 5 m sampling unit size (n = 336), (b) a 10 x 10 m sampling unit size
(n=84), (c) a 15 x 15 m sampling unit size (n = 36) and (d) a 20 x 20m
sampling unit size (n = 21). Solid symbols indicate significant values at 0.05;
open symbols indicate non-significant values. Correlograms were computed
using eight (circles) and four (squares) equidistant classes. Overall, with two
equidistant intervals, the estimation of spatial autocorrelation increases (from
0.113 to 0.250 to 0.303) with increasing sample unit size (5, 10 and 15 m,
respectively) but decreases to 0.154 at the larger sampling unit size (20 m).
Comparison among these correlograms can be used to select the optimal
sampling unit size needed to analyse the spatial structure. Here, the sampling unit
of 15 m estimated the highest values of spatial autocorrelation.
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Figure 3.16 (cont.)

level; with the 20 x 20 m unit, the sampling unit size is large enough to include
tree stems but may also include more than one process. It may also be larger
than the spatial range, such that there is random noise as well. By comparing the
results from Figure 3.15 with those of Figure 3.16, using more or less compara-
ble sample sizes of 42 and 36, respectively, we see that the spatial autocorrelation
estimated was strongest with 36 sampling locations. Thus, this sampling unit size
was more appropriate because it could contain more than one tree. For compara-
ble sample sizes, 24 and 21, respectively, the spatial pattern was too weak to be
detected regardless of the fact that with 21 sampling units, the entire study area was
sampled.

The fact that values of spatial autocorrelation, or spatial variance, change
with the sample unit size is a known issue in spatial analysis (Wu & Qi 2000;
Dungan et al. 2002) as well as in plant ecology (Greig-Smith 1961, Chapter 2). It
is referred to as the ‘modifiable area unit problem’ (MAUP; Openshaw 1984) or as
the ‘change of support’ in geostatistics (Journel & Huijbregts 1978). This is related
to the ‘ecological fallacy’ problem that inferences about individual objects can be
made based on aggregated information (e.g. using data recorded at the sampling
unit level to make conclusions about individual tree stems while no information
about individual trees was in fact recorded). These are inherent problems with
any kind of spatial data and are an active area of research in geography, espe-
cially with the advent of geographical information systems (GIS; O’Sullivan &
Unwin 2003) and satellite imagery (Woodcock & Strahler 1987; Arbia et al.
1996; Bradshaw & Fortin 2000; Dungan 2001), in geostatistics (Cressie 1996;
Bellehumeur & Legendre 1997, Bellehumeur et al. 1997), as well as in landscape
ecology (Wu et al. 2004).
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3.3.5 Spatial relationship between two variables

So far, we have presented only spatial methods that quantify the spatial structure of
one variable at a time. There are obvious cases where it is of interest to analyse the
spatial interaction between two variables as presented in Chapter 2 (e.g. bivariate
Ripley’s K) or to predict the spatial pattern of one variable based on the known
correlation between two variables (e.g. co-kriging, as presented in Section 3.5).
To do so, spatial autocorrelation coefficients can be modified to estimate cross
correlation between two variables:

O i) = D)(; — )

i=l j=1
i#] j#i

Ly(d) = [ (3.32)

1
via

1
n

> i =y
i=1

Similarly, the semi-variance function can be modified to estimate the cross-

covariance function:

1

JA/uv(h) = T(h)

D Lz = 2 + Wz (x) — 2(x + )], (3.33)
i=1

While the mathematics is quite straightforward, very few software packages offer
the option of computing cross correlation. The cross-variance function, being a step
in co-kriging analysis, is more widely available in geostatistical packages.

3.3.6 Spatial relationships among several variables

In ecology, many studies are interested in the spatial structure of species assem-
blages (i.e. multivariate data). In the same way that the spatial autocorrelation
coefficients and semi-variance functions were extended to deal with bivariate data
(Section 3.3.5), they can be extended to analyse the spatial pattern of multivariate
data (Wartenberg 1985; Wackernagel 2003). When we are interested in summariz-
ing the spatial pattern of species assemblages or other multivariate data, with one
number, the spatial autocorrelation coefficients, and semi-variance functions, can
be written as a cross product between two matrices (Getis 1991). This approach
was first proposed by Mantel (1967) to quantify the spatial (x;) and temporal (z;)
relationships of multivariate data sampled at the same locations (Mantel 1967). It
was extended to study the linear relationship between two symmetric matrices:
n n

ZM :ZZWU}CU, (334)

i=l j=1
i#] j#i
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Figure 3.17 Mantel test. This figure illustrates how two variables (species and
environment) sampled at the same 10 locations need to be converted into
symmetrical distance matrices (10 x 10) before the standardized Mantel statistic,
rsg, can be computed.

where Z), is the Mantel statistic, w;; is either a connectivity matrix (A) or a Euclidean
distance matrix, among the n sampling locations and x;; is a dissimilarity or dis-
tance matrix (B) of the values of all the variables at each sampling location. The
advantage of a matrix approach is that any dissimilarity or distance coefficient can
be used (see Legendre & Legendre 1998 for a full list); this may reflect better
the community structure of the variables of interest. Given that multivariate data
are first transformed into a symmetric matrix, (3.34) can be rewritten using matrix
notation:

Zap = A°B, (3.35)

where, Zxp is the sum of all of the element-by-element products (as indicated
by ‘»”) between the distance matrices A and B (Figure 3.17). Zxp is unbounded,
and, to facilitate its interpretation, each matrix can be standardized to obtain a
bounded ry, statistic ranging from —1 to 1. The Mantel statistic therefore esti-
mates the linear relationship between the distance values of two matrices. How-
ever, given that this computation is performed using distance measures rather than
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the raw data themselves, the values of ry (rap) are not directly comparable to
those of a Pearson’s correlation coefficient (but see Dutilleul er al. 2000). Dietz
(1983) suggested ranking the distance measures before computing the cross-product
between the two matrices. Thus, a monotonic relationship between the two matri-
ces can be estimated and this is equivalent to performing a Spearman correlation
analysis.

The null hypothesis for a Mantel test is that the variables in matrix A, as summa-
rized by a distance measure into a synthetic value per pair of sampling locations, are
independent (no relationship) of variables in matrix B. This can be tested either by
an approximate 7-test when the sample size is large or by a randomization test when
the sample size is small. The randomization test is restricted to retain the relation-
ships between sampling locations by randomly shuffling the rows and columns of
one of the matrices (Legendre & Legendre 1998; Fortin & Gurevitch 2001). When
the null hypothesis is true, the observed Mantel’s statistic is expected to have a
value located near the middle of the reference distribution. In the presence of a sig-
nificant relationship, positive or negative, between the two matrices, the observed
Mantel statistic is expected to be more extreme, either higher or lower, than most of
the reference distribution values. The precision of the probability value is directly
related to the number of randomizations used. We recommend generating as many
as 10,000 randomizations (Manly 1997; Fortin et al. 2002), where the observed
statistic is included in the reference distribution (Hope 1968).

Regardless of the type of relationship computed, linear or monotonic, Mantel
tests are based on distance values rather than on the raw data, and the magnitude of
the effect is often weaker than with the raw data. But what is really computed? It
is the relationship between distance measures. Hence, pairs of sampling locations
can have the same degree of dissimilarity because they both have either high or
low values. Consequently, the magnitude of r,g should not be used as a correlation
coefficient, Pearson or Spearman, but rather more in a comparative way with other
rap values. Furthermore, given that the significance of the observed value is tested
against the re-arrangement of the sample data, it can be significant even if the value
is very small (close to zero).

The Mantel statistics can be used to test the relationship between two sets of vari-
ables recorded at the same sampling locations. For example, we could be interested
in the relationship between the abundances of 14 species of trees and their relative
elevation, as described in Fortin (1992). In that example, the rag between the tree
species matrix, A (Euclidean distances among tree abundance data of 14 species,
see Fortin 1992 for detail), and the topography matrix, B (Euclidean distances
among relative elevation in metres), is positive (0.255) and significant (Table 3.1).
The Mantel test can also be computed between the same tree species matrix, A, and
a geographical distance matrix, B (Euclidean distances among sampling locations).
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Table 3.1 Standardized Mantel (rag) and partial Mantel
(raB.c) values between the tree community data and the
relative topography controlling the x—y coordinates of
sampling units (n = 84) using Euclidean distances

A B C ™ Prob(ry)*
Tree Topography 0.255 0.0001
Tree x=y 0.232 0.0001
Topography x=y 0.839 0.0001
Tree Topography x=y 0.113 0.0391

¢ The probability is based on a reference distribution having 9,999
randomizations plus the observed statistic.

In that case, the rap is also positive and significant (0.232) and corresponds to an
averaged isotropic intensity of spatial structure for the tree species community for
the entire study area (Table 3.1). Note that there is a strong positive relationship
between the relative topography and the sample locations: 0.839. We will come
back to this issue below.

The B matrix can be converted into a connectivity matrix, such as a distance class
matrix (as with Moran’s /, the estimation of spatial autocorrelation is done at several
distance classes), to compute a Mantel (multivariate) correlogram (Figure 3.18,
Oden & Sokal 1986; Legendre & Fortin 1989). By doing so, a trend is identified in
our example with a spatial range of about 60 m and where r), for the first distance
class is 0.090 (p < 0.001).

The two-matrix approach was extended to a three-matrix method, called the
partial Mantel test (Smouse et al. 1986), aiming to quantify the relationship between
two matrices, A and B, while controlling for the effects of a third one, C (Figure 3.19,
Legendre & Legendre 1998; Fortin & Gurevitch 2001). The partial Mantel test,
rAB.C> can be computed by ‘detrending’ the effects of the variables in matrix C on
those of matrix A and then matrix B, using a linear regression. Then with the
residuals from both regressions, Ress|c and Resg|c, a Mantel test is performed
as in (3.35). Another way to compute the partial Mantel is to compute a partial
correlation using the three matrices (Legendre & Legendre 1998):

F'AB — FACTBC
2 2
\/1 —rAC\/l — I'gc

By comparing r), values, computed with two (Mantel test, rog) and three matri-
ces (partial Mantel test, rap.c), we can test alternative causal relationships among

FAB.C = (336)
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Figure 3.18 Mantel correlogram based on the abundance of 14 tree species
where the standardized Mantel statistic, 7y, is plotted against distance in metres.
The overall spatial structure of the tree community is a trend with a spatial range
of around 60 m.

the three matrices (Legendre & Fortin 1989, Leduc et al. 1992; Legendre &
Legendre 1998). Furthermore, the third matrix, C, can be a design matrix with
dummy variables corresponding to treatments and control locations (see Fortin &
Gurevitch 2001) or a set of covariables, allowing us to test specific hypotheses by
coding it as a contrast matrix in ANOVA (Sokal ez al. 1993) or by using geographic
locations as a surrogate for variables not measured (Fortin & Payette 2002). For
example, it could be that the topography, being related to the sampling locations, is
not influencing tree species abundance that much. A partial Mantel test can be per-
formed (Table 3.1) to test this hypothesis. In doing so, the relationship between
tree abundance and topography decreases to 0.113 and is barely significant at
o = 0.05. Consequently, the topography influences tree abundances, but less so
than we first thought by computing only the Mantel test.

When we control for the effects of a third matrix, C, such as the Euclidean
distances matrix among the sampling locations, we are not controlling for the degree
of spatial autocorrelation of the variables but only for the relative distance among
the sampling locations (Fortin & Payette 2002). Furthermore, when the variables
are strongly spatially autocorrelated, the restricted randomization (by rows and
columns of the matrices) are no longer equally likely, so that the significance of the
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Figure 3.19 Partial Mantel test. This figure illustrates how the relationship
between two variables (species and environment) sampled at the same 10
locations can be computed by first factoring out the effect of a third matrix (here
the x—y coordinates of the sampling locations) using linear regression, and then
computing a standardized Mantel statistic, 7res(s|xy)Res(E|xy)» With the residuals of
these two linear regressions. See text for details.

partial Mantel test is not adequately evaluated (Oden & Sokal 1992). This problem
has been acknowledged recently and different ways to restrict the randomization
procedure have been proposed (Dutilleul et al. 2000; Legendre 2000).

Another problem with the Mantel and partial Mantel tests is that information
about several variables is summarized into a single distance or dissimilarity value
such that the resulting relationship is a global outcome for all of the variables and
it is not possible to identify which variable(s) contribute the most to its intensity.
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Hence, to be able to identify which variables contribute most to the relationship
among sets of variables, canonical ordination techniques, CCA or RDA, can be
used (Legendre & Legendre 1998). In these analyses, species ordination axes are
constrained, using multiple regression, to be linear combinations of the environ-
mental variables in maximizing species variance. The best linear fit between the
species and environmental ordination axes is obtained by an iterative procedure.
Often the relationship between species and environmental variables is induced by
other underlying factors such as climate, topography or historical events. One way
to control for the effects of these other variables is to use partial canonical ordination
techniques such as partial CCA or partial RDA (Borcard et al. 1992; Legendre &
Legendre 1998). The advantage of ordination, and partial ordination, techniques
over Mantel and partial Mantel tests is that the relationship is computed on the raw
data values rather than on distance measures. Also, these techniques permit us to
disentangle the relative contributions of each variable to the relationship between
the two matrices A and B.

One important issue is how to translate the information about the effects of space
solely using sampling location x—y coordinates. At first, Borcard et al. (1992) used
polynomials up to the third order of the x—y coordinates (i.e. a trend surface analysis
approach, as presented in Section 3.5), which corresponds to a global, large-scale,
trend surface response. Hence, such a polynomial trend surface analysis could not
reflect local patch structure. To address this, Pelletier e al. (1999) suggested using a
neighbourhood matrix based on local adjacency or connectivity among the sampling
locations. Recently, Borcard & Legendre (2002) developed spectral decomposition
of the spatial arrangement of sampling locations based on principal coordinates
of neighbour matrices (PCNM), which they called the scalogram approach. This
scalogram approach provides orthogonal sine waves with decreasing periods such
that both large and local spatial layout of the sampling locations can be analysed
as a C matrix in a partial canonical ordination analysis or as independent variables
in a multiple regression.

3.4 Local spatial statistics

As more and more ecologists are designing ecological studies with large spatial
extents, the likelihood that their data sets violate the assumption of stationarity
is very high. When using global spatial statistics with such data sets, local and
small areas of spatial heterogeneity are masked by the fact that they summarize
the spatial pattern for the entire study area into a single average value of spatial
autocorrelation (or a series of average values calculated at different distances asin a
correlogram or variogram). In such cases, a global assessment of spatial dependence
may be misleading because these average values of spatial autocorrelation provide
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information about neither the range of variability in intensity of spatial dependence
nor the exact localization of patterns. For example, in a study area on a slope,
tree abundance may vary from the top (say high) to the bottom (say low) of the
slope, with some small tree gaps here and there creating localized patches with lower
tree abundance. While global statistics may detect the large-scale trend in abundance
values, they may miss local patterns because, by the construct of their algorithm,
they lump all the local deviations together by summing and then averaging. While
this average value of spatial dependence is meaningful where only one process
occurs (either induced or inherent), it is misleading when several processes act at
various intensities in different parts of the study area.

These limitations and the misapplication of global spatial statistics have been
acknowledged for more than a decade (Fortin 1992; Getis & Ord 1992; Anselin
1995; Sokal et al. 1998; Fotheringham et al. 2000; Boots 2002). Also, the recog-
nition that local estimation of the intensity of spatial autocorrelation may reveal
interesting insights about local spatial processes resulted in the development of
local spatial statistics (Getis & Ord 1992; Anselin 1995; Kabos & Csillag 2002;
Boots 2003). Anselin (1995) proposed ‘LISA’ (local indicator of spatial associ-
ation) as an acronym for these local spatial statistics. Here, we will be using the
acronym LISA in a more inclusive way to refer to local statistics quantifying spatial
dependence in general.

As presented in Section 3.3 and illustrated in Figure 3.7, the calculation of
global spatial statistics, such as Moran’s I and Geary’s ¢, requires the computa-
tion of spatial deviation at each sampling location (from the mean or neighbour-
ing locations, respectively). Then, these deviations, which are local deviations,
are lumped together. Hence, in essence, global spatial statistics are averages of the
local spatial variations in a study area. It is therefore not too surprising that the first
local spatial statistics proposed were modified global spatial statistics, calculated
at each sampling location i based only on its j local neighbours. Consequently, the
local Moran’s I; can be estimated as follows:

) = —8 =D S @ - 6, (3.37)
w2 — %) U=l
i=1 !

where w;;(d) is the weight matrix given a local neighbourhood search of radius
d. Here the weight matrix can be binary stressing only the connectivity among
sampling locations (see Figure 3.3) or actual weights (e.g. inverse distance weight-
ing function) to emphasize further the local neighbourhood effect on local spatial
pattern.
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Under the assumption of complete randomization (i.e. that all randomizations
are equally likely), the expected value of /; is:

~1
E(l) = — > wij (3.38)

Consequently, unlike global Moran’s /, which has the same expected value for the
entire study area and the different distance classes, the expected value of local
Moran’s [ varies for each sampling location because it is proportional to the num-
ber of neighbours. The significance of local /; can be tested based on a normal
distribution where /; is transformed into z(/;):

[I; — E(1;)]
VVar(l;)

Then, the equation for Var(/;) can be derived assuming either complete randomiza-
tion or conditional randomization (mathematical details of these equations can be
found in Boots (2002)). As for global Moran’s /, local Moran’s /; can be computed
with different neighbour search distances, d. Any type of Bonferroni correction used
to adjust for both the number of sampling locations and the number of neighbour
search distances used, which results in a very large number of multiple compar-
isons, would be too conservative (i.e. only rarely would some [; be considered
as significant). In general, we recommend using local spatial statistics as spatial
exploratory tools to detect localized spatial structures that could indicate lack of
stationarity.

As with global Moran’s I, the local /; still computes the deviation from the
average value of the variable, ¥, for the entire study area. Positive /; values occur
when the value at location i is similar to those of its neighbours in their deviation
from the average (x). In other words, positive values of /; indicate that the values
around i and at i are either all larger (positive deviation) or smaller (negative
deviation) than the average. Negative values of /; also indicate that deviation from
the average is either larger or smaller than the average but where the value at loca-
tion i is of a different sign from its neighbours. When the value of /; is close to
zero, this means that deviation from the average is very small and no local spatial
structure can be detected. This can occur either because there is no spatial pattern
or because there is a subtle pattern but we cannot detect it because the local values
are too similar to the overall average. Figure 3.20a shows significant local /; at
o = 0.05 based on the same simulated data used to compute the omnidirectional
correlograms in Figure 3.8d (16 regularly spaced patches of equal size), Figure 3.8e
(9 irregularly spaced patches of equal size) and Figure 3.8f (12 regularly spaced
patches of different size). These maps of /; help to identify the position, size, shape

z(f;) = (3.39)
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(a) Local Moran's /;(d)
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Figure 3.20 LISA (Local Indicators of Spatial Association) using the same
simulated data shown in Figure 3.8: 16 patches (Figure 3.8d); 9 patches

(Figure 3.8¢) and 12 patches (Figure 3.8f). (a) Local Moran’s I; estimated using a
distance interval class of 1.5 units (4 indicates significant values at 0.05, positive
or negative). (b) Local G} estimated using a distance interval class of 1.5 units
(+ indicates positive and — negative significant values at 0.05). (¢) Maximum
local G} estimated using five distance classes of 1.5 units each (+ in a square
indicates positive and — negative significant values at 0.05; + indicates positive
values but non-significant). (d) Maximum local G;* distance (number indicates
the distance class at which the maximum local G/ was estimated). See text for
more detail.
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and layout of local spatial structures. For example, in the case of the 16 regularly
spaced patches (Figure 3.8d), the centroid of each patch is identified as having the
most positive spatial autocorrelation with its neighbours (Figure 3.20a). The spatial
maps of local /; values for the two other cases (Figure 3.20a) are not as informative,
however, because we cannot discriminate between clusters of high and low spatial
structure as significant r because positive values of /; (as indicated by +) can result
from either clusters of high or low values. Indeed, without looking at the maps
of the raw data (Figure 3.8e, f), we cannot determine which clusters have high or
low values. Other local spatial statistics may be more appropriate in such cases, as
described below.

Global Geary’s ¢ can also be modified to obtain a local spatial statistic, the
local ¢;:

1 n
ci(d) = —————— > wij(d)(x; — x;)%. (3.40)

. x)2 j=1
X X J
1( 1 ) ,] Li

-

1
n

]

The difference between the local I; and the local c¢; is in the numerator, where for
local I; it is the deviation from the value at location i and the overall average of the
variable, while for local ¢; it is the value of the variable at location i. Similarly, under
the assumption of complete randomness, the expected value of ¢; is proportional to
the number of local neighbours:

E(er) = - > wij (3.41)

The equations for complete and conditional randomness for Var(c;) can also be
found in Boots (2002). Here, positive values of local Geary’s ¢; correspond to cases
where the value at location i is similar to its neighbours, while negative values
indicate a difference in sign from its neighbours.

Getis & Ord (1992) proposed two new local spatial statistics: local G;, where the
value at location i is excluded from the computation; and local G;* where the value
at location i is included. Local G; is computed as follows:

Z wij(d)xj
j=1

Gi(d) = da , (3.42)

n
> %
j=1

J#i
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where the expected value, under the assumption of complete randomness, depends
on the number of local neighbours:

1
EG)=—) wi. (3.43)

Similarly, the local Getis G is computed as:

> wij(d)x;

Gid)y =", (3.44)

n
D%
j=1

where the expected value, under the assumption of complete randomness, also
depends on the number of local neighbours:

1 n
E(G)) =~ > wij (3.45)
j=1

The expected values of the variance of the two local Getis statistics are described
in Boots (2002).

These two local Getis statistics are, in essence, the ratio of local averages (around
the location i and at the location i) over the global average of the variable of interest
for the entire study area, i.e. local spatial moving averages. These local spatial
statistics detect clusters of either high or low values, which are often referred to
as ‘hot spots’, or ‘cold spots’, respectively. As with local Moran’s /;, the local G
statistics cannot differentiate between cases where there is an absence of spatial
structure and cases where the local average equals the global average.

As the number of neighbours increases with neighbour search distance, the local
G statistics are asymptotically normally distributed and can be standardized to
facilitate their interpretation (Getis & Ord 1996): positive local G values indicate
clusters with high values (hot spots), and negative ones indicate clusters with low
values (cold spots). Figure 3.205b illustrates how, unlike local Moran’s [;, the local
G can discriminate between locations of significant hot spots, indicated by +, and
cold spots, indicated by —, in the three different spatial arrangements of patches.

Wulder & Boots (1998) proposed that the local G statistic could be computed
using different neighbour search distances, d, identifying:

(1) the maximum G} value calculated at each location i regardless of d, and
(2) the distance d at which the maximum G} value occurred.
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Maps of these two values provide, respectively, information about the maximum
intensity of spatial dependence at a location 7, and its local spatial extent. Following
Wulder & Boots’ (1998) suggestion, we mapped the maximum G (Figure 3.20c)
and the maximum G distance (Figure 3.20d) based on the three spatial arrange-
ments of patches. The maximum G} map allows us to identify the centre of the
patches, as indicated by positive values (the + in squares), while the maximum G7
distance map shows the local spatial range (extent) of each patch.

Despite the fact that local G statistics, G; and G, are more informative than
local Moran’s [;, they are still estimated relative to the global average of the data
and are therefore sensitive to the presence of overall global spatial structure in the
data (e.g. a trend). The H Moran statistic (as mentioned in Section 3.2) proposed
by Kabos & Csillag (2002) addresses this issue by computing a local statistic for
qualitative data that is not affected by the presence of a global pattern both in
its computation and in its significance tests. In the spirit of assessing significance
locally, Boots (2003) proposed a local join count approach that he called the local
indicator for categorical data (LICD). In short, the LICD assesses the significance
of the local spatial arrangement (configuration) of categorical data by adjusting for
the proportion (composition) of each category within a local neighbourhood search
window. So far, there are no equivalent local statistics for quantitative data that
can account for the presence of global patterns in the data and detect local spatial
patterns.

3.5 Interpolation and spatial models

Most of the time, we collect data to obtain information about a target population. In
ecological studies, such information could be related to species abundance, species
behaviour and so on. In a spatial context, we are often interested in the estima-
tion and prediction of the values of a variable at unsampled locations. This can be
achieved by modelling spatial pattern using spatial interpolation techniques. As in
any regression and modelling context, a spatial model attempts to summarize the
spatial pattern using as few parameters as possible. In fitting these parameters to
the data, we are modelling the main spatial signal and trying to minimize the error.
Hence, any interpolation techniques produce smoothed estimated values at loca-
tions not sampled. Several interpolation methods are available, each having various
advantages and limitations in the way the spatial structure is modelled. Interpolation
techniques can be classified according to the following broad properties:

* Global: A single interpolation function is used to interpolate the values for the entire study
area. The resulting map of the interpolated data is usually a smooth surface (e.g. trend
only). Change in one value will affect the function and thus the predicted values (trend
surface analysis).
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* Local: The interpolation function is applied locally for a limited number of locations.
The resulting map of the interpolated data is still smooth but includes both global and
local patterns. Change in one value will affect only neighbouring locations (proximity
polygons, inverse distance weighting, kriging).

* Approximate: At the sampling locations the predicted values will not be the same as the
observed ones (trend surface analysis).

* Exact: At the sampling locations the predicted values will be exactly the observed values
(proximity polygons, inverse distance weighting, kriging).

Other properties can also be used to characterize these interpolation techniques:
deterministic (i.e. there is only one possible predicted value at a given location —
all methods except kriging, which can be stochastic when used in a conditional
annealing procedure as described in Section 3.5.4), point interpolators (again all
methods except the proximity polygons method) and areal (only the proximity
polygons and kriging). Here, we provide only a brief overview of these methods as
there are several text books that present them in great detail (Journel & Huijbregts
1978; Isaaks & Srivastava 1989; Haining 1990, 2003; Cressie 1993; Goovaerts
1997; Chiles & Delfiner 1999; Webster & Oliver 2001; O’Sullivan & Unwin
2003).

There are other spatial models (moving average, MA; simultaneous autore-
gressive, SAR; conditional autoregressive, CAR) that simulate data with a known
degree of spatial dependence. These spatial autoregression models are mostly used
to simulate data rather than to interpolate and therefore we will present them in
Chapter 5.

3.5.1 Proximity polygons

We interpolate from data daily without even realizing it. Indeed, by using sampling
units, we assume that the sampled quantity does not vary over the entire sampling
unit. This concept can be extended to point data (which we refer to as events in
Chapter 2) where polygons (also called Dirichlet, Thiessen or Voronoi) can be
determined based on the x—y coordinates of each point given their proximity to
each other (Okabe et al. 1992). The notion of proximity refers here both to the
spatial arrangement of all neighbouring points and to how these points can poten-
tially interact with one another. The value at the x—y coordinates is then assigned
to all the area within the polygon (Voronoi polygons): when the value is qual-
itative this creates a categorical attribute; when it is quantitative, this numerical
value is assumed to be uniform over the entire polygon. Therefore, these Voronoi
polygons can be used to define the spatial area of influence around each point
(Figure 3.21). This simple technique can result in abrupt changes from one poly-
gon to another.
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Figure 3.21 Proximity polygon interpolation using Voronoi polygons. The five
sampling locations (A-E) were first linked using a Delaunay tessellation (dashed
lines) algorithm and then the Voronoi polygons (solid lines) were determined.
Each polygon indicates the zone of influence of each sampling location.

3.5.2 Trend surface analysis

In an aspatial context, and when only information about a sampled quantitative
variable is available, the best predictor at an unsampled location is the average
value of the variable over the entire sample. When data and knowledge of the
relationship between an independent variable and the variable of interest exists,
the most commonly used interpolation method is regression. In a spatial context,
the x—y coordinates of sampling units can be used as independent variables in a
regression. Hence, when the spatial pattern is a linear trend, values can be interpo-
lated using multiple linear regression:

2()60) = bo + b]X + bzy, (3.46)

where Z(xo) is the predicted value at location xg, by is the intercept, and by and b,
are coefficients of the slope of the surface (Figure 3.22a). This multiple regression
approach is simple and useful because a general equation can be used over the
entire study area to model large-scale spatial patterns.

When the overall spatial pattern of the study area is a non-linear trend, the
values can be approximated using polynomial regression of various orders such
as quadratic ((x, y)?), cubic ((x, y)?) or higher orders. Hence when the pattern
is a relatively smooth, monotonic, curved surface (e.g. hill or valley shape),
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Figure 3.22 Trend surface analysis: (a) first-order polynomial (linear surface),
(b) second-order polynomial (non-linear surface: valley type), (c) third-order
polynomial (non-linear surface: saddle surface) and (d) fourth-order polynomial
(non-linear surface: wavy surface).
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Figure 3.22 (cont.)

a second-order polynomial (quadratic) can be used to interpolate the data (Figure
3.22b):

2(x0) = by + b1x; + bry; + b3xi2 + byx;y; + bsyiz. (3.47)

When the pattern shows some saddle shape, a third-order polynomial (cubic) could
be used (Figure 3.22c¢):

3(x0) = bo + bix; + byy; + b3x? + bax;y; + bsy? + bex;
+ b7xi2y,~ + ngizyi + bgy?. (3.48)

We could continue to fit the sample data using higher and higher order polyno-
mials (e.g. Figure 3.22d). This is not recommended, however, because the gain
in simplicity acquired with polynomial regression is lost due to the necessity of
estimating several regression coefficients. More importantly, by improving the fit
in some areas, others may start to fit less well, becoming distorted. In fact, trend
surface analysis is a global interpolator and should not be used to model local spatial
pattern. So, in a nutshell, the advantages of using a trend surface analysis method
to interpolate data are:

(1) no a priori knowledge of the spatial pattern is needed as the interpolation is based on
empirical data,

(2) both multiple and polynomial regression are available in most statistical software pack-
ages which also offer the possibility of testing the significance of regression coefficients
using F-test. This can be used as a way to find out which order of polynomial is best to
use (linear, quadratic or higher).

The disadvantages are, as mentioned, that it should not be used when there are
several small patches and that it is not an exact interpolator but rather an approximate
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one, such that at the sampled locations the predicted values are not equal to the
observed ones.

3.5.3 Inverse distance weighting

In the spirit of trend surface analysis, linear interpolation can be used to interpolate
data based on the data from sampled locations given a restricted neighbourhood
search area. The underlying premise is that nearby locations are more likely to
have similar values and the linear interpolator weights the interpolated data, Z(xo),
at unsampled locations xy, according to the proximity of known sampled data as
follows:

2(x0) = Y wiz(x)). (3.49)
j=1

Here z(x;) is the value of variable z at the sampled location j, m is the number of
neighbouring sampling locations based on some definition such as being within a
search radius, and wj is the weight according to the distance among the unsampled
and sampled locations such that:

 owi=1. (3.50)
j=1

The most common form of the inverse distance weight is:
> 2t
=l
Bp) = o, (3.51)
—k
>4
j=1
where k is a real value from O to 1, and d;; is the distance between the unsampled
location i and sampled location j. More weight can be put to nearby locations by
varying the value of the exponent k. When the distance between the sampled and
the unsampled locations is zero, the interpolated value will be the observed one.
The advantage in this type of linear interpolator is that it is weighted locally around
each sampling location therefore preserving more of the complexity of local spatial
patterns (Figure 3.23) than trend surface analysis. Itis also very easy to use and does
not require prior knowledge about the data. When a map of the study area is needed
for illustration purposes alone, this linear interpolation technique is quite useful. It
does not, however, provide any information about the discrepancies between the
interpolated values and the ‘real’ spatial pattern at the unsampled locations. This is
why kriging is often preferred over the inverse distance weighting method.
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Figure 3.23 Inverse weighted distance. Interpolated values of sassafras
abundance data (n = 84) based on 42 sampling locations (as shown in
Figure 3.15d).

3.5.4 Kriging

Stemming from the two previous interpolation methods, Krige (1966) proposed an
interpolation method using a system of linear equations, based on prior knowledge
of the degree of spatial dependence in the data. This spatial interpolation technique
is, in essence, a weighted moving average technique and it is called kriging. Kriging
is one of the geostatistical techniques (Journel & Huijbregts 1978) and it uses the
spatial parameters (spatial range, nugget and sill) estimated by the experimental
variogram as described in Section 3.3.2.

Having its origin in application to mining questions, kriging was first developed to
address specific needs in the spatial prediction of ore resources, such as interpolating
from either punctual (point) or block (area) samples over a two-dimensional region,
as well as predicting the values of the ore for a given volume (three-dimensional).
This last feature made this technique known quite rapidly in oceanography (see
Simard et al. 2003 for a recent example) and meteorology, but it took longer to be-
come widespread in ecology (Legendre & Fortin 1989; Rossi et al. 1992).

Kriging is a set of linear regressions that determine the best combination of
weights to interpolate the data as in the inverse weight distance method by min-
imizing the variance as derived from the spatial covariance in the data. Here, the
weights, w;, are based on the spatial parameters of the variogram model, which are
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derived from an experimental variogram such that sampling locations within the
spatial range (distance) have more influence on the predicted value. To solve this
system of linear algebraic equations, the sum of the weights is constrained to equal
1 (3", w; = 1), such that there are more equations than unknown parameters to
estimate:

2xo) = Y wjz(x), (3.52)
j=1
where m is the number of neighbouring sampling locations within a given search
neighbourhood. To minimize the estimator error, the Lagrangian multiplier (1) is
added as a constant (for details see Journel & Huijbregts 1978):

Ué(xo) = Z w;iy(xi, xo) + A. (3.53)
i=l1
The estimation error is also called the kriging variance or kriging error. Equation
(3.52) can be written in matrix notation:

Cw =, (3.54)

where the predicted value at unsampled location xo, is a vector ¢ that is obtained by
multiplying the variance—covariance matrix, C, between known locations, i and j,
as estimated by the theoretical variogram model selected; by the vector of weights,
w, which are to be determined; c¢ is the vector of covariances between the sampled
locations i and the unsampled location 0. The covariance matrix and vector values
are given by the variogram model, where the vector of weights is to be estimated:

ydn) y(dp) - yldm) 1 wi v (dio)

: R D B N B (3.55)
V(dml) V(dmZ) tee y(dmm) 1 Wm y(dmO)

1 1 e 1 0 A 1

This is achieved by multiplying both sides of (3.54) with the inverse covariance
matrix, C~', such that the vector w can be solved:

Cw=c
Cclcw=C"l¢
Iw=C"¢c
w=C"c,

where (C~! C) is the identity matrix I (equivalent to a multiplication by 1 in matrix
algebra). The determination of weights is therefore related to both the variogram
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model and the number of sampling locations considered. Most of the geostatistical
software packages offer two types of rules to determine the search neighbourhood,
i.e. advice on how to select the number of sampled locations to consider in an
interpolation procedure. The first method is to define a search distance. Given
that most of the spatial dependence occurs within the spatial range, the search
distance should not exceed the spatial range of the variogram. There are cases,
however, when the spatial layout of the sampling locations is such that there are
very few locations within the range. It is then recommended that the search radius be
increased until a minimum number of locations is reached. Usually, a minimum of
15-20 neighbouring points is used. It is important to realize, however, that in these
circumstances beyond the spatial range, the values at sampled locations contribute
little to the kriged values and the resulting kriged values will show a smooth spatial
pattern. Also, since the best estimation of the weights necessitates the inversion of
the covariance matrix at each interpolated location, it is faster to perform if this
matrix is not too large. The search neighbourhood does not need to be isotropic and
can be more elliptic or even a volume in the case of three-dimensional kriging.

Kriging has some of the same features as trend surface analysis in that only one
model is used for the entire study area. It is also similar to the inverse weighted
distance method in that the interpolation is performed locally. Thus, given that
the weights are proportional both to the spatial variance of the data and to the
distance among sampling locations, kriging is an exact interpolator because the
kriged values at sampling locations are equal to the observed ones. That is not to
say that the selected variogram model and its parameters are the best ones. This
is why cross-validation was proposed in order to evaluate the overall robustness
of the model. Cross-validation consists of removing each sampled location one at
a time and then kriging at that location; and by then comparing how reliably this
kriged value matches the observed one. This procedure was very important early
on when maximum likelihood methods did not exist to facilitate model selection.
The effectiveness of the kriging depends on how well the selected model fits the
data.

Another way to evaluate the plausibility of kriged values is to map both the
kriged values and their associated estimation error (Figure 3.24). Indeed, given
that the kriging variance is in the same units as the kriged data, areas where the
errors are higher than others can be identified. These areas of high variance can be
due to:

(1) too few sampled locations within the spatial range in those areas, or
(2) the selection of an inappropriate variogram model.

Note that the kriged errors are relative to the variogram model used. If the selected
theoretical model seems to be the best one, these areas of high errors can be used
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Figure 3.24 Kriged values of sassafras abundance data (n = 84) based on 42
sampling locations (as shown in Figure 3.15d) using an isotropic linear model
(a) and an isotropic spherical model (b). The associated kriging errors with the
kriged values based on the isotropic spherical model are shown (c). As grey
values indicate, the kriged errors are higher at the unsampled locations than at the
sampled ones, but given the uniform spatial sampling design, the errors are
within the same range (4 to 5).
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to detect sectors requiring more sampling effort. This procedure is often used to
determine the optimal spatial sampling design (Webster & Oliver 2001).

Building from this system of linear equations, several kriging variants have
been developed to account for the particular characteristics of environmental data
such that the property of unbiased predictors can hold (Goovaerts 1997; Chiles &
Delfiner 1999; Webster & Oliver 2001). First, interpolation can be performed for
specific x—y coordinates (punctual kriging) or for an area (blocked kriging). When
the mean is known, i.e. when second-order stationarity applies, this system of linear
equations is referred to as simple kriging. In most cases, the mean is not known
and only the weak stationarity assumption prevails, thus ordinary kriging should
be used. However, especially with environmental data, there could be a large-scale
trend as well as local spatial patterns in the data. This implies that there is a ‘drift’ in
the mean and that the simple system of linear equations cannot be used. Universal
kriging was developed to model such large-scale trends and then the residuals are
kriged after the trend is removed. As with trend surface analysis, the trend may
not necessarily be linear, so an ‘intrinsic random function of order k£ should be
used. These functions are the equivalent of the k-order polynomial functions in
trend surface analysis and account for non-linear trends in the data before kriging.
When the spatial pattern shows non-linearity that cannot be fitted by a polynomial
function, non-linear kriging can be used.

As described earlier in this chapter, spatial pattern can be anisotropic where the
spatial variance changes according to direction. When anisotropy is such that the
sill is the same and only the range varies (i.e. geometric anisotropy), the distance
matrix can be adjusted directly to account for it. When the anisotropy is ‘zonal’
(i.e. the range stays the same but the sill differs) then the adjustment needs to be
made in the covariance matrix by adding more terms in a nested way (see Deutsch
& Journel 1992). A nested procedure can also be implemented by using different
variogram models as a function of distance. Stemming from this nested property
of adding more terms in the system of linear equations, stratified kriging offers a
way to interpolate over regions that have different spatial variances due to some
change in strata types. For example, in forested landscapes, it is inappropriate to
krige deciduous and coniferous stands using the same variogram. When information
about the forest-stand type is available, stratified kriging, using different variograms
for each forest type, should be used (Wallerman et al. 2002).

Too often in ecological and environmental studies, the variable of interest, z;, is
too costly to sample. If, however, knowledge of how this costly variable correlates
with another variable, z,, that can be sampled more easily (more cheaply or available
from other sources), co-kriging can be used to interpolate z; given the spatial
variance of 7, as estimated by a cross-variogram between the two variables (for a
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recent example see Hudak er al. 2002). This is an appealing method, but it assumes
that the linear relationship between the two variables holds even at locations where
7o is sampled but z; is not. Often, the resulting kriged map of z; looks like a mirror
image of z,, which may or may not reflect the real spatial pattern of z;.

Sometimes, in ecology, we are interested in mapping the spatial structure of
an assemblage of species as a community rather than individually. This can be
done using multivariate kriging (see the textbook by Wackernagel (2003) on the
subject). Finally, given measurement errors, thresholding responses of variables or
availability of only presence : absence data, we may want to use our quantitative
variables as qualitative ones but would still like to determine their spatial structure
and krige them. In such circumstances, an indicator variogram can be estimated
(as presented above) and indicator kriging can be used (for a recent example see
Todd et al. 2003).

There are many more things to know about geostatistics as described in more
depth in advanced geostatistical textbooks (Goovaerts 1997; Chiles & Delfiner
1999; Webster & Oliver 2001; Wackernagel 2003). Here we have attempted to
present a succinct overview, but have only lightly touched upon this very active
research field. Before concluding, however, there is one more aspect of geostatis-
tics that is very useful to ecological studies and deserves to be mentioned: stochas-
tic simulation based on conditional annealing (Deutsch & Journel 1992). Spatial
stochastic simulations are used more and more to generate a series of spatial data
that have a given degree of spatial dependence in order to evaluate whether or not
observed sample data show significant spatial patterns (Fortin et al. 2003). Here,
the parameters of the variogram model are derived from an experimental variogram
and can be used to generate stochastic simulations having the same degree of spa-
tial variance as the observed data. This approach was first proposed in geostatistics
to generate maps having more spatial variability than the kriged ones and hence
looking more realistic in comparison to the observed map. Such simulated data
are generated by an iteration process where the values at the sampled locations
are kept as anchor locations from which the annealing algorithm iteratively spreads
data values around them while ensuring that the overall degree of spatial variance is
maintained (i.e. the range, nugget and sill values). This spatial stochastic simulation
approach, based on a theoretical variogram, is computer intensive but allows us to
address significance testing of spatially autocorrelated data.

3.6 Concluding remarks

As sketched in this chapter, several spatial statistics can estimate spatial dependence
for sample data (Table 3.2). They share a common root in the determination of



3.6 Concluding remarks 171

Table 3.2 Summary of the spatial analysis methods presented in Chapter 2

Spatial analysis method Template

Join count statistics (Topology: network)

Join count statistics (Lattice: chess moves) D

Global spatial statistics (Isotropic spatial lag)

Global spatial statistics (Anisotropic spatial lag)

Fractal dimension (Dividers)

Fractal dimension (Boxes)

Local spatial statistics (Topology: network)

Local spatial statistics (Lattice: chess moves)

spatial covariance among the values of variable(s) of interest at different sampling
locations. Hence the question becomes: which one should be used?

The first issue to decide upon is whether spatial analysis of the data should be
global (i.e. should it summarize the spatial structure for the entire study area) or
local (i.e. a measure of the local spatial structure at each sampling location). The
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choice between these two levels of analysis should be guided by both the goal(s)
of the study and knowledge (or lack of knowledge) about the stationarity of the
processes of interest. When no prior information is available, we recommend that
both types of methods are performed and their results compared to identify whether
or not the stationarity property holds.

Then, while using global spatial statistics, Moran’s / is favoured only because of
its direct correspondence of meaning with Pearson’s linear correlation (Eqn (3.8)).
Users should be aware of its sensitivity to extreme outlier values as they will
influence the value of the average which is used to estimate the spatial deviation
(see Eqn (3.13)). This is why most would prefer Geary’s ¢ or semi-variance y
because outlier values affect only the spatial deviations (differences) computed
with them. Unfortunately, these differences will have more weight because they are
squared (see Eqns (3.14) and (3.21)).

Similarly, as local spatial statistics exist, it is important to realize that some are
affected by the presence of a global pattern which may result in biased estimation
of the spatial pattern. Two newly developed methods, H Moran and LICD, are to be
favoured when a large trend in the data is present. In the absence of overall structure,
local G7 in their standardized versions are easier to interpret as they indicate local
areas of high (hot spots) or low (cold spots) values.

Both global and local spatial statistics provide information only about the spatial
structure. When insight about the underlying causal processes that may have gener-
ated these spatial patterns is of interest, Mantel tests and partial Mantel tests can be
used. In a multivariate context, partial ordinations (e.g. partial RDA, partial CCA)
are more informative than the partial Mantel test about the relative contribution of
each variable to the overall spatial structure.

Interpolation techniques can be used for illustration purposes, e.g. to map spa-
tial pattern, where the simplest method (inverse weighted distance) provides good
results. Such maps can also be modified by using various smoothing algorithms,
such as a spline, to make it even more visually pleasing. On the other hand, when
information about the actual values at unsampled locations, as well as an estima-
tion of their associated errors, is needed, then one of the various kriging techniques
should be used. There is no magical recipe, however, for which methods, and their
respective parameter values, should be favoured. The ability to perform a meaning-
ful interpolation using kriging comes with experience (i.e. by trial and error). The
general rule of thumb is to capture the intensity and range of the spatial variance at
short distances. Last, keep in mind that kriging errors associated with kriged values
are a function of the theoretical model selected and the parameter values provided,
not of the data themselves. The results depend on the appropriateness of the model
on which kriging is based.
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Finally, as in Chapter 2, the unresolved issue is that of significance testing
while estimating spatial dependence at several distances based on the same data.
Although spatial statistics traditionally have significance tests, and even progressive
Bonferroni corrections, applied to them, these do not fully account for the depen-
dence of values from one distance class to another. We will revisit this problem in
Chapter 7.



4

Spatial partitioning of regions: patch and boundary

Introduction

In order to understand ecological processes at multiple scales, ecological studies are
often carried out over large regions. In doing so, most study areas include more than
one ecological process that can act at different spatial and temporal scales (Dungan
et al. 2002). In such cases, it is unlikely that the assumption of stationarity of
process (i.e. the same mean, variance and isotropy; see Chapter 1) is true. To analyse
ecological data from large regions in a meaningful way, it is recommended that the
region be partitioned into smaller, more spatially homogeneous areas (i.e. patches),
that are more likely to be governed by the same ecological process. Stratifying a
region can also be useful for monitoring and managing resources. There are two
main approaches to spatial partitioning:

(1) grouping adjacent locations that have similar values of the variable(s) under study by
generating spatial clusters (Figure 4.1), or

(2) dividing areas, based on their degree of dissimilarity, by delineating boundaries
(Figure 4.2).

In theory, the outcomes of these two types of approaches should provide the same
partitioning. In practice, however, there can be more or less pronounced spatial
mismatches between the two methods. This is because the majority of the parti-
tioning methods are descriptive and somewhat subjective in their use and interpreta-
tion. In this chapter, we are going to present the spatial partitioning methods, both
spatial clustering and boundary detection, which are most relevant to ecologists
(Figure 4.3). Indeed, the field of edge detection is currently growing in both com-
puter vision and image analysis techniques with remote sensing and medical appli-
cations. Here we will concentrate on the analytic tools that are appropriate for
ecological data and questions.

174
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Figure 4.1 Spatial clustering method where spatial clusters are formed only
when both the degree of similarity between sampling locations (A, B, C, D and
E), based on a clustering algorithm (here an agglomerative one), is high and these
sampling locations are adjacent to one another (e.g. A is spatially adjacent to F, C
and D) based on spatial connectivity (here Delaunay links). Note that the exact
location and width of the boundaries of the spatial clusters are not determined by
this method as illustrated by the grey zigzags. In fact, the spatial clustering
algorithm only identifies the membership of each sampling location to a spatial

cluster.
7
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Figure 4.2 Boundary detection using a kernel (see Section 4.2) where the 1s
indicate the locations where the boundaries are the most pronounced (sharp) and
the 2s the second most pronounced boundaries. The grey shades correspond to
quantitative values of a variable (low, black; high, white).

4.1 Patch identification
4.1.1 Patch properties

A patch can be defined as a spatially homogeneous area where at least one variable
has similar attributes either of category (e.g. forested area) or of quantitative value
(e.g. tree age). Consequently, adjacent patches are different from one another in
at least one variable. The juxtaposition of patches creates a mosaic at the regional
level where each patch can be characterized by its structural properties such as
area (e.g. small, large), shape (circle, elliptic, square, sinuous, with peninsulas,
etc.), boundary properties (such as sharpness; see Section 4.2.1 below) and contrast
between adjacent patches (e.g. low contrast between deciduous and mixed forest;
high contrast between forest and agriculture land). Patch properties can be computed
using landscape metrics (Li & Reynolds 1995; Gustafson 1998; Tischendorf 2001;
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Quantitative data

YES NO

Spatial clustering
Ordination
Categorical-wombling

Contiguous data

YES NO
Local boundary detectors: Spatial clustering
Window approaches: Ordination
Moving split-window Triangulation-wombling

Lattice-wombling
Kernel filters:
Space-scale
Hierarchical boundary detectors:
Wavelets

Figure 4.3 Decision tree to guide the selection of boundary detection methods
for ecological data.

Fortin et al. 2003; Turner et al. 2003). The above definition of patches is data
driven and implies that the spatial distribution of the values of targeted variable(s)
is more-or-less uniform. This does not imply that all the variables measured in
a given patch have a spatially uniform distribution. Similarly, when patches are
arbitrarily delineated, as political or administrative units often are, the within-patch
spatial structure of the data can range from a weak monotonic trend to strong
spatial autocorrelation. The presence of within-patch spatial structure will reduce
our ability to delineate boundaries accurately (Burrough & Frank 1996; Csillag
et al. 2001; Edwards & Fortin 2001).

4.1.2 Spatial clustering

Patches are, in effect, clusters of sampling locations that are spatially adjacent
(i.e. spatial clusters) and have similar values. Clusters are usually based on the
degree of similarity between data at different sampling locations. There are sev-
eral clustering algorithms (see Legendre & Legendre (1998) for a complete review
and mathematical details) that can be employed to perform spatial clustering. The
ones used most often are the hierarchical agglomerative methods (e.g. single, inter-
mediate and complete linkage, as well as centroid described below) which start
with all sampling locations separated and then merged into larger groups based on
the degree of similarity among them and the clusters already formed. To address
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the particular nature of ecological data better (e.g. presence : absence data, rare
species, presence of double-zero), several similarity and dissimilarity metrics have
been developed (Legendre & Legendre (1998). The researcher can define a priori
the degree of similarity at which sampling locations can merge into an existing
cluster. The linkage family of methods can be described as a gradient of criteria
that need to be met before a sampling location can merge into a group, for example,
in the single-linkage two sampling locations or clusters merge based on the mini-
mum distance (i.e. maximum similarity) between them; in intermediate linkage, the
similarity of a sampling location or cluster is compared to all possible pairs in the
existing cluster before merging, and in complete linkage, the merging of clusters
occurs when the maximum distance (i.e. minimum similarity) between clusters is
reached. The centroid algorithm is comparable to the intermediate-linkage exam-
ple where a sampling location merges with a cluster when its similarity value is
comparable to the centroid value of the cluster. The advantage of agglomerative
clustering procedures is that they create non-overlapping clusters. Several papers
and books report the subtleties of clustering methods (e.g. Legendre & Legendre
1998). The most important drawback is the subjectivity involved in the selection of
the degree of similarity for the creation of clusters.

The method of k-means partitioning has also been employed to determine spatial
clusters (Legendre & Fortin 1989). With this clustering approach, the user needs
to determine a priori the number of clusters to be obtained. The k-means algo-
rithm optimizes, using an iterative process that minimizes the within-cluster sum
of squares error term (SSE), i.e. the similarity from each sampling location data set
to the centroid of the cluster to which it belongs. In this method, a certain amount
of subjectivity comes in when choosing the number of clusters.

Spatial constraints among the sampling locations can be determined from any of
the connectivity network algorithms or neighbour networks presented in Chapter 2.
These networks identify which sampling locations are adjacent to one another
(Figure 4.1) and can be used as spatial constraints while merging sampling locations.
Hence, sampling locations can merge into a group only when adjacent sampling
locations have comparable values (Figure 4.1). A by-product of forming spatial
clusters, or patches, is that there are ‘boundaries’ between them (Figure 4.1), but
their exact location and width are unknown. This is one of the possible weaknesses of
spatial clustering methods: only the sampling locations have a known membership;
the position of the boundaries among patches is arbitrary. On the other hand, the
strength of spatial clustering approaches is that spatial clusters can be obtained
from any data type (qualitative or quantitative, univariate or multivariate) sampled
with any design (contiguous sampling units or not; Figure 4.3).

There are two major problems with spatial clustering methods. First, in the
absence of a priori knowledge, or independent information about the ecological data,
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Figure 4.4 Goodness-of-fit index values according to the number of spatial
clusters. The higher the index, the higher the contrast between the within-patch
and among-patch sum of errors. Here, we are interested in the best number of
spatial clusters to partition a study area having 84 sampling locations (6 x 14)
based on tree abundance data (Fortin 1992). For comparison purposes, we
selected four numbers of clusters: 5, 10, 20 and 40 (see Figure 4.6).

the researcher needs to select either the level of similarity for the agglomerative
algorithms or the number of spatial clusters for k-means partitioning at which
the spatial clusters will be obtained and subsequently interpreted ecologically. To
achieve this, Gordon (1999) developed a goodness-of-fitindex that indicates how the
number of clusters selected contributes to minimize the sum of squares error of the
between-cluster variability, B, when compared to the within-clusters example, W:

B/(k — 1):|

Vo= (4.1)

Goodness-of-fit index = [
where k is the number of clusters and 7 is the number of sampling locations. The
value of this goodness-of-fit index can therefore be used as a guideline to determine
the number of spatial clusters. It is important to have an underlying ecological
question to provide an upper limit to the number of clusters requested. The choice
of the appropriate number of clusters to select should therefore be guided by the
goal of the research and knowledge about the study area.

For example, when looking at the ‘best partition’ of a study area where a
known demarcation in forest canopy composition occurred (consider the data of the
abundance of 26 tree species measured using 10x10m sampling units used in
Chapter 3, Fortin 1997), the highest value of goodness-of-fit was obtained with 40
spatial clusters (Figure 4.4). This is quite a large number of spatial clusters given
that there are only 84 sampling locations. Based on our knowledge of the study area
(Fortin 1992), three to five spatial clusters should be able to describe the spatial
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Figure 4.5 Spatial clusters on the tree abundance data of 84 sampling locations
based on Delaunay connection links and (a) the centroid agglomerative
algorithm and (b) the k-means method. Spatial partitions based on five spatial
clusters identify that most of the spatial heterogeneity is concentrated in the
lower left part of the study area and there is some heterogeneity in the middle of
the plot. Spatial partitions based on 10 and 20 spatial clusters divide the large
spatial cluster A, based on five spatial clusters, into smaller spatial clusters
stressing much spatial heterogeneity over the entire plot. For spatial partitions
based on 40 spatial clusters, although the number of clusters provided the highest
goodness-of-fit index value, several spatial clusters were created having only one
or two sampling locations. Overall, the k-means clustering algorithm creates
larger spatial clusters than the agglomerative one.

arrangement of the woodlot tree canopy. For comparison purposes, however, we
selected four values where the numbers of clusters show a local maximum in the
goodness-of-fit index value: 5, 10, 20 and 40. In Figure 4.5, the spatial layout of
the clusters based on different clustering algorithms (hierarchical agglomerative
centroid and k-means) and number of clusters (5, 10, 20 and 40) can be visually
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compared. In doing so, we observe that both types of clustering algorithms provide
more or less comparable spatial clusters but that the agglomerative algorithm cre-
ates more spatial clusters of only one sampling location (4 out of 5; 6 out of 10; 15
out of 20; 30 out of 40 clusters) than with the k~-means method (2 out of 5; 5 out of
10; 12 out of 20 and 26 out of 40 clusters). Here, the spatial partition based on 20
clusters divides the study area into patches that characterize the differential spatial
heterogeneity of the lower part of the study area and the relatively greater spatial
homogeneity of the upper part. The advantage of the hierarchical agglomerative
centroid algorithm is that it is hierarchical across the partitioning when increasing
the number of clusters, i.e. the spatial clusters found with five clusters are main-
tained as such when the number of clusters increases. This is not the case with
the k-means algorithm, where at each increase in the number of clusters, the new
partition does not contain the spatial clusters of the previous partition with fewer
clusters. This is because the k-means algorithm is an iterative procedure starting
with a random assignment of the sampling locations to a spatial cluster. To reduce
this problem, spatial partitioning based on a hierarchical clustering algorithm, or
the k-means algorithm, could be used as a starting assignment input for the k-means
procedure.

The second problem, which is characteristic of both spatial clustering and bound-
ary detection, is that these algorithms are designed to provide clusters or boundaries
even when none are present. An obvious example is the case where there is a gentle
gradient across aregion: the spatial clusters, or boundaries, identified will not reflect
any true discontinuities in ecological process but will respond to local noise in the
data. Furthermore, in some circumstances, spatial clusters may include sampling
locations that have a high degree of similarity among adjacent sites, but other spatial
clusters may have a high degree of dissimilarity. Finally, applying spatial constraints
in clustering sampling locations may not necessarily create spatial clusters that have
the strongest degree of similarity among sampling locations. For example, there
could be situations where two sampling locations are not spatially adjacent but have
comparable values because they are under the same climatic regime (Figure 4.6)
or are influenced by the same underlying topography in terrestrial ecosystems or
bathymetry in aquatic ecosystems (Figure 4.7). In such circumstances, it may be
appropriate to customize the spatial constraints among the sampling locations by
adding or removing links accordingly, not only to the topology of the connectivity
network, but also according to physical and environmental conditions.

4.1.3 Fuzzy classification

A clear membership dichotomy by which every candidate is either a member,
or otherwise, of any given class, such as presented in Section 4.1.2, may not be
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Figure 4.6 Delaunay connection links (solid lines) among 16 sampling locations.
In a terrestrial context, e.g. forest, where only local neighbourhood effects
prevail, this Delaunay tessellation network corresponds well to the ecological
and environmental processes among sampling locations. However, if large-scale
processes occur as well (e.g. two climatic zones), then the link between sampling
locations A and B (dashed line) should be removed and that between C and D
added (bold line).

appropriate in all circumstances, either because the quantitative data cannot be
accurately classified into discrete classes (e.g. mixed forest dominated by decid-
uous or by coniferous species), or their spatial location is uncertain or inaccurate
(e.g. telemetry data), or the data measurement is approximated (e.g. vegetation
percentage cover reported in classes). Fuzzy classification and fuzzy k-means (see
Burrough & McDonnell 1998 for mathematical details) have been suggested to be
more appropriate spatial clustering methods in such cases (Jacquez et al. 2000).
These methods are based on fuzzy set theory (Zadeh 1965) where the member-
ship function is not a discrete dichotomy (0 or 1, an integer value) but rather a
real number ranging from 0 to 1, called a ‘possibility’. The possibility of being
a member of a cluster is based either on expert knowledge or on spatial location
uncertainty. The membership function can take several different shapes (e.g. linear,
sigmoidal, symmetric, asymmetric) defined over a range of values of a variable,
called transition zones. The advantage of the fuzzy classification approach is that it
may more adequately reflect ecological processes and species’ responses to environ-
mental conditions. The drawback is that it requires more knowledge about the pro-
cesses and any user-defined decisions can introduce a lot of subjectivity resulting in
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Figure 4.7 Spatial constraints in an aquatic system: (a) in shallow lakes where
only local effects occur, spatial adjacency may correspond to the processes
resulting in two spatial clusters A and B (b). (c¢) In deep lakes, bathymetry may
play an important role and spatial constraints may not be appropriate. In fact,
bathymetric isolines may reflect better the spatial constraints of the lakes forming
four spatial clusters A, B, C and D. (d) Both spatial adjacency and bathymetry
can be considered important, in which case seven spatial clusters will be formed
(A,B,C,D,E, Fand G).

non-optimal spatial clusters. To reduce the amount of subjectivity, the researcher can
employ the fuzzy k-means approach (also referred to as fuzzy c-means, Burrough &
McDonnell 1998). This method is also an iterative procedure that minimizes the
within-cluster variability, but a fuzzy exponent is added to allow the overlap of
clusters. When this fuzzy exponent is set to zero, it is equivalent to the k-means
algorithm; when it is too high, all the clusters overlap. McBratney & de Gruijter
(1992) suggested a value of 2 as a starting point for the fuzzy exponent. Using the
same tree species data, the fuzzy k-means (based on five classes and a fuzzy expo-
nent of 2) produces a different spatial partition from the equivalent spatial k-means
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Figure 4.8 Fuzzy k-means spatial clusters of the tree abundance data of 84
sampling locations using k = 5. The sampling locations parts of a spatial cluster
have a membership possibility of 1 and are indicated by 1-A, 1-B, 1-C, 1-D and
1-E, where A, B, C, D and E signify the five spatial clusters. The other sampling
locations have a membership possibility of belonging to a spatial cluster varying
form 0 to 0.9999. For illustration purposes, the membership possibilities were
classed into four categories: 0.7 (from 0.5 to 0.9), 0.4 (from 0.3 to 0.49), 0.2
(from 0.1 to 0.29) and 0.0 for 0. The five spatial clusters each contain very few
sampling locations. In fact, most of the sampling locations almost belong to a
spatial cluster (as indicate by 0.7) and illustrate the spatial extent (width, area) of
the boundary zones between the spatial clusters.

clustering example (Figure 4.8). Here, the five crisp spatial clusters are smaller
than with those obtained previously, but are surrounded by a gradient of fuzzy
membership values. For illustration purposes, the possibility values were classified
into five categories: 1 (1.0: 100% possibility to be part of the cluster), 2 (from 0.5 to
0.9), 3 (from 0.3 to 0.49), 4 (from 0.1 to 0.29) and 5 (0.0). Then, category 1 (100%
possibility to be in a cluster) was divided into the five requested spatial clusters
(A, B, C, D and E). The advantage of the fuzzy k-means method is that it allows
determination of fuzzy boundary zones between spatial clusters.

Fuzzy set theory has been applied to detect fuzzy boundaries (among others,
see Leung 1987; Edwards & Lowell 1996; Brown 1998; Burrough & McDonnell
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1998). Jordan (2002) compared two fuzzy sets approaches, fuzzy classification and
fuzzy boundaries, and found these methods to be complementary.

4.2 Boundary delineation

Several disciplines have developed analytic tools to detect boundaries: ecology, to
detect ecotones and ecological boundaries, and remote sensing and medicine to
detect an object’s edge. Here we will focus on those most relevant to ecological
studies (Figure 4.3).

4.2.1 Ecological boundaries

In ecology, the development of boundary detection methods has a long tradition
in studies associated with ecotone delineation. Ecotones are of interest in ecol-
ogy because they are at the interface between two communities or ecosystems,
where the exchange of nutrients and other forms of ‘information’ occurs. Eco-
tones have distinct structural and functional properties that differ from the adjacent
systems (Holland et al. 1991; Hansen & di Castri 1992). The structural proper-
ties of ecotones are directly related to the type and the strength of the underly-
ing processes that either generate or maintain them. Thus, ecotones, or ecological
boundaries, represent linear responses to steep gradients in the environmental con-
ditions or non-linear responses, such as thresholds, to environmental gradients
(Table 4.1). Our ability to detect ecological boundaries depends therefore on the
ecological process(es) under investigation (Gosz 1993; Dungan et al. 2002) as well
as on the sampling design and analytic tools employed (Fortin & Drapeau 1995;
Fortin 1997, 1999b; Fortin et al. 2000). Sampling designs for detecting bound-
aries should include sufficient sampling locations over a transect, or an area, so
that not only the boundary itself but also the adjacent patches that it separates are
covered.

4.2.2 Boundary properties

Before examining the geometrical properties of boundaries, we need to define some
terms. The term edge refers to a sharp demarcation. In image segmentation there
are three major types of edges: the step edge, the roof edge and the spike edge. The
step edge is the ideal case in which two well-defined and almost uniform patches
of different types meet (e.g. forest and agriculture land), while the roof edge occurs
when either or both patches are spatially autocorrelated. The spike edge, where an
abrupt change in intensity occurs only locally, is rarer in ecology than in image
processing. In ecology, the term edge is mainly used to refer to the step edge from
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Table 4.1 Processes and environmental factors creating and maintaining
ecological boundaries

Environment and
landscape structure

Processes and
factors creating
or maintaining

Ability to detect
edges and the
underlying processes

changes boundaries Type of boundary  and factors

Sharp environmental ~ Geomorphology, Sharp, narrow, Possible to detect

changes topography, persistent abrupt changes in
biogeochemistry, diversity or
climate abundance

Gradual Geography, Blurred, wide, Difficult to detect

environmental climate, species’ persistent or changes in biomass

changes ranges (species transient and abundances;

Spatial heterogeneity
within large
disturbances

Spatial heterogeneity
within small gaps

No environmental
changes

physiological
limits), species
interactions

Fire, storm, drought,
species interactions,
succession

Treefall, species
interactions,
succession

Species interactions,
dispersal ability

Sharp to smooth,
transient

Blurred, transient

Sharp, persistent

possible to detect
compositional
changes

Possible to difficult
depending on the
intensity of the
disturbance

Difficult to detect
due to qualitative
and quantitative
noise

Possible to difficult
depending on
species interactions

man-made origins. There are several equivalent terms employed to refer to step
edges, such as sharp, crisp or line boundaries (Figure 4.9a, b). The opposite of
sharp step edges are gradual, intermediate, fuzzy boundaries or transition zones
(Figure 4.9¢, d). The term boundary includes both edge (line) and gradual (zone)
demarcation. Herein, we will use the term boundary to refer to both sharp and
gradual edges.

Related to the notion of boundary sharpness is the boundary’s width, either
narrow or wide. In an ecological context, it is quite probable that the width of a
boundary varies asymmetrically along the length of the boundary as well as on each
side of it (Figure 4.9¢, d). Hence there are locations where ecological processes are
more likely to be sharper than others. This can create only localized boundaries that
do not enclose an area. Such boundaries are called ‘difference’ or ‘open’ boundaries
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Figure 4.9 Boundary properties: sharp (crisp, step edge, line) boundaries (a and
b); gradual (intermediate, fuzzy, transition) boundaries (c and d), open
(difference) boundaries (b, ¢ and d) and closed (area) boundary (a).

(Figure 4.9b—d), whereas those that surround and delimit an area completely (e.g.
a patch) are called ‘area’ or ‘closed’ boundaries (Figure 4.9a).

Man-made boundaries are more likely to be straight. Boundaries originating
from natural processes, on the other hand, are more likely to be sinuous — forming
peninsulas, hence a series of convex and concave shapes. The degree of straightness/
sinuosity of boundaries can be measured using the fractal dimension (Burrough
1981; Mandelbrot 1983). The accuracy of the fractal dimension, however, is directly
affected by the spatial resolution of the sampling units.

Finally, all the structural and functional properties of boundaries are scale depen-
dent (Gosz 1993; Fortin 1999b; Csillag et al. 2001; Handcock & Csillag 2002).
Boundary studies need to acknowledge the scale of the ecological processes under
study as well as the effects of the spatial resolution, of both the sampling unit and
the extent of the study area, on the accuracy of detecting boundaries.

4.2.3 Boundary detection based on several variables

Boundaries can be detected using either categorical information or continuous
quantitative data. Here, with quantitative data, one operational definition of a bound-
ary is the location in space where the change in intensity of a set of variables is the
highest (Burrough 1986; Fortin 1994). With qualitative data, it is the location in
space where species turnover is the highest.
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4.2.3.1 Multivariate methods

One important property of ecotones is that this interface between two communi-
ties, or ecosystems, creates a unique assemblage (e.g. a new community or a new
ecosystem) characterized by the change, usually an increase, in species diversity.
Whittaker (1972) introduced three different types of diversity: alpha () diversity
refers to the diversity of species within a particular habitat or community; beta (8)
diversity is a measure of the rate and extent of change in species along a gradi-
ent from one habitat to another; and gamma () diversity is the species richness
of a range of habitats in a geographical area that depends upon both « and the
extent of . Hence, the measure of beta diversity, also known as differentiation
diversity, has been used to establish locations where the rate of species turnover is
the highest, which are often associated with the presence of ecotones or ecological
boundaries.

For quantitative data of species abundance, two statistics have been developed
to measure beta diversity: the half-changes (Whittaker 1972) and the ‘gleason’
(Wilson & Mohler 1983). Half-change units are analogous to the notion of half-life
for radioactive elements and were developed to evaluate the numbers of species in
common at the two extremes of a gradient. The major inconvenience with the mea-
sure is that it provides no information about the rate of change along the gradient
(Wilson & Mohler 1983). Therefore, these authors proposed a new measure of beta
diversity, the gleason, which measures the rate of species turnover at any point along
a gradient. This method assumes that the changes are continuous along an environ-
mental gradient and re-scales each sampling location along the gradient space. The
most widespread re-scaling method utilized to detect boundaries is the detrended
correspondence analysis, DCA (see Legendre & Legendre 1998 for mathematical
details, and Choesin & Boerner 2002 for an example). This re-scaling step, using
an ordination technique, can be meaningless and inappropriate when disturbances
induce discontinuities along a gradient, or when more than one gradient exists. Such
disturbances are almost always found in second-growth forests, especially when
area data are collected, since it is rare to find an area without natural boundaries or
human disturbances.

4.2.3.2 One-dimensional transect data

The simplest and most effective way to detect ecological boundaries from quanti-
tative data is to apply a moving split-window technique (Webster 1973; Johnston
etal. 1992). This technique consists of computing the difference between two halves
of the window. The window size can vary containing minimally only one sampling
location per half. Various metrics can be used to measure the differences between
the two adjacent window-halves (left and right halves) such as: discriminant
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Figure 4.10 Split-moving window along a transect of 10 contiguous sampling
locations. The split-moving window size is 2 sampling units (one sampling unit
in each half). The square Euclidean distance computed for each pair of sampling
units resulting in 9 values where the strongest peak (i.e. boundary) is between the
sampling locations D and E and the second, weaker peak between sampling
locations H and 1.

functions, Mahalanobis distances and squared Euclidean distance (Ludwig &
Cornelius 1987; Brunt & Conley 1990). The squared Euclidean distance, SED,
is by far the most commonly used metric:

V4
SED(x1, 1) = Y (211 — 22:)’, 4.2)

i=1

where x; and x, are the two sampling locations to compare and z;; and z,; the
values of the p variables at these two locations. The window is then slid along
the entire transect, one sampling location at a time, so that all adjacent sampling
locations can be compared (Figure 4.10). In the example illustrated in Figure 4.10,
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each half contains the data from one sampling location and resulting measures are
located between the sampling locations for a total of n — 1 difference values. Sharp
boundaries occur where high and narrow peaks identify the location of ecological
boundaries, whereas gradual boundaries occur where peaks are low and wide. By
computing differences based on adjacency, the moving split-window is in essence
a local boundary detector. The drawback of all local boundary detectors is that they
are sensitive to local noise in the data. To minimize the undesirable effects of local
noise in the data, computation of the differences can be performed using windows
of increasing sizes. The results can then be drawn on the same plot where peaks
corresponding to ecologically meaningful boundaries will persist while peaks due
to local noise will be smoothed out. Ecological boundaries will produce peaks at
the same locations. The similarity to analysis with a Haar wavelet is obvious (Dale
et al. 2002).

Comparable methods are available for presence : absence data collected at con-
tiguous sampling locations. Basically, the observed number of species present at
a given location is compared against a random distribution derived from a Monte
Carlo procedure: Dale’s method (1986, 1988) computes the amount of spatial over-
lap at each location, while the McCoy et al. (1986) technique is based on the
probabilistic similarity between pairs of sampling locations.

One-dimensional transect data allow only detection of the sharpness and width
of boundaries. To determine the other properties of boundaries, two-dimensional
area data are needed. As sampling techniques and data acquisition by remotely
sensed imaging gain popularity in ecology, it is more and more common to have
such lattice data. The next section will present boundary detection methods for
two-dimensional area data.

4.2.3.3 Two-dimensional area data

Two-dimensional data can be either a complete lattice or a sample of an area. We
will therefore refer to lattice data when the spacing between any adjacent sampling
units is constant, except for the outer limits. Each sampling unit has four connected,
adjacent, sampling units directly north, south, east and west, forming a checker-
board-type pattern. The main advantage of using two-dimensional area data over
one-dimensional transect data is that all the boundary features can be estimated
(sharpness, width, shape, sinuosity, etc.).

As for the one-dimensional boundary detection methods, most boundary detec-
tors for two-dimensional area data compute some difference among locally neigh-
bouring sampling locations using either moving windows or kernel filters. The
difference between this dichotomy of techniques at first seems subtle, but it is not.
Window approaches compute a metric based on the values from adjacent sampling
locations forming a square (e.g. a window size of 2x2 sampling locations) that
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quantifies the degree of difference among the four values (see the lattice-wombling
section below). After having slid the window over the entire area (e.g. grid, lattice),
the resulting number of different values is less than the original number of sam-
pling locations (Figure 4.11a). Given that four sampling locations are needed to
compute a difference, with lattice data having n rows and m columns there will
be n — 1 x m — 1 rates of change. The shape of the window can vary and the dif-
ference can also be computed based on three adjacent sampling locations forming
a triangle using triangulation-wombling (described below).

Kernel filters operate differently. Indeed, kernels are usually squares of vari-
ous sizes (e.g. 3 x 3,5 x 5,7 x 7, etc.), where each cell of the kernel contains
a value that is multiplied with the correspondent location in the original lattice
and where the resulting summation of all these multiplications is assigned to the
centre cell. This type of procedure is called a convolution procedure in GIS and
remote sensing. As for the window approaches, the kernel filter is then slid over
the entire area but unlike the former, the kernel filters produce a new value for each
cell of the lattice (e.g. the original number of sampling locations: 7;ows X Hcolumns}
Figure 4.11b). There are several filters (mathematical operators, formulations) avail-
able to enhance the edges of an object (Pitas 2000). Here we will present only one
of these filters (see Section 4.2.6).

Lattice-wombling With quantitative lattice data, the difference (hereafter called rate
of change) in values among the four adjacent sampling locations forming a square
(i.e.a2 x 2 square window) can be estimated by computing the first partial derivative
of a variable in the x and y spatial direction (Womble 1951):

2 2
m:\/[af(x,y)] Aot ws
0x 0x

where f (x, y) is a bilinear function, in the x and y spatial direction, of values z; at
the four sampling locations (i = 1, 2, 3 and 4):

fO,y)=z21(1 =x)(1 = y) + z2x(1 — y) + z3xy + z4(1 — x)y. 4.4)

This formulation assumes that the distance between these four sampling locations
is small. For convenience, the actual x and y coordinates are scaled to range from
0 to 1. The value of the rate of change, m, is computed for the centroid of a
square window. Subsequently, the square window is slid over the entire lattice by
shifting one sampling location at a time. In a multivariate context, the difference
among the four adjacent sampling locations is the average, s, of the absolute
values of the first derivatives of each variable, m. When there is only one variable,
the detected boundaries reflect high difference in the values of that variable; when
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Figure 4.11 Difference measures computed by window (a) and kernel filters (b)
to detect boundary. The window or the kernel, respectively, is slid one sampling
unit at a time in the x and then in the y direction over the entire study area, and
the difference at the centroid location of the window (the square in (a)) or at the
central cell of the kernel (the square in (b)) computed. By doing so, there are
fewer difference values computed with the window approach than in the original
data (rows — 1 X Heoumns — 1) but not in the kernel approach where there are the
same number of difference values as number of sampling locations.
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several variables are available, both the amount of species turnover as well as their
difference in values affect the location of the boundaries.

Given that the rate of change is computed according to spatial direction, it is also
possible to compute the orientation, angle, of the change (Barbujani er al. 1989):

[G)

O =tan" | —% | + A, (4.5)

(&)

o o3

180°, otherwise.

where

The orientation of the gradient is established by first doubling the angles to avoid
slopes of opposite direction cancelling each other, then averaging and halving the
result. When the highest rate of change in one variable occurs in a north—south
direction and that in another variable in a south—north direction, we do not want
these two directions to cancel but to re-inforce this axis.

In essence, the magnitude of the rate of change m is the slope of the plane that
can be fitted to the values of the variables at the four adjacent sampling locations
(Figure 4.12). Boundaries, defined as the spatial location where high rates of change
occur, correspond to steep gradients among the four values of a variable. Weak
differences among adjacent values will result in low (close to zero) values for
rates of change. Such adjacent locations of low rates of change can be considered
as a spatial homogeneous cluster: a patch. The major problem is to decide the
threshold value of rate of change for boundary detection (Figure 4.12). When an
arbitrary threshold is used, say the highest 10th percentile (Fortin 1994, 1997,
1999b), the rates of change are then called ‘potential’ or ‘candidate’ boundary
elements. Subsequently boundary properties (length, width, shape, etc.) can be
measured in terms of spatially connected candidate boundary elements using the
boundary statistics (Section 4.2.4). The selection of the threshold depends on the
context (strength of the boundaries and their number) and the number of sampling
locations (Fortin 1999b). We will comment on this issue in Section 4.2.4.

Using 26 tree abundance data (Fortin 1992), lattice-wombling rates of change
and their orientation were computed (Figure 4.13). The rate of change values were
ranked in decreasing order and classified into 10 categories each being a 10th
percentile: the highest percentile is indicated by 1, and the lowest by 10. Here, the
number of candidate boundary elements at the 10% threshold is 7 out of 65 rates of
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Figure 4.12 Lattice-wombling algorithm. Rates of change based on

lattice-wombling are in essence the slope of the plane that fits the four values of
the variable at the sampling locations. The orientation of the slope could also be
useful in some studies. When the rates of change are ranked in decreasing order
of magnitude (highest values of the slope), the candidate boundary elements are
determined using an arbitrary threshold. When the rates of change are very low,
close to zero, the sampling locations are most likely part of a patch.

change (14 — 1 x 6 — 1 = 65 rates of change). There are cases, however, where at
the cut-off rank between two percentiles, the rate of change value is exactly the same
as the highest percentile. In such circumstances, in order to avoid bias in the selec-
tion of one rate of change location against another, it is recommended to continue
to rank all rates of change that have the same values with the same percentile class
and to include them all as candidate boundary elements. Here we selected the arbi-
trary threshold to be 10% (indicated by 1) to designate the candidate boundary
elements. The candidate boundary elements that are adjacent to one another are
linked in Figure 4.13a. It is found that there are candidate boundary elements in
the lower part of the study area as well as in the middle. At a threshold of 10%, the
candidate boundary elements are ‘difference/open’ boundaries that demarcate the
strongest local boundaries. Looking at the subsequent highest rates of change (say
2, 3 and 4 ranked values in Figure 4.13a), these locations coincide with the
demarcation among the spatial clusters based on the k-means algorithm with 20
clusters (Figure 4.5). Spatial clustering and boundary detection can be used as
complementary methods to highlight different particularities of a study area: i.e.
complete spatial partitioning (spatial clusters) and the spatial location and prop-
erties of the boundaries (width, shape, sinuosity) between the patches (Fortin &
Drapeau 1995).
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Figure 4.13 Lattice-wombling of 26 tree abundance data based on 84 sampling
units (represented by squares with solid lines). (@) The 65 rates of change

(141ows — 1 X 6c0umns — 1 = 13 x 5) are classified in 10 classes of 10th percentile
each: the highest rate of change values are indicated by 1 and the lowest by 10.
The candidate boundary elements are determined using the arbitrary threshold of
the highest 10th percentile values (1 in bold) for a total of seven (rounded value).
The bold lines link the candidate boundary elements that are spatially adjacent so
that they can be connected into boundaries. There are three boundaries: two

in the lowest part of the plot and one in the middle. The 10% second-highest
derivatives (10% of 48 values = 5) are indicated by circles and they mark the end
of the boundaries. (b) Orientation associated with each rate of change classified
in eight directions (N, north; NE, northeast; E, east; SE, southeast; S, south; SW,
southwest; W, west; and NW, northwest).
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Second

derivative

First derivative

/

Figure 4.14 Lattice-wombling first derivatives identify boundary as the
magnitude of the slope of a plane (square), whereas the second derivates identify
the inflection point where the boundary ends (circle). The bold lines link the
candidate boundary elements that are spatially adjacent so that they can be
connected into boundaries. There are two boundaries: one in the lowest part of
the plot and one in the middle.

As mentioned above, rates of change measure the magnitude of the slope of
the gradient among adjacent sampling locations, demarcating boundary elements
at the steepest part of the gradient (Figure 4.14). To obtain a better indication of a
boundary’s width and where it ends, second derivatives can be computed to identify
the inflection point location corresponding to the limit of a boundary (Figure 4.14).
Again, selecting only the highest 10% values of second derivatives (closed circles
in Figure 4.13a), their location indicates where the boundaries end. The orientation
associated with the rates of change is not very informative in the present case
(Figure 4.12b). Indeed, this woodlot has several local gaps that make orientation
of the rates of change uninteresting. In studies dealing with large-scale processes,
as in Barbujani ef al. (1989) where they investigated the migration path of human
populations in Europe, the orientation of the rates of change may provide interesting
insights.

The significance of each candidate boundary element cannot be tested using
a complete spatial randomization procedure. The reason is that complete spatial
randomness tests assume that each datum is independent. This is not the case in
areas where patches and boundaries are suspected to occur because, within the
patch and around the boundary zone, nearby sampling locations are more likely to
have similar values (Fagan et al. 2003). When a complete randomization procedure
is applied, the value of one patch can be placed next to that of another patch,
creating a higher rate of change than in the observed data. Complete randomization
is therefore much too conservative to test the significance of candidate boundary
elements (Oden et al. 1993). A restricted randomization test, which considers the
degree of spatial structure in the data, is therefore recommended (Fortin & Jacquez
2000). Also, when several variables are analysed, one could determine whether the
candidate boundary elements are significant using a binomial test (Barbujani &
Sokal 1991; Fortin 1994). This tests the significance of each candidate boundary
element separately from all the other candidate boundary elements. For example,
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using the arbitrary threshold of the 10th percentile, each rate of change has a
probability p =0.1 of being classified as a candidate boundary element. If a variables
out of b variables analysed are candidate boundary elements at a given locality, the
probability that this location is overall significant for the rates of change of all the
variables is given by a binomial test:

b .
Pr(a|b) = 0.190.9"~,
a

where (z ) is the number of possible ways to choose a elements out of b. The
location is said to be significant when the binomial probability of the actual count
a, given the maximum possible number b, is less than or equal to the 5% level.
To test whether connected candidate boundary elements form cohesive boundaries,
boundary statistics should be used (see Section 4.2.4).

Finally, there are cases when the bilinear algorithm will not be able to provide
accurate estimates of the gradient among the four adjacent sampling location values.
For example when two diagonal values are high and two others are low, hence cre-
ating a saddle shape (see Figure 4.12), the gradient computed at the centroid point
will misrepresent the data behaviour at those four sampling locations. Also, depend-
ing on the degree of spatial autocorrelation within patches, some boundaries may
fall within patches, which makes the detection of cohesive ecological boundaries
among patches more difficult (Csillag ef al. 2001). One way to minimize within-
patch boundaries and to maximize detection of between-patch boundaries is to carry
out boundary detection at several spatial resolutions of the sampling units. Such
scaling procedures allow identification of the degree of boundaries’ persistence
across scales (Fortin 1999b; Csillag et al. 2001; Handcock & Csillag 2002).

Triangulation-wombling In the field, ecological data are rarely completely sur-
veyed on a lattice but rather data are sampled where the sampling locations are
irregularly spaced. With such a data set, lattice-wombling cannot be carried out
unless the data are initially interpolated onto a regular lattice. This is not recom-
mended, however, because as presented in Chapter 3 most interpolation techniques
smooth out the data, which in turn can diminish the strength of boundaries. Fortin
(1994) proposed the use of a triangular window instead of a square one, where the
three nearby sampling locations can be determined using a Delaunay triangulation
algorithm that links sampling locations on the basis of triangles (see Chapter 2).
By doing so, a plane can be fitted to the values of a variable observed at the ver-
tices of the triangle. The magnitude of rate of change, m, based on the values
of the three nearest sampling locations 1, 2 and 3 forming a triangle, is com-
puted using the same equation as the one for lattice-wombling (Eqn (4.3)), but
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where f(x, y)is:

fx,y)=ax + by +c, 4.7)
and
a X1 Vi 17 21
b = X2 2 1 22 . (48)
c X3 y3 1 23

The position of the centroid is at the location:

X1+ X2 + x3 Yi+y+ys 4.9)
3 ’ 3 ' '

As for the lattice-wombling algorithm, the average rate of change can be com-
puted as well as the orientation of the rates of change with Eqn (4.5). By using a
triangle instead of a square window, the saddle problem that can occur with the
square window is impossible. On the other hand, when the four nearest sampling
locations are laid out as a perfect square, there are two possible combinations of
triangles that can be selected, two triangle windows need to be selected (arbitrarily
or not) for the analysis. When the four values are more or less similar, the selection
of two triangles instead of two others will not have a big impact. However, if one or
two values are very high and the others not, the rates of change will differ greatly
and may affect the detection of boundaries.

Figure 4.15 illustrates the triangulation-wombling results based on a subset of 42
sampling locations from the 84 original ones. The triangulated systematic sampling
design of the 42 sampling locations facilitates the visualization of the 64 triangle
windows that were identified by the Delaunay connectivity algorithm (grey dashed
lines in Figure 4.15). As in lattice-wombling, the number of calculated rates of
change is smaller than the number of sampling locations, however, unlike lattice-
wombling, there is no formula to evaluate this number because the number of
triangles depends on the spatial arrangement of the sampling locations but it is
usually around six (see Chapter 2). The candidate boundary elements, based on the
highest 10th percentile (i.e. 10% of 64 triangles = 6), are all connected and located
in the lower left part of the study area. Therefore, both lattice- and triangulation-
wombling are congruent in their detection of boundaries (Fortin & Drapeau 1995).

Categorical-wombling It is common to have species presence : absence data over
a two-dimensional area. In such cases, boundaries are located at the locations in
space that have high-species turnover. These boundaries can be established using
either spatial clustering as mentioned above, or by computing a match—mismatch
measure between adjacent sampling locations (Oden et al. 1993). This last method is
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Figure 4.15 Triangulation-wombling of 26 tree abundance data based on 42
sampling units (represented by squares with solid lines). The 64 rates of change
(one in each triangle that can be established using the Delaunay links — the
dashed lines) are classified in 10 classes of 10th percentile each: the highest rate
of change values are indicated by 1 and the lowest by 10. The candidate
boundary elements are determined using the arbitrary threshold of highest 10th
percentile values (1 in bold) for a total of six (rounded value). The bold lines link
the candidate boundary elements that are spatially adjacent so that they can be
connected into boundaries. There is only one boundary in the lowest part of the
plot linking the six candidate boundary elements together. The locations of these
boundaries coincide with those found with the lattice-wombling algorithm in
Figure 4.19.

known as categorical-wombling (Oden et al. 1993, Fortin & Drapeau 1995), where
mismatch values between adjacent sampling locations (i.e. not the same species in
adjacent sampling locations or one species present in one sampling location and
absent in another) are summed over all the categorical variables (here species).
Adjacent sampling locations can be obtained using any connectivity algorithm
(Chapter 2). The number of mismatches can be ranked as with the lattice- and
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triangulation-wombling algorithms and the highest values are represented at the
midpoint between the linked sampling locations (Figure 4.16). Here there are 105
Delaunay links for a total of 11 candidate boundary elements, i.e. the highest 10th
percentile. Given that the number of elements of candidate boundaries is higher
than the two previous wombling methods (categorical-wombling = 11, lattice-
wombling = 7 and triangulation-wombling = 6), boundaries are detected not only
in the lower part of the study area but also in the middle.

When we want to find boundaries using only presence : absence data of one
species (e.g. species geographical range limit), the categorical-wombling method
is not appropriate and instead home-range delimitation methods based on kernel
approaches should be used. We will not present these home-range methods here
but refer the reader to Blundell et al. (2001) among others.

4.2.4 Boundary statistics

Boundary detection techniques can be as subjective as spatial clustering methods:
in the former, the researcher decides at which threshold to consider rates of change
as candidate boundary elements; whereas in the latter, the researcher determines
both the degree of similarity and the number of clusters to use. To reduce the
degree of subjectivity made in the choice of threshold and to test whether the
candidate boundary elements at a given threshold form cohesive boundaries, Oden
etal. (1993) developed subboundary statistics (hereafter only referred to as bound-
ary statistics). These boundary statistics try to capture the desirable properties of
cohesive boundaries in terms of connected candidate boundary elements (Fortin
& Drapeau 1995; Bowersox & Brown 2001): i.e. a few boundaries (number of
boundaries, Figure 4.17a) that are long (the length of a boundary) and that divide
an area into patches (Figure 4.17b):

* The number of boundaries: the number of connected and isolated candidate boundary
elements (four boundaries — A, B, C and D — in Figure 4.17a). When there are cohesive
boundaries in the study area, the number of boundaries should be low. When there are
weak difference boundaries, the number of boundaries is high.

* The number of singletons: the number of isolated, unconnected candidate boundary ele-
ments (one boundary, D, in Figure 4.17a). When there are cohesive boundaries in the
study area, the number of singletons should be low. When there are weak difference
boundaries, the number of singletons is high.

* The maximum length of the longest detected boundary in the study area: the num-
ber of connected candidate boundary elements (six candidate boundary elements in A,
Figure 4.17a).

* The mean length of all the boundaries in the study area: (6 + 3 + 2 4+ 1)/4 boun-
daries) = 3.
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Figure 4.16 Categorical-wombling of 26 tree presence : absence data based on
42 units (represented by square with solid lines). The 105 rates of change (one
for each Delaunay link — the dashed lines) are classified in 10 classes of 10th
percentile each: the highest rate of change values are indicated by 1 and the
lowest by 10. The candidate boundary elements are determined using the
arbitrary threshold of the highest 10th percentile values (1 in bold) for a total of
11 (rounded value). However, given that several of the rate of change values are
similar, there are 17 candidate boundary elements in total. The bold lines link
the candidate boundary elements that are spatially adjacent so that they can

be connected into seven boundaries: one in the lowest part of the plot linking
six candidate boundary elements, three small boundaries (linking two or three
candidate boundary elements) and three singletons (boundaries with only one
candidate boundary element) either in the lower or middle part of the plot. The
locations of these boundaries coincide with the ones found with those of the
lattice-wombling algorithm in Figure 4.13 and of the triangulation-wombling
algorithm in Figure 4.15.
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(a) Boundary statistics (b) Superfluity statistic

ot

Figure 4.17 Boundary and superfluity statistics for 81 sampling locations (open
circles). The Delaunay links are the dashed lines from which 128 triangles can be
formed. Using the triangulation-wombling algorithm with a 10% threshold, there
are 13 candidate boundaries elements and boundary statistics as follows:

(a) There are four boundaries (A, B, C and D) where one is a singleton (boundary
D). The maximum length and maximum diameter are both for boundary A with
six candidate boundary elements in length and five in diameter. The mean length
is 3.25 and the mean diameter is 2.5. (b) To compute the superfluity statistic, the
rates of change need to be ranked in decreasing order (1 being the highest). The
first boundary that partitions the study area into patches is formed of only seven
rates of change (bold lines) but it was necessary to go down the list to the rank of
18th percentile. The remaining 11 rates of change are part of the next boundary
that divides the big patch into two and one rate of change is part of a difference
boundary in the lower right part of the plot. The superfluity statistic for the first
partition is 0.63 and for the second it is 0.45. To partition the study area into three
patches (open circles, closed circles and closed squares) it was necessary to go
down the list of rates of change to the 36th rank. The rates of change not part of
the two partitioning boundaries are small difference boundaries or singletons.

* The maximum diameter among the detected boundaries: the minimum distance, in terms
of connected candidate boundary elements, between the two most extreme locations of
the candidate boundary elements in a boundary (five candidate boundary elements in A,
Figure 4.17a). These statistics will be the same as the maximum length when the bound-
aries are in a straight line; they will differ, however, when a boundary completely encloses
a sampling unit: the length will be high but the diameter small. These two boundary statis-
tics are therefore quite useful to discriminate among local and small discontinuities from
more pronounced and cohesive boundaries.

* The mean diameters of all the boundaries in the study area: ((5 + 3 4+ 2 + 1)/4 boun-
daries) = 2.75.

* The superfluity statistic: a measure of the efficiency of the boundaries to divide a study
area into patches (i.e. the number of unnecessary rates of change, those whose removal
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does not change the number of patches) divided by the number of necessary rates of
change that separate a study area into patches (those whose removal decreases the number
of patches). The value of superfluity is low when there are only a few major cohesive
boundaries because the majority of the rates of change will be necessary to divide an
area into two, or more, patches. The value of superfluity is high when there are several
weak differences and singleton boundaries dispersed throughout an entire study area so
that the majority of the rates of change do not contribute to the partition into patches.
In Figure 4.17b, the first boundary to separate the area into two patches contains seven
rates of change and 11 were unnecessary ones (in ranking in descending order the rates
of change, it took up to the 18th percentile to divide the area into two patches): the
superfluity statistic is 0.63. The second boundary dividing the area into three patches
(open circles, closed circles and closed squares) is formed of 20 rates of change and nine
were unnecessary, giving a superfluity statistic of 0.45.

Cohesive ecological boundaries will have significant boundary statistics that
have extreme values: high ones for the number of boundaries, maximum length,
maximum diameter, mean length and mean diameter and low ones for the number
of singletons and the superfluity statistic. Significance tests assess whether the con-
nected candidate boundary elements (i.e. boundaries) are likely to have occurred by
chance or not. Oden et al. (1993) compared the two types of randomization proce-
dures to assess the significance of the boundary statistics: a complete randomization
test and a spatially restricted one considering the spatial structure of the data. They
found that a null distribution of boundary statistics generated from a random spatial
pattern led to a conservative test that falsely rejected the null hypothesis fewer times
than when tested using a spatially autocorrelated null distribution.

4.2.5 Overlap statistics

Once cohesive boundaries have been delineated and their significance tested using
boundary statistics, interesting ecological questions can be investigated using over-
lap statistics (Jacquez 1995; Fortin et al. 1996) that quantify the degree of spatial
relationship between the locations of boundaries. Do boundaries directly overlap?
Are boundaries spatially associated or do they repulse one another? In studying
animal responses to forest boundaries, overlap statistics can be used to identify and
to test which type of spatial relationships prevail. There are four overlap statistics:
one measures the perfect spatial overlap between boundaries while the three oth-
ers account for small spatial lags between the two boundaries due to sampling
measurements errors:

¢ The direct overlap statistic, Oy, is the number of the candidate boundary elements that are
at the same location. In Figure 4.18, O, = 7.
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Overlap statistics

Figure 4.18 Overlap statistics between boundaries based on forest vegetation
and animal abundance data for 81 sampling locations (open circles). The
Delaunay links are the dashed lines from which 128 triangles can be formed.
Using the triangulation-wombling algorithm with a 10% threshold, there are 13
candidate boundaries elements for a total of four vegetation boundaries
(indicated by V) and a total of two animal boundaries (indicated by A). The lines
with an arrow at one end indicate the minimum nearest distances between the
two types of boundaries (from one type to the other), while the lines with double
arrows indicate the cases where the minimum nearest distances are symmetric in
both directions. The overlap statistics are: O; (direct overlap) is 7 candidate
boundary elements (as indicated by the VA); the mean minimum nearest distance
statistic, Oy, is 15.5 units; the mean minimum nearest distance statistic, Oy, is
6.5 units; and the overall mean minimum nearest distance statistic, Oyy, is 11.0
units. This example illustrates well that the animal boundaries are closer to the
vegetation ones than the reverse; suggesting that animal boundaries are spatially
associated with vegetation boundaries, but that vegetation boundaries are not
spatially associated with the animal ones.

* The mean minimum nearest distance statistic, Oy, is an asymmetric measure of the distance
from boundary 1 to boundary 2:

X]:min(d,-_)
0, = =
n

where n; is the number of candidate boundary elements in boundary 1 and min(d; ) is the
minimum Euclidean distance between the ith candidate boundary element of boundary 1
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to a candidate boundary element of boundary 2. In Figure 4.18, the minimum distance
between vegetation boundaries and animal boundaries is 15.5 units.

* The mean minimum nearest distance statistic, O,, is an asymmetric measure of the distance
from boundary 2 to boundary 1:

ny
Z min(d_)
—
0=,
ny
where n; is the number of candidate boundary elements in boundary 2 and min(d,;) is the
minimum Euclidean distance between the jth candidate boundary element of boundary 2
to a candidate boundary element of boundary 1. In Figure 4.18, the minimum distance
between animal boundaries and vegetation boundaries is 6.5 units.
¢ The overall mean minimum nearest distance statistic, O;,, between boundaries 1 and 2:

np

Z min(d;.) + i min(d_;)
— —

i= J
Oy =
ny +ny

In Figure 4.18, the overall mean minimum distance between the two boundaries is 11.0
units.

The statistic O; allows us to test whether boundaries spatially coincide with one
another, whereas the three other statistics, O, O, and Oy, can help discriminate
between boundaries that are spatially associated (small significant values) or repuls-
ing one another (large significant values). To test the significant spatial relationship
between boundaries, it is recommended to randomize the rates of change, rather
than the raw data, because the rates of change already include the inherent spatial
structure of each variable and that is what is of interest. As an example, candi-
date boundary elements (20% threshold) based on tree species and shrub species
are mapped in Figure 4.19 as well as the minimum distance between them: Oy is 6
(» =0.1089), Oyree 15 8.6 m (p = 0.0990), Ogprup 18 17.4 m (p = 0.2178) and Oyree_shrub
is 13.0m (p = 0.1188). Although these overlap statistics are not significant, their
trends indicate that the boundaries based on trees (8.6 metres) are closer to those
based on the shrubs (17.4 metres). This indicates that tree-canopy opening due to
gaps affect the spatial responses of both trees and shrubs, but that shrub changes
(isolated singletons) do not affect trees.

The overlap statistics have been used to investigate the spatial relationship
between forest edges and soil discontinuities (Fortin et al. 1996), as well as to
test the relationship between bird and forest boundaries (Hall & Maruca 2001;
St-Louis et al. 2004). These overlap statistics offer a new means of investigating
forest edge effects on other wildlife and environmental variables.
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Figure 4.19 Overlap statistics between 26 tree abundance and 9 shrub abundance
candidate boundary elements (using a 20% threshold; so a total of 13) based on
the lattice-wombling algorithm and 84 sampling locations: Oy is 6 (p = 0.1089),
Otree 1 8.6 m (p = 0.0990), Ogpryp 18 17.4m (p = 0.2178) and Oyree—shrub 1s 13.0m
(p = 0.1188). These results are not significant but can be used, combined with
map observations, to indicate that tree-canopy gaps affect the spatial responses of
both trees and shrubs but changes in shrubs (isolated singletons) do not affect
trees.

4.2.6 Boundary detection based on one variable

With only one quantitative variable (e.g. vegetation productivity based on the nor-
malized difference vegetation index, NDVI), the lattice-wombling algorithm, being
a local boundary detector, may not accurately detect a boundary, especially when
there is local noise and spatial autocorrelation in the data. In such circumstances,
hierarchical global edge detectors and kernel filters are more appropriate, and we
will describe those next.

4.2.6.1 Hierarchical global partitioning using wavelets

A hierarchical global boundary detector, such as the wavelet transform analysis, can
be used to identify boundaries from quantitative data along a transect (Redding et al.
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2003) or an area (see Csillag & Kabos 2002 for mathematical details). In Chapter 2,
wavelet variance was introduced as a method to characterize and determine the
scales of spatial patterns. Wavelet analysis is also used to compress an image to
use less storage (Daubechies 1993) by using only a few wavelet transformation
coefficients that can model the structure of relatively homogeneous subregions
of an image. This feature can consequently be used to detect boundaries. This is
achieved by partitioning and characterizing an image into relatively homogeneous
areas using as many waveforms as are needed to model local pattern. Relatively
homogeneous areas require few coefficients of low values whereas contrasting loca-
tions, such as edges, require more coefficients with larger values. Wavelet analysis
allows local multiscale analysis of the data by partitioning the data into relatively
homogeneous spatial subareas. The determination of these spatially homogeneous
areas is obtained using a hierarchical procedure based on ‘quadtree’ decomposition
(Csillag & Kabos 1996). Quadtree is a recursive algorithm that partitions an area
into four initial quadrants and continues to divide each quadrat into four smaller
quadrants in a hierarchical way until relatively homogeneous subareas are obtained.
Depending on the spatial structure of the data, only one hierarchical partition will
be sufficient to create a homogeneous subarea where a few wavelet transformation
coefficients adequately describe the structure; while for other subareas, it will be
necessary to add more partitions. The resulting subareas are often referred to as
the leaves of the quadtree partition. The smallest possible leaf is the sampling unit
itself. At each partition, wavelet transform coefficients are added to describe the
structure and to indicate the level (scale) of partitions needed. For each leaf there is
an equation. To obtain a higher degree of fit with the spatial pattern of data, more
waveforms (wavelet transform coefficients) need to be kept at each partition level.
For example, using the lattice-wombling of rates of change based on the 26 tree
abundance data, the number of homogeneous areas increases when more coeffi-
cients are kept in the equation (Figure 4.20a, b; Table 4.2). For image compression
purposes, however, there is a trade-off between the amount of resolution retained
and the storage of wavelet transformation coefficients at each scale and leaf. Usu-
ally more precision implies more leaves, thus more coefficients. Because the extent
of the tree data is small (13 rows x 5 columns = 65 values), the partition cannot
be performed for more than two hierarchical levels. Using black spruce percent-
age cover data over a larger region (425 rows x 350 columns = 148,750 values),
the partition can be extended up to the four hierarchical levels (Figure 4.21).

4.2.6.2 Edge enhancement with kernel filters

The kernel filters are local edge detectors used to enhance the contrast of the
adjacent pixel of an image in order to detect the edges of objects. There are several
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Figure 4.20 Spatial partition using the wavelet transforms at two hierarchical
levels based on the rates of change of the lattice-wombling algorithm for the

26 tree abundance data (high values of rate of change are in white and low values
in black): (a) seven subareas were found using only a few coefficients (10%) to
describe the spatial structure in each; whereas in (b) 10 subareas were detected
when using more coefficients (40%). Given the small sample size, only two
partitions could be computed. Both in (a) and () the lower and middle of the
plots show boundaries. When more coefficients are kept (b), other boundaries are
identified in the upper left section of the plot.

algorithms, called operators, which are available in most GIS and remote sensing
software packages (Pitas 2000). The first ones to be developed aimed to measure
the gradient on adjacent pixels using first- and second-order derivatives, such
as the Laplacian filter. The 3x3 discrete approximation kernel version of the
second-derivative Laplacian is:
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Table 4.2 Summary of the spatial analysis methods presented
in Chapter 4

Spatial analysis method Template

Spatial clustering @

Split-moving window

Lattice-wombling +

Triangulation-wombling

Categorical-wombling %

Enhancement filter []

Wavelets

Scale-space j\

where the sum of the kernel equals zero. Note that this Laplacian filter is the same as
the template of the 9TLQYV as in Figure 2.32. With such a filter, the resulting values
are all zero except at the locations where an edge begins and ends, hence, bound-
aries are easier to detect. The major problem with the Laplacian operator, however,
is that it is sensitive to noise, making it necessary to smooth the data first. Smooth-
ing the data can be achieved either by aggregating adjacent cells, obtaining fewer
larger cells (see Fortin 1999b), or by using a Gaussian filter that preserves the same
number of cells. The most efficient kernel filters both reduce the noise and detect
edges, such as the Canny adaptive filter (Canny 1986) or the scale-space techniques
using the Laplacian or Gaussian algorithm (Marr & Hildreth 1980; Lindeberg 1994;
Faghih & Smith 2002). The scale-space techniques perform a series of smoothing
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Figure 4.21 Spatial partition using the wavelet transforms at four hierarchical
levels based on percentage coverage of black spruce in Quebec boreal forest
(high values in white and low values in black). Most of the spatial partitions are
in the upper right quadrant where the juxtaposition of high (white) and low
(black) values necessitates more partition, i.e. coefficients, to describe the data.
Indeed, trend patterns such as those seen in the upper left quadrat are easier to
characterize than several small patches of low percentage coverage in forests of
high percentage coverage.

using a Gaussian kernel of increasing size, allowing detection of the persistence
of boundaries across scales. Figure 4.22 combines the smoothed data based on a
Gaussian filter using a scaling factor of 40 cells and the delineated edges based
on the Laplacian filter. Unlike the wavelet analysis that finds partitions based on
the entire region (Figure 4.21), the scale-space approach identifies many more
local boundaries because all the edges are mapped. As mentioned, the Laplacian
algorithm localizes edges where the sum of the kernel is not zero. Thus, the
boundaries can be either strong or weak, but will be treated similarly. Note that
the use of overly large kernel size can distort the spatial partitioning by smoothing
the data in an isotropic fashion. The scale-space approach has been used in forestry
to identify individual trees in a forest from high spatial resolution aerial imagery
data (Brandtberg 1999).

Several other kernels are available, such as non-linear ones based on polynomials
or global thresholding kernels. The reader interested in kernel filters should read
the computer vision and image recognition literature applied to remotely sensed
data and medical imagery.
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Figure 4.22 Spatial partition using the scale-space technique of the percentage
coverage of black spruce in Quebec boreal forest as in Figure 4.2 1. First the data
are smoothed using a Gaussian filter with a scaling factor of 40 cells (high values
in white and low values in black) and then edges are delineated using a Laplacian
filter (solid lines). All the edges are mapped without knowing which ones
indicate the sharpest difference among cells.

4.3 Concluding remarks

The boundary detection methods presented in this chapter are only the tip of the
iceberg. Here we focus only on the methods that have been developed, or more
commonly used, by ecologists (Table 4.2). There are, however, numerous other
methods mostly developed for image recognition that enhance edges by smoothing
and thresholding noise in an image. These sophisticated kernels are useful when
only one variable is available. Caution is advised, however, because by seeking to
smooth out noise using larger kernel sizes the spatial pattern can be deformed by
imposing an isotropic shape.

In ecological contexts where several variables are used to detect ecotones or
cohesive ecological boundaries, several conceptual and methodological aspects
need to be addressed. From an ecological point of view, all variables and species
may not all have the same weight in the detection of boundaries. Hence, rare
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or omnipresent species may be not as important as indicator species or species
responding to specific environmental conditions. From a methodology perspective,
novel ways to measure the spatial overlap between boundaries are needed so that we
can compute the distance between a line boundary (vector mode) and a difference
boundary (raster mode).

Finally, the most challenging issue to be addressed is the need to integrate both
ecological concepts and statistical theory. What are the most appropriate ways to
generate restricted randomization procedures that can test if boundaries are cohesive
ones? Indeed, as presented above, complete spatial randomness is not an appropriate
procedure to test the significance of rates of change, boundary statistics and overlap
statistics. Restricted randomization that captures the spatial structure of the data is
recommended. With any ecological data, restricted randomization procedures need
to reflect our ecological understanding of the processes. In the particular case of
ecological boundaries, several processes are acting: the processes that created the
patches and those that generated the boundaries. Usually, they are all different, or
at least the processes that generated the patches on each side of the boundary that
separates them are different. Consequently, a given study area where patches and
boundaries occur is the perfect example of a non-stationary situation where global
spatial statistics and global randomization cannot be performed. Hence we are in a
‘chicken and egg’ situation where the proper way to restrict the randomization by
area is first to identify these subareas having the same stationarity: but this is exactly
what we are seeking by doing spatial partitioning. Issues related to randomization
procedures with ecological data are discussed in more depth in Chapter 7.
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Dealing with spatial autocorrelation

Introduction

The familiar procedures of parametric statistics are based on the assumption of
independence of the individual observations in the data under scrutiny, but in
ecological data the assumption of independence is often violated and we need to
understand the effects of a lack of independence. A lack of independence can arise
because, in the natural world, things (samples, observations, etc.) that are closer
together sometimes have a tendency to be more similar than those that are further
apart, a phenomenon known to geographers as ‘Tobler’s Law’ (Tobler 1970, and
see Chapters 1 and 3). We refer to this lack of independence as ‘spatial dependence’
in the data (see Chapter 1), whatever the cause. One source of this phenomenon
is autocorrelation in the data due to causal interactions within the measured vari-
able itself; for example, in studying species distribution and abundance, the abun-
dance of a single species may be spatially autocorrelated because of constraints on
the organisms’ mobility and dispersal. This kind of autocorrelation is sometimes
called ‘true autocorrelation’ (see Chapter 1), but it might be more accurate to refer
to it as ‘inherent autocorrelation’ (‘autogenic’ might be even more accurate, per-
haps, but more unwieldy). The descriptor is to distinguish this phenomenon from
‘induced spatial dependence’ (see Chapter 1), where the observed variable (e.g.
species abundance) has a functional dependence on an underlying variable (e.g.
soil moisture or nutrient content), which is itself autocorrelated (cf. Legendre et al.
2002). It may not be easy to distinguish the two in ecological studies, and it is
possible that both may occur in a single example. In fact, for many types of eco-
logical study, this may be a common situation with both the biological response
variable and an underlying environmental factor having some inherent spatial auto-
correlation. In this chapter, we will concentrate on inherent autocorrelation and
induced spatial dependence, describing their characteristics and effects in some
detail.

212
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Autocorrelation is a ‘fact of life’ for ecologists, because the data we analyse
almost always come from particular physical locations, and natural systems almost
always have autocorrelation in the form of patchiness or gradients, both of which
can occur over a wide range of spatial and temporal scales. As Legendre (1993)
suggests, ecologists must learn to deal with autocorrelation, whether it is viewed as
a nuisance that causes trouble for statistical testing, or as part of a new understand-
ing of the importance of spatial structure to ecological processes. As with most
ecological phenomena, autocorrelation is scale or distance dependent; the values of
a particular variable may be more similar than expected at short distances (positive
autocorrelation) but less similar than expected at greater distances (negative auto-
correlation). A useful first step, therefore, is to consider some of the ways in which
spatial autocorrelation can vary with distance.

This chapter is a bit different from those preceding, because of the importance of
models (and their relation to underlying processes) to the discussion. In organizing
the material for this chapter, it became clear that models are needed to understand
the underlying concepts of the subject, and not just for technical details. We will
begin by discussing simple models of data in one dimension (spatial or temporal),
and later we will describe more general versions of these structures. Historically,
this approach was developed first for time series and was applied only later to spatial
series. The first models apply to observations at a series of n locations, xy, x2, . . .,
Xis - - . » Xy, with the following structures:

Model 1a, complete independence:
xi =g, &~N(002). (5.1a)

Here, ¢; is an independent ‘error’ term following some statistical distribution, such
as a normal distribution with a mean of zero and variance 2. Figure 5.1a illustrates
the fact that the expected spatial autocorrelation between observations is 0. The
term ¢; is usually assumed to follow a normal distribution, but that is not neces-
sary for independence, and other distributions might be considered. An alternative
model of independence can include functional dependence, but retaining spatial
independence:

Model 1b, spatial independence:

xi = Bz + &,
{z,- ¢ (5.1b)

Both ¢; and &; are independent ‘error’ terms following some statistical distribu-
tion, and B is the linear regression parameter. The expected correlation between
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Figure 5.1 (a) Model 1a: the series of values is independent of each other and so
the expected correlation between adjacent values is 0 (see Eqn (5.1a)). (b) Model
1b: the series of x values is dependent on the z-series, which are independent of
each other. The x values remain spatially independent and so the expected
correlation between adjacent values is 0 (see Eqn (5.1b)).

adjacent values of x and between adjacent values of z is zero, as illustrated in
Figure 5.1b.

Model 2, inherent autoregressive:
X =pxi-1+¢&, —1=<p=<+1L (5.2)

Here, ¢; is an error term as above, and p is the autocorrelation parameter that
determines the strength of the autocorrelation. Figure 5.2 illustrates the model; the
expected correlation between adjacent values is p.

Model 3, induced autoregressive:

where & ~ N(0,07). (5.3)

x; = Bz + &,
Zi = pzi—1 + &,

In this model, both ¢; and &; are normally distributed error terms, S is the usual
regression parameter and p is again the autocorrelation parameter. The correlation
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Figure 5.2 Model 2: the values in the series are not independent, with each being
directly dependent on its predecessor and thus indirectly dependent on all
preceding values. The expected correlation between adjacent values cannot be 0,
but p (see Eqn (5.2)).

Figure 5.3 Model 3: the values in the x-series are not independent, but their
observed autocorrelation, r,, is induced by their linear dependence on the
z-series, which is governed by a Model 2 process (see Eqn (5.3.)).

between adjacent values of x is not expected to be 0, but it is a function of the values
of B and p, as illustrated in Figure 5.3. Again, the second error term, &; need not
follow a normal distribution, but many discussions will assume that it does.

Model 4, doubly autoregressive:

{xi = Bzi + pxxi—1 + &, 5.4)

Zi = pZi-1 + &

The symbols are as in previous models, but there are now two autocorrelation
parameters, one for x and one for z. This more complicated model is referred to
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Figure 5.4 Model 4: Correlation of x values comes from two sources, inherent in
x itself and induced by dependence on z, giving a doubly autoregressive model.

as doubly autoregressive because it includes both inherent and induced forms of
spatial dependence; it is illustrated in Figure 5.4.

In Model 1 (both 1a and 1b), the values of x are independent of each other and
Model 2 gives rise to what is called a first-order autoregressive structure, which
is probably the most frequently studied form of autocorrelation. In that case, the
correlation of any two variates, x; and x;, depends only on the separation between
them (here distance can be measured by the number of intervening steps):

Cor(x;, x;) = p" /1. (5.5)

For example, it is easy to show, by substituting for x;_; in (5.2), with the second
version of that equation, that:

Xi = p(pXi—o +&i_1) + & = pXi2 + pgi_1 + &, (5.6)

so that cor(x;, x;_») = p>. The first-order autoregressive structure discussed here is
the simplest of a more general kth-order autoregressive model (Cressie 1991):

k
X = E PrXi—k + &i. (5.7)
=

In Model 3, the dependence observed in x is induced by its linear dependence
on z and z’s inherent autoregressive structure. With more effort, we can show that
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Table 5.1 Matrix of covariance among positions for a
first-order autoregressive inherent correlation structure
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Table 5.2 Matrix of covariance among positions for a first-order
autoregressive induced correlation structure. The constant is

i = B*p/(B*0¢ + (1 — p*)o;) from Eqn (5.3).
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the correlation produced by this model is of a similar form:
Cor(x;, x;) oc pl~7I fori# j. (5.8)

The n x n variance—covariance matrix for the n xs is expected to be as shown in
Table 5.1 for Model 2 and as in Table 5.2 for Model 3.

The value of the variance is different for the two models, being proportional
to o, for Model 2 and to o for Model 3, but the basic structure is the same. If
both these variances are 1, for example, for p = 0.4 and 8 = 0.6, the expected
correlation of adjacent observations for Model 3 is 0.12, considerably less than the
0.48 in Model 2. The covariance structure for Model 4 (doubly autoregressive) is,
not unexpectedly, considerably more complicated, but under the same parameter
values (B = 0.6; p, = p, = 0.4), the expected correlation of adjacent values is
approximately 0.5.

The models discussed so far seem to have been formulated for temporal rather
than spatial series. This impression results from the fact that the models make
explicit the dependence of x; on x;_; (Model 2) and thus on all preceding values
of x. This may seem inappropriate for spatial data, even in only one dimension,
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where we would expect the dependence to be equal in both directions. Remember,
however, that in this apparently directional model, the correlation between any two
variates depends only on the distance between them, not on the direction (Eqn (5.5)).
Consider the following thought experiment: we provide a data series generated by
Model 2, and a second series which is the first series reversed; what criteria could
be used to distinguish the original? In fact, Cressie (1991) commented that while
the autocorrelation structure given by Eqn (5.5) can be generated by Model 2, it can
also be associated with spatial data not generated in that way (Cressie 1991, p. 14).
For example, if the amount of pollen produced by a single isolated tree declines
with distance, d, such that the amount is proportional to (1/2)d, measurements
every metre might resemble the output of Model 2, but Model 2 might not be a
good description of how the observed pattern arises. Therefore, we can continue to
use these models to provide insight into the characteristics of spatial dependence,
for which we may not know the underlying process that generates the correlation
structure we detect.

If we only have a single spatial data set, such as one series of n observations
of a variable recorded for a single time, it is like having only a single realization
of an underlying model or process and we cannot calculate the covariance of two
individual values, such as cov(xs, x5), for example. We can, however, calculate an
observed covariance for all values separated by distance 1, by distance 2 and so
on, as estimates of the underlying covariances, and that is what a covariogram or
correlogram does (see Chapter 3). The details of the calculation are as follows. The
estimated covariance for lag d is:

n—d n—d n n—d
inxiﬂi - in Z xj/n Z(xi = X(tn—d)Xitd — X(d+1.n))
i=1 i=1 Jj=d+1 i=1
C d = = R
=) n—d-—1 n—d-—1

(5.9

where the sample means used are for subsets of the data based on the first and the
last n — d values in the series, which we will refer to as the ‘regional’ means. For
example, in Figure 5.5, for n = 12 and a lag of 3, the sample means of x4 to xj,
and of x; to xg would be used. It is tempting to calculate the correlation for lag d
using the regional sample variances (for example, of x4 to x, and of x; to xy again
in Figure 5.5), as we would for any usual calculation of a correlation coefficient:

C:(d)

b
[2 2
Sx(Ln—d)Sx(1+d,n)

ri(d) = (5.10)



Introduction 219

X1 X2 i X3 ‘ X4 ‘ X5 ‘ X5 ‘ X7 ‘ Xg ‘ X9 ‘X10‘X11‘X12‘

‘X1 ‘Xz ‘ X3 ‘ X4 ‘ X5 ‘ X6 ‘ X7 ‘ Xg ‘ X9 ‘X103X11§X12§

Figure 5.5 The calculation of autocovariance or autocorrelation for n = 12 and
lag d = 3: the ‘regional’ sample means are calculated from x; to x¢ and from
X4 to x15. Using the regional values of sample variance results in poor estimates
of the autocovariance or autocorrelation.

but this leads to poor estimates (Legendre & Legendre 1998, Jenkins & Watts 1968).
A better estimate is:

Ci(d) _ Ci(d)
i GO

Sx(1,n)

re(d) = (5.11)
This is the formulation for calculating autocorrelation that we will use in investi-
gating some of the characteristics of a range of autocorrelation models, including
those already described.

The discussion so far has focused on data in one spatial dimension, but many
of the comments apply equally well to data in two or more dimensions. For
example, in two dimensions, we usually estimate the covariance using distance
classes, as described above, but in some cases, where anisotropy is a concern
(see Chapters 1 and 3), direction classes may be used as well. In two or more
dimensions, however, although the concepts related to spatial autocorrelation are
the same as those in one dimension, the technical aspects of setting up models
of spatial autocorrelation in additional dimensions tend to be more complicated.
For example, Whittle (1954) shows that in one dimension bilateral dependence
(where x; depends on both x;_; and x;;) can be reduced to unilateral dependence,
which is more tractable, but in two dimensions, a similar reduction is not easily
achieved.

To investigate further the characteristics of models of autocorrelation in one
dimension, we need to generate not one, but a large number of realizations of these
models on a computer, using n = 500 and p = 0.4. For each realization, we calculate
the sample mean, X, and sample variance, 52, and then the 7 statistic to test the null
hypothesis that the true mean of x is zero: Hy = (u, = 0):

x—0

= .
s/n

(5.12)

For 10,000 realizations of each model, we count the number of times the test statistic
is less than the 0.05, 0.5, 2.5 and 5% critical values of #,_; and the number of
times it is greater than the 95, 97.5, 99.5 and 99.95% critical values. For Models 3
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Table 5.3 Results of 10,000 simulations for Models 1 to 4 (p = 0.4; B = 0.6)

Critical value (%)* 0.05 0.5 2.5 5 95 97.5 99.5 9995
Expected count 5 50 250 500 500 250 50 5
Model 1a 4 43 227 472 531 262 66 3
Model 1b 6 54 272 628 442 198 42 6
Model 2 116 419 913 1,317 1,575 1,086 490 126
Model 3 (x) 32 181 497 857 617 369 124 24
Model 4 (x) 309 648 1,252 1,600 1,635 1,210 624 237
Model 3 or 4 0 0 0 0 0 0 0 0
(x)(residuals)

“ The values tabulated are the number of trials in which the test statistic was more extreme
than the critical value associated with the probability given by the column heading. The
null hypothesis (of mean 0) is true and, therefore, these rates represent Type I error.

and 4, which include induced autocorrelation, we can examine the results both
for the original variable x and for its residual after the linear dependence on z is
removed: X' =x—(a+ bz), where a and b are estimated from the data using the
standard linear regression techniques. Table 5.3 shows some typical results.

For the independence model (Model 1a or 1b), the rates are close to the expected
counts (as they should be), but for Model 2 and Model 3 (x), the rates are much
higher. This comparison illustrates the effect of positive spatial autocorrelation
on standard statistical tests: they become too liberal, producing more apparently
significant results than the data actually justify (Cliff & Ord 1981, among many).
This effect is one of the main topics of this chapter and the subject of much of
the discussion that follows, but we should interject a comment about the last line
of Table 5.3. Given that in Model 3 (x), the autocorrelation appears in x because
of its linear dependence on z, which has inherent autocorrelation, a reasonable
prediction would be that removing that dependence would just remove the induced
autocorrelation, and its effect from x, so that the last line should resemble the first.
The fact that it does not may be a bit surprising, and we will return to the topic
of removing linear (and other) dependence later in this chapter. The concept is
closely related to the process used in time series analysis called ‘pre-whitening’ in
which trends in the data are removed, supposedly leaving only pure error or ‘white
noise’.

The main message of Table 5.3, putting aside the last line of interesting zeros,
is that positive spatial autocorrelation, whether inherent or induced, produces ‘too
many’ significant results, and a lot too many. For a two-sided test with o = 0.05,
as is often used in ecological studies, i.e. using the 2.5 and 97.5% critical values,
Model 2 gives almost 2,000 apparently significant results, four times as many as the
nominal rate of 500 in 10,000 trials. For Model 3 (x), with the same value of p, itis
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at least twice the nominal rate, and for Model 4, it is about eight times the nominal
rate. Clearly, the magnitude of the effect could lead to serious errors in decision
making based on the test results. An intuitive understanding of this effect can be
based on the fact that because the n observations are not completely independent
of each other, we do not get a full » units of information, but something less. The
‘effective sample size’ is the equivalent number of independent observations that
would provide the same amount of information as n non-independent observations.
Here the effective sample size, #/, is less than n and so when we use s/n in the
divisor of the ¢ statistic, rather than s/n’, we are dividing by a number that is larger
than it deserves to be, thus underestimating the variance of the mean. This then
produces a test statistic too great in magnitude. In going through the literature that
deals with this topic, we can find many articles that illustrate the problem, but few
that identify ‘appropriate remedial action’ (cf. Haining 1991). There are, however,
several approaches that might be taken to deal with this problem, ranging from
some fairly unsophisticated ‘quick fixes’, to sophisticated solutions that depend on
the suitability of a particular underlying model, to a few robust techniques of more
general applicability.

We will not keep the reader who is intrigued by the line of zeros at the bottom
of the Table 5.3 in suspense (although they are pertinent to a later discussion).
The zeros arise because by using x' = x — (a + bz), with a and b estimated from
the data, the mean of x" is forced to be zero, causing the test statistic also to be
zero in every case, and thus never outside the critical values. The topic of the
effect of removing the dependence of one variable on another will return in another
context. We will now proceed with our discussion of the main problem, the fact that
spatial autocorrelation changes the rates at which statistical tests detect significant
results.

5.1 Solutions
5.1.1 Quick fixes

The simplest approach might be to acknowledge the existence of spatial autocor-
relation and to adjust the Type I error rate, o, to a more conservative value: e.g.
o' = a/5. For example, in Dale & Zbigniewicz (1997), t-tests were carried out on
plant density data from transects of 1,001 contiguous 10 x 10 cm quadrats. They
used a 1% significance level, rather than the usual 5% because the critical value for
1% for large v is 2.57 which is close to the 5% critical value for v = 5. Therefore,
even if the autocorrelation in the data reduced the effective sample size by an order
of magnitude or more, from 1,001 to as low as 5, an « value of less than 0.05 was
assured. This may not be the best approach, because we do not know by how much
the nominal error rate needs to be adjusted to give a true error rate of the desired
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value. Depending on the true autocorrelation structure underlying the data, there is
areal danger of using a test that is much too conservative, as we will discuss further
below.

One feature of the commonly invoked first-order autoregressive structure
(Model 2) is that autocorrelation declines exponentially with distance. This suggests
that for distances greater than some particular value, the autocorrelation is effec-
tively zero and observations further apart can be treated as independent. If this is
true, and there is a great abundance of data, it should be possible to use only a
widely spaced subset of the data for analysis to ensure independence. For exam-
ple, Ostendorf & Reynolds (1998), in an analysis of landscape patterns in two
dimensions, determined that autocorrelation did not extend beyond 20 pixels in
their data, and therefore used what they considered to be a non-autocorrelated
subset of pixels 20 units apart, 1/400 of the pixels available. This approach has
two major draw-backs: first, it seems very wasteful of data (Legendre & Legendre
1998, p. 14) and second, the concept of a ‘distance to independence’ may be mis-
taken for real spatial data, where non-zero autocorrelation may have an effect
even if it is not significantly different from zero. We will elaborate in the next
section.

5.1.2 Adjusting the effective sample size

As we described above, autocorrelation in data modifies the effective sample size
to be something other than the number of samples, n’ # n. Positive autocorrelation
reduces the effective sample size and therefore the estimated degree of spatial
autocorrelation can be used to determine how much smaller the effective sample
size is than the number of observations (Clifford et al. 1989; Cressie 1991; Dutilleul
1993b). Let us begin by considering tests concerning the mean, as described above.
In the absence of spatial autocorrelation, the variance of the mean is estimated as
the sample variance divided by the sample size:

Var(%) = s°/n. (5.13)

In the presence of spatial autocorrelation, 7 in (5.13) is replaced by ’, the effective
sample size, which is what we wish to determine. In general, as Cressie (1991)
explains, the variance of the mean of the observations, x1, x»,..., X, can be adjusted
to correct for autocorrelation using the covariances of the xs, ‘Cov(x; x;)’ (Cressie
1991, Eqn (1.3.4)):

Var(®) =n"> Y > Cov(x;, x;). (5.14)

i=1 j=I
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Therefore, we can get an estimate of the effective sample size by equating the
right-hand sides of (5.13) and (5.14) and transposing to isolate n’:

n’s? n?

n' = (5.15)

Z ZCov(x,, Xj) Z ZCor(x,, Xj)

i=1 j=1 i=1 j=

For example, for a first-order autoregression correlation structure (Table 5.1)
with parameter p, i.e. Cor(x;, x;) = p!/, the effective sample size is:

_ P p> 1—p 1
_[1+21—j;(1—1/n)—2(1_p)2 - ] 1. (5.16)

For large n, this becomes:

1_
n=n—P _ne, (5.17)
1+p

where © is the approximate correction factor ® = (1 — p)/(1 4 p). For example,
if n = 1,000 and p = 0.4, then n" = 429. Numerical simulations by computer, such
as those described above, using artificial data with this autoregressive structure
confirm the correctness of using n’ = n® for one- and two-sample #-tests and for
ANOVA F-tests for comparisons among means. Computer simulations also show
that the same correction will apply to paired sample ¢-tests (Dale & Fortin 2002). Of
course, for this to be useful, the autoregressive model has to be a good description
of the autocorrelation structure, or the approach has to be robust to departures
from that model. We will discuss the question of robustness further, because it is
extremely important if the method of adjusting the effective sample size is to be
used in real data analysis.

Our next step is to investigate further the equation for the effective sample size
based on the correlation matrix, R, and its elements r;; estimated from the cor-
relation calculated for each lag distance, r(d). Because we cannot estimate the
correlation of individual pairs of variates, our best estimate is to calculate the corre-
lation for each lag, d, for which there are (n — d) pairs. In the correlation matrix of
individual pairs of variates (see Table 5.2 as an example) there are n 1s on the main
diagonal, and then two of each of the other entries, on either side of the diagonal.
Therefore the estimate based on these correlations is:

2 I’l2

AR = —" = . (5.18)

n—I1
DD ori a2 (- dyrd)

i=1 j=I d=1
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Table 5.4 First-order serial autocorrelation

structure
1 p 0 0 0
o 1 P 0 0
0 0 1 0 0
o 0 p 1 0
0 0 0 0 1
€i3
€io €io
€1 €i4
8/ 81’
€in

X, €—> X, <—> X, <—> X
p=05 p=05 p=05

i+1

Figure 5.6 Model 5: x; = ¢; + €,_1, a first-order moving average model. Half the
information in x; is contained in x;_; and the other half in x;;; (see Eqn (5.19)).
Unlike Model 2, there is no dependence beyond lag 1. The correlations are:
Cor(x;, xi—1) =0.5and Cor(x;, x; | j £ i;j #i £ 1) =0.

To evaluate the effective sample size, n'(R), we will examine other autocorre-
lation structures. For example, a first-order serial autocorrelation structure has a
correlation of p between adjacent observations, but it is O for all other pairs
(Table 5.4). The effective sample size is n' = n*/(n + 2(n — 1)p). Model 5 is
a first-order moving average model:

x; =& +¢—1, (see Figure 5.6), (5.19)

itproduces p = 0.5, and for large n, n’ = n/2. Figure 5.6 gives an intuitive illustration
of why this is so. If half the information in x; is contained in x;_; and the other half
is contained in x;, then only every second one of the xs are needed to recover all
the information in the series, and ' = n/2.

Model 5 is the simplest member of a class of autocorrelation models called
‘moving average’ models, which, with k being the model’s order, have the general
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Figure 5.7 Illustration of a general moving average (MA) model, here of order 4.
A template with weights moves along the data series and calculates a weighted
average at each position to create the value of x.

form (Chatfield 1975):
k
Xi = &; + ZO[j&‘,‘_j. (520)
j=1

Figure 5.7 illustrates the appropriateness of the name, with a moving window
creating a possibly weighted average of the es. The question of directionality is not
as puzzling for these models as for the autoregressive. For example, for Model 5, we
could re-label all the x;s as x;_;, producing forward-looking rather than backward-
looking dependence, without changing anything else in the characteristics of the
data produced.

Extending autocorrelation beyond the first neighbours using the second model
of this moving average series, the correlation between adjacent observations is pj,
P for pairs at one remove, and O for all other pairs. The effective sample size is:

n' =n?/[n+2n—p +20n—2)p]. (5.21)

The values p; = 0.67, p, = 0.33 can be generated by the model (Model 6):
X;i =& + &1 + &> (see Figure5.8). (5.22)

For these values and large n, n’ = n/3.

Table 5.5, similar to one presented in Dale & Fortin (2002), shows the results
for a range of autocorrelation structures, generated in the same fashion as Models 5
and 6. With the exception of the last two lines, computer experiments show that
the effective sample sizes in the last column are ‘correct’ in that, with 10,000
realizations as in Table 5.3, the rates at which the true null hypothesis is rejected
are close to the nominal values, when the derived effective sample size is used. The



226 Dealing with spatial autocorrelation
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Figure 5.8 A particular second-order moving average model:
Xj = & + &i—1 + &—2, Cor(x;, x;—1) = %3 and Cor(x;, x;—») = /3.

Table 5.5 Effective sample sizes based on autocorrelation
values, n'(p), for artificial data from ‘moving average’
(MA) models of autocorrelation

o(d),d=0,1,2, ... X py/n 1'(p)
1,0.5, 0 2 250
1,0.67,0.33,0 3 167
1,0.8,0.6,0.4,0.2, 0 5 100
1,0.25,0, —0.25, 0 1 500
1,0.5,0, —0.17, —0.33, —0.17, 0 2% 750
1,04, —0.2, —0.4, —0.2, 0 /s 2500
1, —0.83, 0.67, —0.5, 0.33, —0.17, 0 = ?
1,-0.75,0.5, —0.25, 0 >~ ?

¢ The actual sample size is n = 500.
b 0 means that all correlations at this and larger lags are zero.

most interesting autocorrelation structures are those which have some negative auto-
correlation added. (For example, the model x; = ¢, +¢&_1 —&_2 — &3 — &i_4,
cited in the third to last line of Table 5.5, produces apparently cyclic behaviour in
the data, but it is aperiodic because the autocorrelation is close to zero beyond lag 4,
see Figure 5.9.) Using the general formula for effective sample size and depending
on the parameter values chosen, this can actually increase the effective sample size
to an extent that it is greater than n. This means that strong positive autocorrelation
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Figure 5.9 Cyclic behaviour of the variable x induced by the moving average
model x; = &; + &_1 — &i_» — &_3 — & _4. The behaviour of x is, however,
aperiodic, with autocorrelation expected to be 0 at lags of 5 and beyond.

at small scales does not necessarily compromise statistical tests if there is cyclic
behaviour that produces negative autocorrelation at larger scales. In fact, the test
statistic may require inflation rather than deflation to achieve significant results at
the correct nominal rates. This fact has implications for testing ecological data in
which repeating structure (spatial pattern) is very common. One implication is that
Dale & Zbigniewicz (1991), who attempted to correct for autocorrelation effects
by using o = 0.01 rather than the usual ¢ = 0.05, may have greatly overcorrected
based on the short-range positive autocorrelation but leaving out of consideration
the longer range negative autocorrelation.

An important point is that autocorrelation at all lags must be included in the
calculation of effective sample size, even if the individual value does not seem to
be itself statistically significant. It is certainly tempting, and may seem logical to
suggest using only significant values, but that can lead to errors. As an illustration,
consider the first-order autoregressive model (Model 2) with p = 0.3. For n = 400,
the effective sample size is 400 x 0.7/1.3 = 215.4. What happens when we omit
the values of autocorrelation that are not significant? Ignoring for the moment that
tests for different distances are not independent, using the inverse of the z transform
of the correlation coefficient with n — 3 degrees of freedom (Sokal & Rohlf 1995),
the critical value to determine significance is

Ny = 0.098. (5.23)

tanh
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The sequence of autocorrelation coefficients for increasing lag is 1, 0.3, 0.09,
0.0027, ... Of these, only the first two are significant, so that the sum of the
correlations is:

nxl1l4+2n-—1)x0.3=06394,

giving an effective sample size of:

2
W= 400%/639.4 = 250.2. (5.24)

n n

2.2 Py

i=1 j=1

Therefore, the effective sample size calculated from significant values is 16%
greater than that calculated using all lags. A more extreme example would be a
situation with autocorrelation of 0.3 at lag 1, 0.1 at lag 2 and —0.004 for all lags
thereafter. If only ‘significant’ values are used, the effective sample size seems to
be 222.5, but when all the small negative values are included, the effective sample
size is 1,840! These examples illustrate that omitting the ‘non-significant’ values
can strongly affect the effective sample size calculated. Applying a Bonferroni-type
correction (see Chapter 3) to the critical value used, in acknowledgement of the
lack of independence of the tests of different lags, does not improve the situation,
because it makes the criterion for significance more stringent, thus tending to detect
and thus to omit even more ‘non-significant’ values. One implication of this discus-
sion is that a large number of small negative values for autocorrelation at greater
distances may be able to counteract the effects of larger positive values at short dis-
tances. This situation may arise frequently in ecological data, if the system being
studied exhibits patchiness, which can give rise to cycles of positive and negative
autocorrelation.

Based on the ‘correctness’ of the effective sample sizes for a range of models
given in Table 5.5, it is tempting to suggest that the solution is to calculate the
autocorrelation matrix, R, from the data and then to use its values to find the
correct effective sample size. Alas, the computer runs that gave rise to Table 5.5
demonstrated the real problem with trying to adjust tests of data with spatial auto-
correlation using estimates from the data themselves. The real problem is that the
realizations of a very simple structure, such as that generated by x; = ¢; 4+ €;_1, can
have very different estimates of n’. For example, in a set of 1,000 runs with n = 500
of that simple model (the first line of Table 5.5), while the average effective sample
size calculated from the data was 302 (which looks fine), the range for individual
realizations was from 48 to 492. Clearly, this approach cannot be used for even
artificial data with a simple underlying structure and how much more dangerous
might it be for real data with an unknown and possibly complex structure.
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Another feature became apparent from the computer runs, which is that while
XX p;; cannot be less than 0, from a simple algebraic argument, in rare cases,
estimates from data can be. The argument that the overall sum cannot be less than
Zero is:

n -1
2": Xn:pijaz = ZVar(x,-) + 2"2: 2": Cov(x;, x;) = Var (ixi),
i=1 i=1

i=1 j=1 i=1 j=i+1
(5.25)

which, being a variance, cannot be negative. For the models in the last two rows
of Table 5.5, the expected sum of the autocorrelations is very close to zero (for
example, see Figure 5.7, which gives rise to the last row of the table).

In the absence of justification for proceeding from the data to an estimate of
effective sample size, it may seem that we should abandon this approach, but that
is not exactly true, as we will show. Before we return to a discussion of general
solutions (if any) to the problem, however, we will describe other kinds of models
that produce spatial autocorrelation, as important background information, and then
we will present some particular examples of corrections available in the literature.

5.1.3 Other kinds of models

The discussion so far has dealt implicitly with continuous variables, often with
a normally distributed error term, for which the calculation of correlation was a
logical approach. We need also to consider the concept of autocorrelation as it
applies to discrete variables, the most simple being data that consist of sequences
of Os and 1s. The introduction of autocorrelation in such data can be achieved by
having the value at a particular location being dependent on the values at preceding
locations; for example, the probability of a 1 could decrease with the length of the
preceding run of 1s. These structures are called Markov models and are described
in greater detail below.

The discussion so far has also implicitly and explicitly used directionality in the
description of models: for example with x; as a function of x;_;. This direction of
apparent dependence is logical in time series, but does not seem to have the same
intuitive appeal for spatial data, particularly when we consider two dimensions
rather than just one. The unidirectionality of the one-dimensional models is apparent
in the first-order autoregressive model (Model 2):

Xi = pXi—1 + &;. (526)

The question is whether, in spatial models, both the ‘forward’ and ‘backward’
neighbours should be considered; for example:

Xi = pxXi—1 + & + QXiq1. (5.27)
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Clearly, to implement this structure in a practical way requires the simultaneous
solution of a set of n equations for the n values of the xs. This is not as direct as
starting with a random value for xj, and then generating x; to x, each from the
preceding value using Eqn (5.26).

In this one-dimensional example, each location has two neighbours, but in two
dimensions, usually more neighbours are considered, whether in a regular lattice
or not, and their effects on the location’s value may have different weights depend-
ing on the neighbours’ positions and distances. The weights are often given in a
‘proximity matrix’, W, with w;; being greater than zero if the value at location i is
not independent of the value at location j. For example, in a regular square lattice,
all ‘queen’s move’ (or ‘king’s move’ if it is only one step) neighbours might receive
equal weighting (say !%g) in a proximity matrix, with all others being 0. There is
a large number of different ways in which autocorrelation can be introduced in
two-dimensional data, and we will describe only two, the simplest versions of two
approaches: simultaneous autoregressive models (SAR) and conditional autore-
gressive models (CAR). These approaches are most easily explained using matrices
(indicated by bold font), and our explanation of SAR borrows heavily from Bailey &
Gatrell (1995) who describe this model with great clarity.

Simultaneous autoregressive models are based on the concept illustrated in
Eqgn (5.27), in which the equation defining x; contains x;_; and x;;, each of which
has their own defining equations containing other xs. Therefore there is a system of
simultaneous equations to be solved. We begin with the model in which the mea-
sured variable x, given as a vector, X, is linearly dependent on some independent
underlying variables, z1, z2, z3, . . . , given as a matrix Z:

x=17p +u, (5.28)

where u is a vector of possibly non-independent errors with a mean of zero and a
variance—covariance matrix C. Spatial autocorrelation is introduced into the model
by having the errors given in u autocorrelated:

u=pWu + ¢, (5.29)

where ¢ is a vector of independent error terms: &; ~ N (0, 082). The matrix W is the
neighbour weights (standardized to row totals of 1), described above. In this case,
W is not necessarily symmetric, making it possible to include the effects of water
currents, prevailing winds or other factors that might impose directionality on the
autocorrelation effects. The model is now:

X =172 + pW(x — Zp) + & (5.30)
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Figure 5.10 (a) Illustration of the asymmetric weight matrix given in Eqn (5.32).
(b) Nlustration of the symmetric weight matrix given in Eqn (5.37).

and the variance—covariance matrix (associated with u) is:
C=0o’[d—pW)'d—pW)]™" (5.31)

(see Bailey & Gatrell 1995 for the derivation). Bailey & Gatrell gave a simple
example for n = 3 and p = 0.5 (see Figure 5.10a): if

0.0 03 0.7
W=102 00 08/, (5.32)
0.7 03 0.0

then

1.81 097 1.31
C=02|097 1.69 1.15]. (5.33)
1.31 1.15 1.90

In this example, the variances (the elements on the main diagonal) are not all the
same, but they are all greater then 1.0 because the variances are ‘re-inforced’ by
the correlation with the other values. The variance of the third unit is the greatest
because it has the largest values of the neighbour weights.

Although the SAR model, just described, is used extensively in quantitative
geography, for some technical reasons, many statisticians emphasize the use of the
CAR model instead. The conditional autoregressive model is not based on the linear
dependence of the value at a particular location on the values of its neighbours, but
the probability that it takes a particular value is conditional upon the neighbour
values:

P(xi =x) = P(x; = xl{xj;w;; > 0}). (5.34)
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It is not that much different from the SAR model, but it requires that the weight
matrix, V, be symmetric. The model is:

x =78 +u, (5.35)

where u is a vector of errors with a mean of zero and a variance—covariance matrix
that includes the autocorrelation parameter ¢:

C=0*I1-¢V) L. (5.36)

A simple CAR example for n = 3 is illustrated in Figure 5.10b (the values are
not required to be equal):

0.0 0.75 0.757]
V=1075 00 075], (5.37)
0.75 0.75 0.0

with ¢ = 1, this gives

1.2 0.4 047
C=0%|04 12 04]. (5.38)
04 04 12

Again, the values on the main diagonal are greater than 1.0, but here they all
have the same magnitude.
A slightly more realistic looking example is:

0 08 0 0 0O 0 O
08 0 08 0 0 0 0
0O 08 0 08 0 0 O
V=|0 0 08 0 08 0 0 (5.39)
0O 0 O 08 0 08 0
0O 0 0 0 08 0 08
0O 0 0O 0O O 08 0
then, with ¢ = 0.625,
(7 6 5 4 3 2 1]
6 12 10 8 6 4 2
s2|5 1015 12 9 6 3
C=—14 8 12 16 12 8 4 (5.40)
413 6 9 12 15 10 5
2 4 6 8 10 12 6
1 2 3 4 5 6 7
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The two kinds of models are closely related and any SAR process is a CAR
process with

V=W+W —W'w, (5.41)

but the converse is not true (see Ripley 1981).

In the spatial analysis literature, the use of moving average models is surprisingly
rare, although Haining (1978) advocated their advantages. For lattice or grid data,
it seems natural to consider a moving average based on rook’s move neighbours:

Xij = &ij + (pei-1,j + pr€iv1,j + Puij—1 + Paki j+1)/4
or, more simply:

Xij = €ij + p(&im1,j + €1+ & j—1 + & jr1)/4 (5.42)

The MA models have the advantage that autocorrelation can be made to decline
sharply with distance and become more-or-less zero, whereas in autoregressive
models it tends to persist over greater distances. In general form, the MA model is:

x =172+ pWe + ¢, (5.43)
and the variance—covariance matrix is:
C=0’[0d—pW) + T - pW)]. (5.44)

This looks similar to the equation for the SAR model, but there is no inverse in
the formula. For the same symmetric proximity matrix, W, the variance—covariance
matrices that arise for the three different models will, in general, be different. For
more on these models (SAR, CAR and MA), their properties and the estimation
of their parameters, see Ripley (1981), Upton & Fingleton (1985), Griffith (1988)
and Cressie (1991), Bailey & Gatrell (1995) among many. We will not go into the
technical details here, with so many good references available. We will point out
that these models can be viewed as an aid to understanding; the fact that we can
estimate the parameters of a model and get a good agreement with the data does not
mean that we know the underlying process. For real data, we probably do not really
know even the proximity matrix, W. The other useful characteristic of such models,
however, is that we can use them to generate artificial data of known structure, with
which to compare what we have observed in the data we are trying to analyse. The
use and comparison of these types of models seems to be the only way to approach
the study of this phenomenon.

We now turn to some particular examples of solutions to the general problem of
the effect of spatial autocorrelation on statistical testing.
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5.1.4 Particular examples

Tests for proportions

Tests for proportions are carried out using contingency tables of counts and
goodness-of-fit statistics such as Pearson’s X? or the log-likelihood ratio, G. For
example, the positive or negative association of two species can be tested based on
the counts of their presence : absence in sample units. These counts are summarized
ina 2 x 2 contingency table, and then the goodness-of-fit statistic is calculated and
compared to the x? distribution with one degree of freedom. The question here,
however, is how to account for the lack of independence among sampling units
due to their spatial locations. Returning to the one-dimensional situation, if the
sample units are contiguous (such as quadrats in a string or transect), the data
will have spatial autocorrelation and their dependence might be well described by a
Markov model. For example, suppose that each of two species is recorded in a string
of contiguous sampling units as being in one of two possible states: 0 for absence
and 1 for presence. A reversible Markov model of the sequences of presence and
absence for species s would be based on the underlying transition probabilities,
7,(i, j), the probability that it makes the transition from state i to state j between one
quadrat and its neighbour. The overall probability of state i for species s is m;(i).
These two probabilities can be estimated from the data as 7(i, j), the frequency
of transition from state i to state j, and p,(7) as the overall probability of state i for
species s. The approach to accounting for the spatial dependence in the data is to
use these estimated probabilities to determine how much the test statistic calculated
from the 2 x 2 contingency table, derived from such data, should be deflated to give
the correct rejection rate; i.e. to determine a value, ®, by which to decrease the test
statistic.

For 2 x 2 contingency tables derived from data in which the serial correlation is
due to a reversible Markov process, Tavaré (1983) provided a deflation factor for
the test statistic, based on the non-unit eigenvalues, A, of the transition probability
matrices which can be estimated from the frequencies as:

2": T5(i, j) = ps(i)

Ay = — -~ with s =1or?2. (5.45)
i=1 2 - 2pv(l)
The deflation value is then:
14+ A1A
_ 1tMh (5.46)
1 —Xih

(Tavaré 1983; Tavaré & Altham 1983; see Upton & Fingleton 1989, p. 92).
The test statistic is calculated in the usual way but it is divided by the deflation
factor before being compared to the reference distribution, x7 in the case of a2 x 2
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contingency table. In the particular case of the goodness-of-fit statistic, deflating the
statistic by ® and reducing the effective sample size ton’ =n®~! are mathematically
equivalent.

As a simple example, suppose that both species A and B have a transition prob-
ability from presence to absence or absence to presence of 0.1 and an overall
probability of either state of 0.5. Under those circumstances,

N _A__og—a5_+o9—05 _og
L=y %05 ' 2-2%x05

and so
B 1+0.8x0.8

T 1-08x08

This deflation factor is clearly large, but it results from the very high probability
of adjacent quadrats having the two species in the same states, leading to a large
amount of spatial autocorrelation in the data. If only one of the variables is spatially
autocorrelated, deflation is not necessary (cf. Tavaré 1983).

Multiway 2* tables arise in situations such as the testing of multispecies asso-
ciation, based on the presences and absences of k species in sampling units (Dale
etal. 1991). Again, if the data are from contiguous quadrats in transects, the spatial
dependence may be well described by Markov models. Porteus (1987), following
the Tavaré approach, provided the corresponding formulation for multiway tables,

4.56. (5.47)

again based on an underlying Markov process, but the formula becomes quite com-
plicated. For example, for a2 x 2 x 2 contingency table, the deflation factor is:

1+)\.1)\2)x3 1+)n])n2 1+)»1)»3 1+)\,2)\,3>

(1—AAA 1 — A 1 — XA 1 — A
(D3()L)= 1A2A3 172 173 23 ] (548)
4

With three variables, of which only two have spatial autocorrelation, deflation is still
necessary, but it reduces to Eqn (5.46). Cerioli (1997) provided a deflation factor
for testing 2 x 2 contingency tables based on the correlation structure calculated
from the data, rather than on the properties of an underlying Markov model. It looks
very similar to the general approach of Clifford et al. (1989) and Dutilleul (1993b)
and seems to be robust.

Following the evaluation of an entire contingency table using a goodness-of-fit
test, standardized residuals are often calculated to determine which cells of the table
contributed most strongly to a significant result. Where o is the observed frequency
and e is the expected, the Freeman—Tukey standardized residual is calculated as:
7 =4/0+ o+ 1—+/4e + 1. For a2 x 2 table, the standardized residual can be
compared to ,/ x7/4 to determine which values make important contributions to
the overall significance (Sokal & Rohlf 1981). Dale et al. (1991) suggested that
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whatever the inflation factor, ®, is for the overall statistical test, the standardized
residuals can be corrected by dividing by +/®. The argument for this procedure
is that the sum of the squares of the residuals is approximately the test statistic
and if it is to be deflated by @, the residuals should be deflated by its square-
root.

The main problem for this approach in an ecological context is that its appli-
cability depends on how well a Markov model describes the characteristics of the
data. Often, that will not be a good description of the data, and the test is not par-
ticularly robust to departures from the underlying assumption. To investigate this
point, we need to understand the implications of a first-order Markov model for the
pattern we see in the presence : absence data of a single species. If the probability
of transition between different states is to = 7(0, 1) = (1, 0), the probability of
an unbroken run of Os or 1s of length k is (1 — 7)*~'7 ». Therefore, the expected
length of unbroken runs of Os or of 1sis 1/7 5, but the distribution of lengths follows
a geometric distribution with many short runs and very few very long ones. For
example, with to = 0.1, the expected length of a run is 10, but 25% of runs are
expected to be of length less than 5, and only 8% will be longer than 40. Figure 5.11
contrasts the irregular appearance of field data from transects through sedge mead-
ows on Ellesmere Island (see Dale et al. 1993; Young et al. 1999) with data generated
by a Markov model. An assessment of the characteristics of the runs of 1s and Os
would be a good first step in the analysis of this kind of data (see Sokal & Rohlf
1995 for a ‘runs’ test of randomness).

To investigate the robustness of the proposed correction to account for spatial
dependence, we can examine other models of presence : absence data, for which
the mean lengths of runs and the overall frequencies are the same, but for which
the run lengths are more restricted, for example, following a uniform distribution,
rather than a geometric distribution.

As shown in Table 5.6, only when the data mimic the distribution that results
from the Markov model fairly closely, as in uniform 1 to 19, is the deflation of the
test statistic or adjustment of the effective sample size able to achieve the correct
significance rates.

The Markov models described here are ‘first order’ in that the presence or
absence at location i depends only on the presence or absence at location i — 1,
and not on locations further away. Higher-order Markov models do that and the
interested reader should see Dale et al. (1993) for a discussion of the appropriate-
ness of higher-order Markov models for data like those shown in Figure 5.11. For
the purposes of this discussion on correcting for spatial autocorrelation in goodness-
of-fit tests, the conclusion would be that the Tavaré approach should only be used
when there is some confidence that the particular kind of Markov model is a good
description of the characteristics of the data.



Presence

Presence

Presence

Presence

5.1 Solutions 237

Table 5.6 Robustness of Markov correction for 2 x 2 table test:
1(0,1)=1(1,0)=01andmw; =7, =0.5

Critical value (%)“ 90 95 99 99.9

Expected count” 1000 500 100 10

Distribution of lengths
Geometric (Markov model) 1011 515 104 14
Uniform 7 to 13 3895 3070 1756 813
Uniform 5 to 15 1891 1191 397 83
Uniform 1 to 19 1066 537 116 12
Only 1, 2, 18 or 19 2149 1427 582 171
Only 3,4, 5 or 28 1993 1293 465 117

¢ Values from an average of 10 simulations of 10,000 trials each.
b Counts of the number of trials exceeding the column’s critical value when
the null hypothesis is true. ® = 4.556.
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Figure 5.11 Field data from transects in a wet sedge meadow on Ellesmere
Island (presence : absence of Carex aquatilis and Eriophorum scheuchzeri) in
comparison with two realizations of a Markov model with similar overall density.
There is a clear difference between the two pairs, in that the field data series have
much more fine detail.
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Correlation and linear regression

The correlation coefficient is a measure of the strength of the linear relationship
between two variables. For the correlation coefficient between two independent
variables each with an autoregressive correlation structure with parameters p; and
P2, Bartlett (1935) showed that its variance is approximately:

1
2 Ao (5.49)
n(l — p1p2)
This result suggests an effective sample size adjustment of:
1 —
0 =nW =102 (5.50)

1+ pip2

The structural similarity to the Tavaré and Cressie correction factors is striking.
Tavaré & Altham (1983) suggest that under the null hypothesis, */s? is asymptot-
ically x7. Computer experiments using artificial data with autoregressive structure
confirm their suggestion. If there is autocorrelation only in one of the series, for
example if p, = 0, then no correction is required (cf. Bivand 1980).

Clifford et al. (1989) suggested a method for using the -test to assess the
significance of the correlation coefficient in the presence of spatial autocorrela-
tion. Dutilleul (1993b) refined this method and provided a generalized and exact
form of their approximate method. Dutilleul’s modification corrects problems
that can occur with small sample sizes. This approach calculates the variance of
the sample covariance from the (auto)covariance matrices and also provides an
adjustment for the number of degrees of freedom: ' = 1 + 5.2 (It is not clear
how closely related this method is to the formulae of Cressie and Bartlett, given
above.)

The procedure is to calculate the covariance (not correlation!) matrices for x and
y as estimates based on the distance classes d = 0, 1, 2, . . . ; call the matrices
S, and S,. Let B be the matrix with b;; = 1/n — 1 /n? on the main diagonal and
bijj=-1 /n? elsewhere. Then:

tr(BS,)tr(BS,)
tr(BS,BS,)

/_

(5.51)

where ‘tr’ refers to the trace of the matrix, which is the sum of the elements on
the major diagonal. The same correction can also be formulated using matrices
of Moran’s autocorrelation coefficient rather than the variance—covariance matri-
ces (Legendre pers. comm.). With both x and y modelled as first-order simul-
taneous autoregressive processes on a lattice, Dutilleul (1993b) provided some
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examples of the effect of this correction. For a 10 x 10 lattice (» = 100) and
px = py = 0.1, the effective sample size is 80; if the autocorrelation parameters
are of opposite signs, p, = —p, = 0.1, the effective sample size is 119, illustrat-
ing again the ‘positive’ effects of negative spatial autocorrelation. Investigations
by Legendre et al. (2002) confirm the effectiveness and robustness of Dutilleul’s
correction.

5.1.5 Restricted randomization and bootstrap

The general method of randomization is an approach to testing hypotheses by using
the data themselves to generate a reference distribution (Manly 1997; Legendre &
Legendre 1998). A test statistic calculated from the original data is compared with
the distribution of the same statistic calculated after the data have been permutated
or randomized in some way. In our applications, restricted randomizations are
those in which the structure of the data (spatial, temporal, genetic and so on) is
retained as much as possible, rather than having it erased as it would be by complete
randomization (Figure 5.12; cf. Fortin & Jacquez 2000). These may therefore be
useful in testing autocorrelated data. Figure 5.12 illustrates the difference between
complete and restricted randomization. There are 400 cells in a 20 x 20 grid and
each cell is classified into four density classes, which we will reduce to two, high
and low, for analysis. There are 180 black (high density) cells in the original data
(Figure 5.12a) and using a join count approach based on ‘rook’s move’ neighbours
(Chapter 3, cf. Pielou 1977), the observed number of black—black joins (Jgp = 220)
is considerably greater than the number expected:

180 x 179

E = 7 —_— =
(Js) = 760 X 200~ 399

153.4. (5.52)

This reflects the high degree of autocorrelation in the data, with obvious patches
of low and high density. When the data are completely randomized by exchanging
randomly chosen pairs of grid cells (Figure 5.12b), the spatial structure is destroyed,
and the number of black—black joins falls to close to the expected value (Jpz =
154). In Figure 5.12¢, the data have been randomized with a toroidal shift of 10 on
the x axis and 1 on the y axis, which has preserved much of the spatial structure
(Jpp = 212). This is one of the most commonly used restricted randomization
techniques.

The applicability of any randomization procedure will depend on the nature of
the data and the purpose of testing. For example, if we have data from a transect
of contiguous quadrats, in which tree-canopy density and understorey cover are
recorded, we could test the significance of their correlation, given their individual
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Figure 5.12 A comparison of complete and
restricted randomization. In the original
data (a) there is significant autocorrelation.
With complete randomization, shown in
(b), that structure is destroyed, but
randomization by toroidal shift (shown in
(¢)) retains most of the structure. The dot
and the asterisk identify individual squares
where shifts in locations from (a) to (c)
occurred.

spatial structures, by shifting the relative positions of the two data sets and recal-
culating the correlation for all possible relative positions (see Figure 5.13). This is
sometimes referred to as ‘caterpillar’ randomization (after the tractor tread, not the
insect larva) and it is the equivalent of ‘toroidal shift’ randomization (illustrated
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Figure 5.13 The ‘caterpillar’ randomization of one-dimensional data: the
original data series (upper) is broken at a randomly chosen point (indicated by
the arrowhead) and then recombined (lower). If there are two data sets to be
related, either set can be shifted in this way to provide new relative positions.

above), but in only one dimension (cf. Upton & Fingleton 1985). If the original
observed value is greater than 95% of the values from the shifted data sets, we
would conclude that the observed value is significant. Longer transects with more
quadrats will have more possible ‘shifted’ relative positions of the two data sets and
greater sensitivity. Very short transects may not have sufficient numbers of relative
positions to allow this kind of test. We can use restricted randomization for testing
the correlation between variables in the same set of samples, but not for comparing
the mean densities for two different transects. That is because there is no original
natural pairing of the data in the two sets which can then be shifted in a restricted
randomization test.

Legendre et al. (1990) described a contiguity-constrained permutation technique,
which s a variant of spatially restricted randomization, for testing the significance of
differences among regions in an ANOVA framework. Their numerical simulations
show that, with their permutation technique, ANOVA is not very sensitive to spatial
autocorrelation and provides a test with a correct Type I error.

Another application of randomization procedures is to derive variance estimators
using jack-knifing estimation, as described by Lele (1991) and more recently by
Heagerty & Lumley (2000). Jack-knifing is one of the randomization or permuta-
tion techniques introduced above. In particular, it derives the reference distribution
by re-sampling the data, leaving out one observation in each iteration. This jack-
knife approach enables confidence intervals to be derived for parameters of interest,
for example, those of a regression model, which can then be tested for significant
difference from 0. Cohn (1999) recommends a bootstrap procedure for compar-
isons of multivariate structures in the presence of serial correlation. Bootstrapping
is another randomization technique, which uses re-samples of the data, allowing
each datum to be used more than once. Bjgrnstad & Falck (2001) proposed a
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bootstrap algorithm to create a confidence envelope for a non-parametric estimate
of a spatial covariance function. There may be appropriate bootstrap approaches
for other situations, but they are yet to be investigated.

5.1.6 Model and Monte Carlo

Another approach solving the autocorrelation problem is to develop a relatively sim-
ple model of the autocorrelation structure and then to use a Monte Carlo simulation
to generate artificial data sets to compare with the observed data. This approach
begins by finding a parametric model of the spatial dependence in the data by stan-
dard model selection procedures. The model can then be used in a Monte Carlo
approach to find good confidence intervals for the test statistics (Manly 1997).
This last approach is the one we advocate in the absence of a robust ‘analytic’
solution for a particular set of circumstances. It may seem somewhat indirect, but
it does allow for tests of significance. It is also the procedure recommended by
Mizon (1995) in the context of economic analysis. He suggested that we start
with a very general model, which well describes the data no matter how many
terms are necessary, and then test for valid reductions of it; i.e. we can deter-
mine which explanatory variables can be omitted. Overspecified models, those
with more variables than they really need, do not lead to invalid inferences; they
are merely inefficient (Mizon 1995). We could start, therefore, with a very general
autoregressive model of the data, considering observations as far as 20 steps apart,
such as:

20
x= ) Bixioj+ei, (5.53)
j=1

where ¢; is N(0, o2).

By eliminating many of the variables, we might end up with a model in which
only two or three of the s (Fisher 1932) were significantly non-zero. (In this
instance, it is appropriate to omit the non-significant terms.) As an illustration of
this idea, we generated 10 realizations of the model x; = 0.4x;_; — 0.2x;_4 + &;,
with n = 100. We then fit the model given in Eqn (5.53) and determined the
best-fitting submodel using a maximum likelihood backward selection procedure.
Table 5.7 gives examples of the results.

This table shows a range of possible outcomes for n = 100; many are ‘close’ to
the original underlying model, particularly at lag 1, but the effective sample size
ranges from one-third to double the ‘true’ value. Clearly, however, the best-fit model
is not always the model that generated the data. Using a larger sample size, n = 500,
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Table 5.7 Coefficients of models fit to realizations of
x; =04x;_1 —02x;_4 + &

Bi B2 B3 Ba Bs Bs B7  n'(approx.)

047 —-0.04 -0.04 —-0.18 033 b . 22
056 —0.22 . . . . . 44
0.30 0.19 -0.04 —-021 = . . 59
0.30 . . . . —-0.26 0.08 71
0.21 005 -0.08 —-032 . . . 128

¢ The effective sample size, based on the underlying model, is n’ = 65
(approximately).
b Symbol ‘s’ indicates a non-significant term.

the fit of the models is more similar to the original, showing the advantage of larger
sample sizes, but they still exhibit considerable variability. Given our current state
of knowledge, this does seem to be the best approach, but that raises the question
of whether there are better methods yet to be discovered.

5.2 More on induced autocorrelation and the relationships
between variables

Throughout this chapter, we have used the terms autocorrelation and autoregres-
sion, without drawing a clear distinction between correlation and regression, as is
normally done in statistics texts. In general, correlation refers to the positive or neg-
ative relationship between two quantitative variables, both possibly measured with
error, where it is not known that one has a direct causal effect on the other (Sokal
& Rohlf 1995). For example, in the model of induced autocorrelation (Model 3),
adjacent xs have non-zero correlation although they have no direct causal effect on
each other. Correlation is a measure of the covariance of the two variables, relative
to their variances:

B Cov(x, y) (5.54)

T Narovar)

Given three quantitative variables, x, y and z, the partial correlation of x and y
with z held constant is:

Fape = 2y Txelo (5.55)

(1 - r)%z)(l - r)zfz) .
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Figure 5.14 Both x and y are correlated with z (7, = 0.96; ry,, = 0.90) as
illustrated in part and positively correlated with each other (r, = 0.76); but they
are negatively correlated with each other when their dependence on z is
controlled for (ry,., = —0.91).

Figure 5.14 illustrates an artificial example, in which both x and y are positively
correlated with z (and apparently with each other), but they are negatively correlated
with each other when the relationships with z are removed: r,, = 0.76 but, using
the formula given above, ry,.. = —0.91.

In linear regression, by contrast, we are evaluating the strength of the linear
dependence of a dependent variable on an independent variable, using a model as
the underlying hypothesis, for example:

Xi=o+ Bz +¢. (5.56)

As we saw earlier in the chapter, when the linear dependence of x on z is controlled,
what is left is the residual:

x| =x; — (& + Bz). (5.57)

In the artificial example of Figure 5.14, when the linear dependence of x and y
on z is removed, negative correlation of the residuals is obvious (Figure 5.15)
and the correlation coefficient of x' and y’ is —0.91. It is tempting to specu-
late that if autocorrelation in x and y could be attributed to their dependence on
z, its effects could be similarly controlled by accounting for their dependence
on z.

With real data, we observe spatial dependence in a variable of interest, x, but we
may not always know its origins. It may be inherent, or it may be induced, or it may
be both. We may not be able to distinguish among the possibilities. For Model 2,
where autocorrelation is induced by an underlying autoregressive structure, the
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Figure 5.15 The residuals of x and y when the linear dependence on z is taken
into account.

correlation at lag j is:
Cor(xi, xi—)) = p, (5.58)
and for Model 3 it is:

2,7 2
B /Ojag
(1 — pHo?2 + p2o?

COI'(X,', x,-_j) = (559)

In both cases the autocorrelation declines exponentially with increasing distance,
but that may not be true of all models of spatial autocorrelation. For the doubly
autoregressive model (Model 4, refer to Figure 5.4), the correlation is much more
complex, but it also declines exponentially with distance. Therefore, we may not
even distinguish the possibilities of Models 2 and 3 from the more complicated
Model 4, because they all have an exponential decay of autocorrelation with dis-
tance. In addition, given a single data set, it may not be possible to identify positively
as being derived from an autoregressive or from a moving average model and, for
field data, that distinction may not hold.

In describing the Dutilleul method for correctly testing the correlation coeffi-
cient of two variables, x and y, in the presence of autocorrelation, we have begun
to look at the evaluation of the relationships between variables under those con-
ditions. In this section, we will investigate this topic further, by looking at a few
models in which the relationship between x and y arises from their dependence
on a third variable, z. There is obviously a number of ways in which this can
happen.
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Table 5.8 Results of correlation tests of the residuals of x and y, X'(z) and ¥'(z),
with different combinations of autocorrelation. The values of B were all positive.
When r > 0, the rate of rejection of the null hypothesis is no longer relevant
because it is no longer true, hence ‘n.a.’ in the table.

Autocorrelation in z

0 MA AR
Autocorrelation in x and y
0 rey =0 ryy =0 rey =0
rates nominal rates nominal rates nominal
MA ryy =0 ryy =0 ryy =0
rates inflated rates inflated rates inflated
AR ryy >0 ryy >0 ryy >0
rate n.a. rate n.a. rate n.a.

Let us begin with the simple model:

xXi = Bxzi + &,
Model 7: yi = Byzi +ni, (5.60)
zi = §&;.

We can then add autocorrelation to x and y, or to z, in turn, either in the moving
average (MA) or autoregressive (AR) form. We can then examine tests of correlation
between the residuals of x and y, after their linear dependence on z is controlled,
for non-zero correlation or for inflation of the rates of apparent significance in all
nine combinations. The results are given in Table 5.8.

This table provides several clear messages:

(1) Controlling for the dependence on z does not remove the effects of spatial autocorrelation
in x and y, in that the rates are inflated (MA) or the correlation is greater then zero (AR).

(2) The autocorrelation in z is not an important factor in this context.

(3) The moving average and autoregressive models produce qualitatively different
behaviour. (Models that combine AR and MA terms will also have a non-zero cor-
relation.)

(4) Interpretation of a significant correlation will be especially difficult if it not obvious
whether the AR or MA model is the better description of the data.

This discussion is especially important for the ecological context, in which we can
reasonably expect some form of inherent autocorrelation in most of the biological
variables we measure and some form of induced autocorrelation in those variables
due to autocorrelation inherent in the underlying abiotic factors in the environment.
Usually, we will not be able to determine the relative strength of these two sources.
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When we then examine the relationship between two ecological variables, it is
therefore probable that both will exhibit double autocorrelation.

5.3 Models and reality

The material of this chapter, more than in any other, relies heavily on the use of
mathematical models. The reason for this feature is that it is the only way to gain
insight into the effects of different forms of spatial autocorrelation on the testing
procedures we use. As stated above, and well demonstrated, single realizations of
even simple models can appear very different, especially for small values of n,
and real data must have similar problems, even if the underlying processes are
actually stationary (and worse if they are not!). Much of the treatment of spatial
autocorrelation in the statistical literature is predicated on the simplest AR model,
which produces an exponential decline in autocorrelation as a function of distance
(Figure 5.16). In the geostatistical approach, it produces the ‘typical’ variogram
depicted in Figure 3.10. Before proceeding to a discussion of how our current
understanding of the effects of spatial autocorrelation can inform considerations
for sampling or for experimental design, we should survey the information avail-
able to determine the common structures of spatial autocorrelation in ecologically
interesting data.

In an unpublished survey, M. R. T. Dale & Y. Liang examined a large num-
ber of data sets and their published variograms in the literature. There were 320
available from various sources, and they were arbitrarily divided into categories
such as ‘trees’ or ‘soil/peat’. Most authors fit at least one of three geostatistical
models (spherical, exponential and Gaussian) to their data. These three models,
which all rise to an asymptote, may not be good descriptions, because repeating
pattern will give rise to fluctuations in the variogram. We examined the goodness
of the model fit, by examining the residuals for departures from randomness and
for independence. We used a runs test on the signs of the residuals to look for series
of values above or below the fitted line. We used a second runs test to look for
series of increases or decreases in the residuals themselves. Fisher’s (1932) sum
of logs approach provided a meta-analysis of the results (see Sokal & Rohlf 1995,
Chapter 18). For all of the groupings of data sets, the results of the tests were appar-
ently significant for either the runs in the sign of the residuals or in the sign of the
difference between adjacent residuals (or both). These results are only suggestive,
not conclusive, because of the kinds of lack of independence in the calculations as
discussed above in the context of PQV (pages 86 and 87). The suggestion is that the
models were often not good descriptions and that there is a tendency for ecological
variograms not to converge to an asymptote, but to rise and fall nonrandomly as
a function of distance, as would result from patchiness in the variable of interest
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0

Figure 5.16 Two models of how autocorrelation may vary with distance.

(a) Autocorrelation falls to zero at some distance, R, known in geostatistics as the
range. This is equivalent to the ‘exponential’ model in geostatistical analysis.

(b) Autocorrelation falls below zero and then fluctuates above and below zero.

(“The natural world is a patchy place”! Dale 1999). If confirmed, this result may
relieve some concerns about the effects of spatial autocorrelation on statistical tests,
because the presence of negative autocorrelation may mitigate, at least somewhat,
the reduction in effective sample size caused by positive autocorrelation. It also
suggests, however, that simple corrections based on the first-order autoregressive
model may often be incorrect or misleading.

5.4 Considerations for sampling and experimental design
5.4.1 Sampling

All the preceding discussion has undoubtedly convinced the reader that spatial
autocorrelation is an important characteristic in ecological data and one that must
be considered in analysis and interpretation. It is probably also apparent to the reader
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that, if the underlying autocorrelation structure were known in advance, the design
used for sampling or the design of an experiment could be adjusted to minimize the
effect of spatial autocorrelation on the outcome of the study, before any analysis was
conducted. For example, if the autocorrelation declines rapidly with distance and
becomes effectively zero beyond some distance, R, (as in Figure 5.16a) samples
or experimental units with spacing R or greater may be treated as independent.
This is the concept of ‘distance to independence’, which (alas) probably almost
never applies in ecological studies. Ecological variables are typically patchy, often
at more than one scale, so that their autocorrelation cycles between positive and
negative with increasing distance (as in Figure 5.16b). Under those circumstances
and with knowledge of the locations of regions of low values and regions of high
values, sampling could then be stratified or the experimental units could be placed
in positions of known characteristics. On the other hand, if autocorrelation declines
only very slowly with distance, the distance between samples or experimental units
may not be that important. In the intermediate case, where autocorrelation declines
appreciably at the scale of the extent of the study, experimenters may wish to use
a design that provides a balanced set of distances between units assigned the same
treatment (van Es & van Es 1993; see also Dutilleul 1993a and Legendre et al.
2004).

Whatever the behaviour of the autocorrelation, the important first step is to find
out its characteristics before designing the sampling scheme or the experiment, and
to do so, a pilot study is required. In general, a pilot study will involve taking
a number of samples according to some scheme that will allow an evaluation of
autocorrelation, including its behaviour as a function of distance and whether it
is anisotropic. We will consider these to be point samples of some kind, whether
measurements of altitude, moisture or pH, estimates of population density or the
presence of a particular substrate. There is a number of different ways in which
these point samples can be arranged, and they all have advantages and disadvan-
tages. Random placement has the advantage of simplicity, but the disadvantage of a
lack of control over the spacing of the points, the coverage of the study plot and the
range of lags available in each direction. A regular grid of equally spaced points has
an inherent direction and scale of its own, which may interact with the actual pattern
in the variable under study. The ‘wagonwheel” design of radiating lines of sample
points will produce a trend in sampling intensity and in circumferential distances
from the centre of the wheel to the edge. A design based on the Fibonacci spiral
avoids trend and directionality problems, but the full ‘rose’ of the spiral would
require very high intensity of sampling and has a trade-off between the number of
samples in the study area and the distances it can evaluate. This full spiral is illus-
trated in Figure 5.17 and its construction is described in detail below. The sampling
designs that seem to combine most of the advantages with few disadvantages are
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Figure 5.17 Fibonacci spiral defined by angle 6 and radius r, with scaling
parameter and ‘golden mean’ parameter: 6; = 27 /7, r = k+/i and

T =(1++5)/2.

partial Fibonacci designs where not all points of the full ‘rose’ are used, but only
a systematic or randomly chosen subset of it. We will now describe the details of
this approach and give some examples.

The familiar Fibonacci sequence is formed by starting with two 1s and then each
subsequent term is the sum of its two predecessors, so that the sequence is 1, 1,
2,3,5,8,13, 21, 34, 55, 89, . . . If Figure 5.17 reminds the reader of a sunflower
head or similar botanical object, that is not surprising. The arrangement of plant
parts are often well described by elements of the Fibonacci sequence (see Jean
1994), with spirals of 13, 21, 34 or 55 parts being common. The ratio of succeeding
terms in the sequence approach the value T = (1 + 4/(5)/2; t, referred to as the
‘golden mean’ is one of those ‘magic’ irrational numbers that arise frequently
in mathematics, like the more familiar number 7r. This number 7 can be used to
define an equiangular spiral with successive radii and successive segments following
the Fibonacci sequence by calculating the angle, 6, and radius, r, of each sample
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point as:

0, =2m/t,
and (5.61)
ri = K\/ZT,

where « is a scaling constant.

Figure 5.17 shows the full array of possible sample points arising from this
structure, but the advantage of this is that subsets of these points may be used,
and the subset can be chosen in advance for its properties. There is an almost
infinite number of sampling designs that can be derived from the full array, either
with a random component, for example with the probability that any point used
is 0.035, or using a deterministic rule, such as using every 55th point in the full
spiral. Figure 5.18 shows three examples. In the deterministic examples, three-
and five-fold symmetry is evident in some, another reminder of the association
between the Fibonacci spiral and the structure of flowers. Depending on cir-
cumstances, and the desirability of a particular distribution of distances between
points and orientation of interpoint lags, a deterministic design may be randomly
‘thinned’ to reduce the sampling intensity, while retaining the useful character-
istics. Whichever is chosen, these designs have the advantage of no directional
bias, a good range of inter-sample distances and a lack of trend in sampling
intensity.

We shall end this section of Chapter 5, with a summary of the findings of two
recent studies on the effects of spatial structure on the design and analysis of field
surveys and on the design of field experiments, by Legendre et al. (2002, 2004).
Those studies were developed as part of the efforts of a working group at the
National Center for Ecological Analysis and Synthesis in Santa Barbara, USA, of
which the authors of this book were members. (In fact, the concept of this book
was first discussed while there.) Both studies used simulations of an environment
with one of several different kinds of spatial structure (gradient, waves, etc.) in the
underlying environmental variable as well as autocorrelation in it and in the variable
of interest to address questions about the effect of these structures on design and
analysis.

In the study on surveys, the simulation structure can be described using E;; as
the environmental variable, pg ;;(R) as its autocorrelation component with range
R, and ¢;; as a standard normal error term:

Eij = Sij + pe.ij(RE) + &ij,
and (5.62)
Vij = BEij + pv.ij(Ry) + nij.
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Figure 5.18 Three subsets of the Fibonacci spiral that could be used for sampling
as part of a pilot study to determine the characteristics of spatial autocorrelation
prior to a main study or experiment.
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Vi; is the variable of interest, py ;;(R) is its autocorrelation component with range
R, B is a measure of its linear dependence on the environmental variable and 7;; is
a standard normal error term. Among the questions asked were these:

(1) Can the effect of spatial autocorrelation on tests be reduced by the survey design?
(2) Which designs provide the greatest power given a particular combination of spatial
structure and autocorrelation range?

The study found that spatial autocorrelation in both the environmental and
response variable affects the standard tests, spatial autocorrelation in only one
does not. A broad-scale spatial structure in the underlying environmental variable,
however, combined with spatial autocorrelation in the response variable inflated
Type I error, just as spatial autocorrelation in both variables would. The major
piece of advice to be derived from this study was to use a pilot study to identify the
underlying structure. If there is a gradient, its effect can be accounted for by using
it as a covariate. If there are different zones (really representing non-stationarity), a
covariable that distinguishes the zones should be used. Another important finding
of this paper was that Dutilleul’s method correcting the #-test of the correlation
coefficient is highly recommended as being robust to various spatial structures
tested.

5.4.2 Experimental design

The study of experiments had a list of questions parallel to those for the survey
study, and the approach used was similar. The only modification is that the variable
of interest now includes a treatment effect for experimental units, T, which can be
0, (low), medium or high:

Vij = BEij + pv.ij(Ry) + nij + Tij. (5.63)
There are several general lessons to be learned from this study:

(1) If either spatial autocorrelation or repetitive structures like waves are present in the
underlying environmental variable, randomly positioned experimental units should not
be used. The use of blocks is recommended.

(2) For a set number of experimental units in the presence of spatial autocorrelation, using
more, smaller blocks spread throughout the study provides greater statistical power.

(3) Short-range spatial autocorrelation (related to the size of the experimental units and
the blocks of them) affects ANOVA tests more strongly than long-range spatial auto-
correlation. For example, where the blocks were 3, 6 or more units in linear extent,
autocorrelation with a range of 4 units (as opposed to 16 or 40 units) caused the greatest
decrease in statistical power.
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The approach used in these two studies is clearly a useful one and there is probably
a lot more that we can find out about mitigating the effects of spatial autocorrelation
on statistical tests by its further application. The ‘bottom line’, however, is that
it is ESSENTIAL to have a good assessment of the nature and range of spatial
autocorrelation before designing or applying a survey or experiment.

5.5 Concluding remarks

There are several major themes that run through the various sections of this some-
what complex chapter. The first is that spatial autocorrelation is an important char-
acteristic of ecological data; it affects the outcomes of statistical tests and other
statistical procedures and it cannot be ignored. Positive and negative autocorrela-
tion affect the results in opposite ways, and autocorrelation at all distances within
a study needs to be considered. Even apparently non-significant amounts of auto-
correlation can have a serious cumulative effect. In addition, the autocorrelation
in ecological variables may often have several sources, which may not be dis-
tinguishable. Therefore, this is a somewhat complex topic with a dearth of easy
answers.

The second theme is that while the various models of autocorrelation can provide
insight into its effects, they may not be reliable as good descriptions of ecologically
important structures. In fact, because the natural world is often patchy, autocorrela-
tion may fluctuate between positive and negative, with increasing distance, which
poses its own kind of challenge for correction and interpretation. In addition, we
might question whether the similarity of adjacent samples (contiguous quadrats in
a transect, for example) really represents redundancy in the data, the way it would
in a simple model of autocorrelation. Having two samples in the same patch tells
us something more than sampling the same individual twice.

In considering solutions to the effects of this phenomenon on statistical tests,
we can offer some observations. Thinning the data is not a good idea because it
is wasteful of information and because it is based on the concept of distance to
independence, which may well be wrong. Adjusting the effective sample size is a
possible solution if the chosen model is a good description of the data’s structure;
we cannot usually calculate the effective sample size from the data. Randomization
methods may work, but they must be applied carefully and with an awareness of
the possible problems. Complete randomization of the data cannot and does not
control the effects of spatial autocorrelation on statistical tests of significance. The
‘model and Monte Carlo’ method has several features that recommend it, but it
is not perfect. As we showed with artificial data, the best-fitting model may not
be the original model that generated the data; for field data, we will not know the
relationship between the model fit and the underlying structure. Larger sample sizes
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may improve the accuracy of the modelling exercise, but they increase the risk of
encountering non-stationarity if the extent of the sampling is also increased.

Studying the relationship between autocorrelated variables requires careful con-
sideration of the structure of the variation, particularly in ecology, where autocorre-
lation may be both inherent and induced in a single variable, and where it may not
be well described by one of the standard models. Of particular importance is the
fact that removing the variables’ dependence on an underlying factor does not avoid
the problems associated with analysis in the presence of spatial autocorrelation.

In considering the design of sampling or experimentation, the important first
step is to determine the characteristics of the spatial autocorrelation before doing
anything else. Knowing that structure will enable the researcher to develop a design
that avoids, or at least reduces, the effects of autocorrelation on subsequent analysis.
Pilot studies are a necessity and may be combined with other prior knowledge to
produce effective designs.

In 1993, Legendre posed the question ‘Spatial autocorrelation: trouble or a new
paradigm?’ as the title of a paper that provided a wide-ranging discussion of this
topic. The answer, 10 years later, is that it is both. It is troublesome, not in the sense
of being just a nuisance, but because it is not an easy phenomenon to deal with,
and it is certainly part of the current approaches to ecology, which include spatial
structure (they must) or provide spatially explicit results. We must remember, how-
ever, that it is this sort of lack of independence through space and time that makes
any prediction possible. We would be in trouble, indeed, if ecological phenomena
were spatially and temporally independent (if that were possible). Clearly, the char-
acteristics, effects and corrections for spatial autocorrelation, and other sources of
spatial dependence, require and are worth a good deal more effort and thought,
before we can suggest that we understand them truly and thoroughly.
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Spatio-temporal analysis

Introduction

This chapter expands the discussion of the analysis of spatial structure to include
the dimension of time, and the spatial dynamics of ecological processes and the
resulting patterns. The intimate relationship between spatial structure and tempo-
ral change in ecological systems was eloquently described by Watt (1947) in his
famous discourse on pattern and process in plant communities. His theme was
that a plant community could be viewed as a working mechanism with dynamic
behaviour of development, degradation and regeneration. In many plant commu-
nities, the various phases of the dynamic process coexist, and have an identifiable
spatial relationship to each other (Figure 6.1). In communities of animals, the rela-
tionship between spatial locations and dynamic processes are even more obvious,
as animals move through the spatial structure of their habitat to find resources or
mates and to avoid predation. At the level of populations, we need to recognize
that a population of a given density is not homogeneously distributed, and that the
dynamics of different subpopulations’ densities may be very different depending
on location. At the level of the individual organism and its immediate environment,
we need to realize that an individual is usually affected by very local, rather than
global, conditions, and that these may change significantly over relatively small
distances and over relatively small time periods. In considering almost any system,
our concepts of spatial structure and its importance will include implicitly, if not
explicitly, a temporal component.

The expansion to include time is not the same as the elaboration from one spatial
dimension to two, or from two to three; time is not ‘just another dimension’ because
of the direction of causality. Even when cyclic phenomena are under study, in which
the building phase and the degradation phase may seem just to be mirror images of
each other (Figure 6.1), we will often find that different processes are responsible
for the two temporal ‘directions’, even if the resulting sequence of patterns appears
similar, but reversed in time.

256
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Figure 6.1 The relationship between pattern and process: the alternation between
the mature hummock phase (M) and the hollow or gap phase (G) (e.g. in Festuca
ovina dominated sites) proceeds through building phase (B) from hollow to
mature and through the degenerate phase (D) from mature to hollow. In this
abstract example, building occurs on one side and degeneration on the other
causing directional movement of the system. The same general scheme may apply
in Sphagnum-dominated wetland hummock-hollow systems, brousse tigrée
vegetation stripes, or wave-regenerating forest systems (based on Watt 1947).

Our search of the literature in preparing this chapter was itself an interesting
process. Many papers that have ‘spatio-temporal analysis’ or ‘space—time analysis’
in the title or key words, are using the term in a somewhat more general way than we
have in mind, providing summaries of information rather than a detailed analysis
(e.g. Knapp 1998; Civerolo & Rao 2001). The methods we include in this chapter
will be somewhat more technical, as will become apparent. We have, however,
limited the discussion almost entirely to statistical analysis, avoiding extensive
discussions of modelling because the topic of spatially explicit dynamic models,
for example, is both outside the domain of this book and sufficiently rich and
complex to deserve a book of its own (see Dieckmann et al. 2000, among others).

The data used for spatio-temporal analysis can be classified in a number of
different ways, but an important criterion will be whether they are continuous or
discontinuous in time or in space. For example, if we are monitoring the environ-
mental conditions in a nature reserve, using an array of hygrothermographs placed
throughout the reserve, the data are continuous in time but discontinuous in space.
On the other hand, if we are studying the movements of animals using global posi-
tioning system (GPS) radio collars, which provide a report on position once every
few hours, the data will be continuous in space but discontinuous in time. In both
those examples, we may make assumptions about interpolation: what the conditions
are between sites with hygrothermographs or what the animals were doing between
position reports. In cases such as permanent sample plots, in which tree stems are
mapped and re-mapped at intervals, no interpolation may be necessary: stem No. 23
was alive in 1970, standing dead in 1978 and a downed log in 1985. In such cases,
the observation and analysis of spatio-temporal pattern brings us very close to
observing the processes that contribute to the pattern, because there is sufficient
data to recover all the important events and changes.
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To complete the classification of data types, it is possible to have data that are
more-or-less continuous in both space and time, for example the flight of a butterfly
or dragonfly (observed from a suitable distance), although the observer might want
to divide the movement into temporal units. Similarly, the tracks of animals in the
snow are also of this kind. On the other hand, mark-recapture data (which are records
of animals caught, labelled or tagged somehow, released and then caught again) are
discontinuous both in space, trap locations, and in time, trapping session or date.

A concept that is basic to our discussions in much of this chapter is that of spatio-
temporal autocorrelation. This refers to the lack of independence between objects,
events, observations or measurements due to their positions in space and in time.
The simplest kind is the case of short-range positive spatio-temporal autocorrelation
where samples are more similar when they are closer together in space or in time
(as discussed for space alone in the previous chapters). For example, Setzer (1985)
used a Mantel test (see Chapter 3) on spatial and temporal distances between aphid
galls on cottonwoods (Populus deltoides), and found that galls close in space were
likely to suffer mortality close in time. In comparison, more complexity will be
found in cases involving cyclic behaviour such as diurnal migration, such as the
vertical migration of zooplankton, where autocorrelation will be positive at short
space and time lags, becoming negative over short space and longer time lags, and
then positive again over even longer time lags (cf. Ohman 1990).

Just as there is a variety of measures for spatial autocorrelation (e.g. Moran’s [;
Geary’s c), a number of different indices of spatio-temporal autocorrelation is
possible. One such is Griffith’s space—time index (Griffith 1981; Henebry 1995):

T n n
ZZZWUI—IZHZ/'[—I
=2 i=1 j=1
Ii_; =0T —n) F— — . (6.1)
2
PI)BOIEDIP I
=2 i=1 j=I t=1 i=1

There are T temporal units and n spatial units, with w;;, as the weights and the zs
are the deviations from the overall mean of the observations. Clearly, this measure
combines an evaluation of temporal autocorrelation (of z;;, say, with z; ,_) with an
evaluation of spatial autocorrelation at individual times (of z;; with z ;).

If we are measuring autocorrelation for a particular separation or ‘distance’ class,
d, the weights might be more precisely written as w;;;(d). As with Moran’s I, the
expected value is a function of the negative reciprocal of the number of samples:

—(T -1

E(Is—t) = m,

(6.2)

which is approximately —1/nT for large values of 7. For large sample sizes, the
assumption of convergence to normality is justified (Henebry 1995). Figure 6.2
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Figure 6.2 (a) Artificial data for spatio-temporal analysis, with waves of higher
and then lower density moving out from the centre. (b) The analysis of the

artificial data using Griffith’s space-time correlation index. (c¢) Field data

Each side of the 15 x 15 grid measures 50 cm. (d) The analysis of the field data

(Nardus stricta) from Law et al. (1997); higher values represent higher density.
using Griffith’s space-time correlation index.
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shows two examples of the application of this index to artificial data (Figure 6.2a)
of a travelling wave (Figure 6.20) and to Nardus stricta L. data presented in Law
et al. (1997), three years of which are shown in Figure 6.2¢, with the analysis in
Figure 6.2d. One problem with this approach is the possibility of spatio-temporal
‘anisotropy’ introduced by the fact that, in ecological examples, the units of mea-
surement in space may not be comparable to the unit used to measure time. In some
examples in physics, there may be a natural spatio-temporal equivalence due to
relativity, such as a second in time and a light-second in space. Analogously, there
may be some ecological examples in which there is a natural equivalency between
spatial and temporal measures, based on the speed of dispersal or travel, but there
will be many cases in which such an equivalence is not available.

In this chapter, we begin by examining spatio-temporal analysis by discussing
studies that look at change in some of the spatial statistics already described in this
book. We then proceed to talk about four kinds of truly spatio-temporal analysis,
based on join counts, cluster change detection, polygon change and movement
through space. The section following the group of methods attempts to tie together
process and pattern by looking at situations in which we can analyse some kind
of record created by the processes themselves, in particular, tree establishment,
growth and mortality, clonal plant mobility and the boundaries of crustose lichen
colonies.

6.1 Change in spatial statistics

One of the most simple kinds of spatio-temporal analysis is to examine changes
in almost any of the spatial statistics described so far, as a function of time. Small
changes can be accounted for by variation in the same underlying process, but large
changes may suggest a change in the process itself. There are many examples of
this approach in the literature. For example, Wu et al. (2000) studied the ‘progress’
of fragmentation in tiger bush (brousse tigrée) landscapes by comparing the curves
of lacunarity as a function of scale (see Chapter 2), observed in different years.
Brousse tigrée is a phenomenon of arid regions in which there are bands of woody
vegetation, running across the direction of water flow, alternating with bare ground.
It was described in more detail in Chapter 1 in relation to the concept of anisotropy.
In their study of these landscapes in southwest Niger, Wu et al. (2000) found that
lacunarity increased between 1960 and 1992 (Figure 6.3), indicating the continuing
fragmentation of the woody vegetation in the landscape.

Dale & Zbigniewicz (1997) studied a somewhat similar phenomenon at a smaller
scale. They used 100 m transects of 10 x 10cm contiguous quadrats in shrub-
dominated communities near Kluane Lake in the Yukon to examine the effect of a
peak in snowshoe hare density on two of its winter food plants, Salix and Betula.
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Figure 6.3 Changes in lacunarity curves for brousse tigre sites. The lacunarity
maximum increases markedly from 1960 to 1992, indicating more open ground,
but the basic shape does not change noticeably, indicating little change in the
other basic characteristics of the spatial pattern.

The snowshoe hare (Lepus americanus) populations have cyclic fluctuations in
density, with an amplitude of a factor of 5-25, and a period of about 10 years
(cf. Krebs et al. 2001). They sampled the shrub vegetation in 1988, just before the
peak in density, and in 1993, just after it. They used 3TLQV and Galiano’s (1983)
NQV (see Chapter 2) to detect the scale and patch size of the shrubs’ patterns,
expecting that the herbivore population peak would lead to fragmentation of the
patches, leading to reduced scales of pattern and smaller patches. What they found,
however, was that despite the intensive and extensive browsing of the twigs of these
plants, the basic characteristics of the pattern recovered very quickly. This suggests
that the basic characteristics of the spatial pattern of these shrub-dominated areas
may persist for decades.



6.2 Spatio-temporal join count 263

Vacek & Leps (1996) studied the effect of neighbouring trees on tree vitality and
mortality in five permanent plots in the mountains of the Czech Republic, monitored
for 18 years. They used Ripley’s K-function analysis (Chapter 2) to examine the
spatial pattern of Picea abies trees in 50 x 50 m plots. They found that although
most of the plots started with a slight tendency to aggregation in 1976, by 1993,
the pattern had changed to one of overdispersion at scales of 2—5 m, attributable to
the higher mortality rates of trees with large and close neighbours. Kenkel ef al.
(1997) report a similar trend for Pinus banksiana in Manitoba: a clumped pattern
in the early stages of stand development gave way to a more-or-less random pattern
at intermediate ages (30—40 years), with a tendency toward overdispersion at later
stages. We will return to a more detailed analysis of tree establishment and mortality
in Section 6.6.1.

As a last example in this section, we cite Nestel & Klein (1995) who used
Moran’s I (see Chapter 2) to study the spatio-temporal patterns of dispersion of
adult leaf-hoppers (Homoptera: Cicadellidae) through the growing season of fruit
orchards in Israel. The spatial pattern of one species, Asymetrasca decedens (Paoli),
began as aggregated and changed from aggregated to random with each successive
generation. The pattern of a second species, Edwardsiana rosae L., remained aggre-
gated throughout the entire season. The authors suggest that knowledge of the early
season aggregation of both species could be used to develop an integrated manage-
ment strategy for these insect pests.

This general approach to spatio-temporal analysis, using basic spatial statistics
at two or more times is straightforward and clearly can be very informative and
useful. It will become more important as an analytical approach as more long-term
studies continue or are established. The main disadvantage is that any summary
statistics and changes in them may miss some of the important details of the actual
changes to individual units in the spatial structure. One of many themes running
through this book is the thought that methods that merely detect departures from
randomness, such as spatial clustering, may not be telling us enough; for spatio-
temporal analysis, for example, it may be important to know the size, spacing,
compactness and positions of the clusters (perhaps especially in pest management
applications) in addition to the general degree and scale of aggregation.

6.2 Spatio-temporal join count

In plant ecology, the concept of spatio-temporal pattern goes back at least to
Watt (1947), who described how certain vegetation types tended to occur close
together in space and time. One factor that contributes to this phenomenon is the
clonal nature of some plants. Clonal growth forms are often described based on
the spatial pattern of the ramets, which is related to patterns of establishment in
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space and time. The ‘phalanx’ form is characterized by a compact spatial struc-
ture of the ramets and the ‘guerrilla’ form is characterized by much more loosely
arranged ramets (Lovett Doust 1981). These two forms are endpoints of a con-
tinuum, and a general growth form can be described on the basis of the spatial
arrangement of ramets, and the predictability of ramet establishment in space and
in time.

Methods used in elucidating spatio-temporal pattern have been developed for
single factor autocorrelation analysis to consider factors separated by two ‘lags’,
i.e. intervals along axes of space and time. One such method, Griffith’s space-
time index, given above (Griffith 1981; cf. Henebry 1995), is related to Moran’s I,
but examines the values of a variable at different places and times. This index is
appropriate to the analysis of continuous variables such as plant density, but if a
binary variable such as presence : absence of individuals is considered, then join
count statistics can be used.

Join count statistics are a way of measuring association in nominal data dis-
tributed on a lattice or grid (Cliff & Ord 1981; see Chapter 3). Here we consider
the case of binary data where each cell of a lattice can take only one of two values
such as black or white. A join is defined as a connection of a particular lag between
pairs of defined cell types, for example black to black. Figure 6.4a shows a simple
example where joins of contiguous black cells are counted in a 7 x 7 square. In
the spatio-temporal approach, a two-dimensional lattice represents a single spatial
dimension, such as a transect of n quadrats and m intervals of time (cf. Little & Dale
1999). Suppose the black cells represent either plant establishment or the presence
of at least one individual of a particular species. If it represents establishment, then
the occurrence of plants of different ages in the same quadrat can then be distin-
guished by placing several black cells in that column of the lattice. Join lengths are
specified by combination of the intervals along the axes: (d =2, t = 3) signifies joins
of length two on spatial axis and three in time. Spatio-temporal association can be
determined by comparing the observed number in a class to the number expected
from randomness. The simple null hypothesis (Hy;) is that the observed number
can be accounted for by random occurrence. If more joins of a particular class
(d, t) occur than are expected, this indicates a tendency for stems to be separated
by a distance of d in space and ¢ in time.

As a further refinement to this approach, Little & Dale (1999) were interested in
the first stem that established in each quadrat; indicated by black cells in a lattice
with only one black cell per column. Therefore, two further null models can be used,
in which black cells are randomly arranged but with no more than one in a column.
In the uniform row model (Hy;), the probability that each of the n columns contains
a black cell is r and the probability of a black cell in any column is distributed
uniformly among its rows. In the ‘top black’ model (Hy3), black cells may occur in
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Figure 6.4 (a) Join counts of black-to-black contiguities in a 7 x 7 square; there
are 11, as indicated by the dumb-bell ‘simple join’ symbols. (b) Space and time
data for the establishment of Populus balsamifera at Ministik, Alberta. (¢) Spatio-
temporal join count analysis of the Populus balsamifera data. At each space and
time lag combination, the size of the symbol represents the significance level and
the colour codes (o, o) represent the sign of the difference between observed

and expected values. The three null hypotheses are fully randomized (upper),
uniform row (middle) and ‘top black’ (lower).

any cell of the lattice with probability p, but only those in the highest row in each
column (representing the earliest to establish) are retained.

For each join class, 10,000 ‘data’ lattices were generated for each of three random
models, which were used to calculate a reference distribution and expectation.
The association statistic of each join class was assessed based on the deviation of
observed from expected join frequencies. The results are displayed as two factor
‘correlograms’, using circles, the sizes of which represent the probability and the
positions of which represent the join classes. Figure 6.4b presents the Populus
balsamifera establishment data from a transect at Ministik, Alberta, and Figure 6.4¢
shows the results of this analysis using three different null models. It shows that the
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fully randomized model has high values at (0.5, 1), (0.5, 3), (2.0, 4) and (2.5, 4).
The other two models have high values at (1.0, 2) and (2.0, 4), the latter probably
being a resonance peak. Overall, the results suggest that it is common for stems to
be separated by two years in age and by 1 m along the transect, indicating that the
clone advances in biennial pulses.

This technique is essentially a temporal adaptation of the lichen mosaic method
described by Dale (1995; 1999, see Chapter 2) but the important difference in this
case is the use of several null models, rather than just one. As we commented in
Chapter 2, one way in which our spatial analyses can become more sophisticated,
and thus more useful, is to use a range of null models rather than just simple
‘randomness’ for comparison with the outcomes we observe.

6.3 Spatio-temporal analysis of clusters and contagion

The kinds of analyses described in this section originated in the context of the study
of clusters and spread of incidences of human disease, and some of the vocabu-
lary will persist in our discussion. The methods, however, will translate well into
many ecological areas, not just the incidence of disease, pathogens or parasites,
but also the locations of rare epiphytes, nitrogen fixing symbionts and so on. The
non-temporal version of the basic approach is called ‘cluster detection’, which
should not be confused with the multivariate technique known as ‘cluster analysis’.
Methods for detecting disease clusters for which the ‘at risk’ population is unknown
are essentially versions of univariate point pattern analysis. The epidemiological lit-
erature tends to emphasize approaches in which the locations (or at least the number
in a given area) of individuals at risk are known, as well as affected individuals.
The question is then whether the diseased cases are more clustered than can be
explained by local variations in the at risk population. This approach is a version of
bivariate point pattern analysis, and strongly resembles other ecological questions
of a similar nature, such as ‘Are the Solidago plants with galls more aggregated than
can be explained by the overall patchiness of the plants?’ (Dale & Powell 1994).
Wakefield et al. (2000) provide a comprehensive review of the methods for cluster
detection in the general area of spatial epidemiology (see also Fotheringham &
Zhan 1996; Jacquez 1996). The methods fall into several categories. ‘Traditional’
methods include a simple comparison of the numbers of cases observed in different
areal units (townships, counties) with the expected number (based on population
and global disease rate), using a goodness-of-fit test. ‘Distance : adjacency methods’
include Moran’s [ for rates in contiguous areal units and Diggle & Chetwynd’s
(1991) variant of Ripley’s bivariate K-function analysis for point data. Locally
specific methods include the moving window approach and risk surface estimation
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Figure 6.5 (a)-(d) The incidence of newly diseased organisms (filled) in a
population at four different times. The spread of disease is obvious.

(see Wakefield er al. 2000 for details.) Our intention here is merely to describe a
couple of approaches suitable for spatio-temporal analysis.

The first set of methods is best appreciated by looking at the four parts of
Figure 6.5, which shows the progression of a disease (black dots) through a popu-
lation (all dots) at four time periods. Clearly, the disease is spreading out from one
corner of the figure, and the black colouring indicates a case that is new in that time
period, rather than being a cumulative record.

A simple approach is to define a threshold value for ‘near’ vs. ‘far’ in time and
a threshold value for ‘near’ vs. ‘far’ in space. Pairs of disease incidences are then
categorized as ‘near’ or ‘far’ in time and ‘near’ or ‘far’ in space to produce a 2 x 2
contingency table. The table can then be tested with the usual statistics to determine
whether incidences close in time also tend to be close in space (Knox 1964). For
example, from Figure 6.5, using thresholds of 2 time steps and of 40% of the side
of the sample area, we get these counts:
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Time
Near Far
Space
Near 114 2
Far 125 110

The goodness-of-fit statistics are highly significant indicating spatio-temporal asso-
ciation among the disease incidences, in spite of the large number of pairs that are
near in time but separated in space (chiefly in time period 4, Figure 6.5d).

In the introduction to this chapter, we mentioned the use of the Mantel test to
determine spatio-temporal clustering in the example of aphid galls on cottonwood
trees. The Mantel test compares two ‘distance’ matrices (see Chapter 3), and those
distances can be of the spatial and temporal separations of events. In this context
the Mantel test can be seen as an extension of Knox’s approach, using the measured
distances, rather than just ‘near’ and ‘far’ (Bailey & Gatrell 1995). Where d;; is the
separation of two events in space and s;; is the separation in time, the basic Mantel
statistic is:

n—1

ZM:Z Z d,‘js,'j. (63)

i—1 j=i+l

Evaluation of the test statistic is most easily accomplished by a randomization test.
In the example shown in Figure 6.5, the observed Mantel statistic is Zy; = 1219.14
which was found to be highly significant by a randomization test (of re-labelling
with set numbers of each kind of event), once again indicating an association
between temporal and spatial proximity.

Notice that, in spite of our earlier promise, the approaches described so far
do not use any of the information of the ‘at risk’, but disease-free, population.
In fact, the next method we describe does not use that information either. That
method is the spatio-temporal version of Ripley’s K-function analysis, using only
focus events (e.g. disease incidences) and counting the number of focus events
within distance ¢ and time t of each event. Observed and expected values are
compared in the usual way and plotted as a function of ¢ and 7. There are many
potential problems with this approach, the first being the possible incommensura-
bility of time and space units already discussed. The second is that unless there
is a very long time series of observations, temporal edge effects can be an impor-
tant factor. The third question is whether, because time is directional, a one-sided
search template should be used rather than the two-sided ‘z-bar’ template depicted in
Figure 2.24.
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It seems that in the literature, a truly bivariate spatio-temporal analysis based
on Ripley’s K-function is missing. This is an area where further developments are
needed and should be expected.

6.4 Polygon change analysis

In Chapter 2, concerned with the basic methods of spatial analysis, there was an
extensive discussion on the analysis of points or events in the plane, and con-
siderably less on the analysis of irregular polygons in the plane; this reflects the
emphasis in the literature. Similarly, published studies on spatio-temporal analysis
also emphasize point events rather than polygons, quite naturally when the subject
is the dynamics of tree stems, for example, or the locations of disease foci. The anal-
ysis of polygons offers considerably greater complexity than the analysis of point
patterns, because of the greater complexity of the data themselves. The difficulties
of dealing with polygons can sometimes be avoided by representing the centre of
the polygon by a point with associated size and shape characteristics, and with the
adjacency of polygons represented by lines between the points. These networks can
then be analysed for autocorrelation in the neighbour network using statistics such
as Moran’s I or Geary’s ¢ (see Chapter 3). For example, the polygons in Figure 6.6a
can be reduced to a graph of their connections to neighbours by contiguity and their
areas (Figure 6.6b). Autocorrelation analysis shows significant similarity among
neighbours, based on their areas, but information about other characteristics of the
polygons is lost.

When we now consider analysing a dynamic system of polygons, the situation
becomes even more complex, because not only do the characteristics of the polygons
change (position, size, shape), as do their connections to neighbours, but also old
polygons may disappear and new ones develop. One approach would be to calculate
summary statistics for each of several observation times and then examine changes
in those summaries; for example, Peralta & Mather (2000), in a study of deforesta-
tion in Amazonia, used indices of lacunarity, patchiness and area—perimeter fractal
exponent to summarize the changes. There is an advantage in using more than one
summary statistic, obviously, but even so, a lot of detail on the characteristics of the
polygons will be missed, entailing the loss of potentially important information.

Sadahiro & Umemura (2002) have developed a sophisticated approach to the
analysis of changing polygons. The conditions of their scheme are that the polygons
are immobile, so that individual animals, or herds or flocks, are not eligible, and that
change occurs in a discontinuous fashion, so that objects like temporary pools that
shrink and expand in a continuous way are also excluded. With those exclusions
aside, their treatment seems flexible and useful. They divide the stepwise behaviour
of an individual polygon into six primitive events, illustrated in Figure 6.7:
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J

Figure 6.6 A set of polygons with their relative areas (a) portrayed as a graph
(b) with the connections in the graph representing the contiguity (shared edge) of
polygons. The nodes of the graph retain the areas of the polygons for further
analysis.
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Figure 6.7 The primitive events for polygon change analysis: generation, loss,
expansion, shrinking, union and division.

(1) generation, i.e. the appearance of a new polygon;
(2) disappearance, i.e. the loss of a polygon;

(3) expansion, i.e. the increase in area occupied;

(4) shrinkage, i.e. the loss of area;

(5) union, i.e. two polygons merging; and

(6) division, i.e. a polygon splitting into two.

The changes observed between two different times can then be described by com-
binations of these primitive events. This approach follows that of Claramunt &
Thériault (1997) who proposed a more complicated scheme of sixteen primitive
events, in part to be able to deal with possibly mobile polygons. An additional
assumption is that there are no problems in tracing the identity of polygons; the
time interval is assumed to be sufficiently short that polygons that overlap are two
temporal versions of the same polygon.

The two sets of polygons from the two observation times, I"; and I',, are over-
laid to create a new set of polygons, I', (Figure 6.8). These new polygons can
then be classified into three groups, 2o which existed at both observation times,
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Time 1 \ Time 2/

Times 1 and 2 combined

Figure 6.8 The two sets of polygons from time 1 and time 2 (I'; and I',, upper
diagrams) are overlaid to create a combined set (I, lower diagram). There are
five polygons in each of the first two sets and nine in the combined set.

€21 which existed at time 1 but not time 2 and €2, which existed at time 2 but not
time 1. The arcs in the diagrams are classified into twelve groups based on the com-
binations of four possible states in which they existed at times 1 and 2: boundary,
partition, internal to polygon and absent. Figure 6.9 illustrates these classes. The
two classifications are then used to deduce possible sequences of primitive events
that gave rise to the observed changes. The changes between two observation times
are decomposed into the smallest number of primitive events possible, and one
useful statistic is then the number of such primitive changes, M,, which can be
standardized to the total number of polygons:

M,

S (6.4)
[Ty + [T

me

The authors suggest that, as a refinement, instead of raw event counts, the events
could be weighted by some function specific to the kind of event, fx. For example,
generation and expansion events could be weighted by the area gained and shrink-
ing and disappearance events by area lost, with partition and union events having
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Time 2
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Times 1 and 2 combined
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Figure 6.9 In this example, there are two polygons in the first set, four in the
second and five in the combined set. The polygons can be classified as ‘EO’,
extant at time 1, but not at time 2; ‘OE’, extant at time 2, but not at time 1; and
‘EE’, extant at both times. The edges that define the polygons can be classified as
‘BO’, boundary at time 1, but extinct at time 2; ‘PB’, partition then boundarys;
‘IP’, interior then partition; ‘BP’, boundary then partition; ‘OP’, partition new at
time 2; and ‘OB’, new boundary.

weight 0. In that case, the area index would be:

AR + A(R)
AT + ATy

This approach is new and has few examples of application, but it clearly presents

a great deal of promise for future analysis. While it does deal with the dynamics
of a set of polygons, it does not include characteristics such as their shape in the

m4 (6.5)
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analysis. In addition, in this treatment, if the polygons being studied form a complete
mosaic filling the study region, the kinds of transitions that can occur become
much more limited. The analysis of full mosaics (in which the polygons form a
complete tiling of the plane) is another related area that deserves further work and
exploration.

6.5 Analysis of movement

There are many circumstances in ecological studies in which the movement of
individual organisms is of crucial interest: the spread of disease organisms or vec-
tors in epidemiology, the identification of home ranges in wildlife ecology or the
spread of a clonal plant into new habitat, to suggest a few examples. The quanti-
tative analysis of such movements will depend in part on whether the movement
itself (or its record) is more or less continuous, like a beetle wandering through
a grassland, or it occurs as discrete units, such as a butterfly’s foraging journey
stopping at individual inflorescences, or the identifiable ramets of a growing clone.
If the movement is continuous, it is often divided up into units, using some criterion
(possibly arbitrary) such as the positions observed every five minutes. The concept
of units of movement will be discussed further, later in this section.

When the movement occurs in units, or can be divided up into units, analysis
usually proceeds based on the lengths of the units of movement and the angles
between them (see Figure 6.10). Crucial to an understanding of the correct way to
analyse this kind of data is an understanding of the calculation of the average of
a set of angles. Cain (1989) points out that many authors in ecology have made
mistakes in this process. We cannot just take a simple average the way we do for
a linear scale like distance. For example, if measured on a scale from 0° to 360°,
the angles 90 and 270° have an average of 180°; measured on a scale of —180° to
+180°, the same angles, now 90° and —90°, have an average of 0° (see Upton &
Fingleton 1989: Chapter 9).

For any set of angles, whether the absolute angles of the steps, labelled «; in
Figure 6.10, or the ‘turning angles’, §; in the same diagram, the angles are rep-
resented by vectors of unit length and coordinates (x;, y;), as in Figure 6.11. The
coordinates of the mean vector are:

X

1 n 1 n
— Z cos(;) and y = — Z sin(c;). (6.6)
h i=1 n i=1

In polar coordinates, it is

(X,¥) = (rycos @, r,sing), (6.7)
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Figure 6.10 Movement portrayed as a series of straight-line units, /; to /3, with
known start- and endpoints. The «s are the absolute angles and the §s are the
changes in angle.

Figure 6.11 Calculation of the average of a set of eight angles depicted as eight
unit vectors, (x;, y;). The angular concordance is r, and the angular deviation is s.
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where ¢ = tan~!(y/%) and

re =Xt 432 = l\/m: ! (Zcosa,) + (Zsinai) .
n N\ \i= i=1
(6
The measure r, should not be referred to as a measure of angular correlation
because it cannot take negative values; it is more appropriately referred to as a
measure of angular concordance or angular concentration (Zar 1984). Alt (1990)
referred to it as ‘parallelicity’! It takes value 1.0 when all the angles are the same
and value 0 when the vectors cancel each other out (Upton & Fingleton 1989). For
example, in Figure 6.11 there is a good agreement in the direction of the angles and
r, 1s 0.75. The circular equivalent of the standard deviation for linear data is s, the
angular deviation (Batschelet 1981):

s =+/2(1 —ry). (6.9)

In our example, s = 0.71, which can be converted to degrees by multiplying by
180°/7t (Batschelet 1981), here 41° (see Figure 6.11), showing again that there is a
relatively small variance in the set of angles.

In considering a path such as that depicted in Figure 6.10, and seeking a measure
of the angular autocorrelation, for lag 1, the average of the cosines of the turning
angles is a good candidate (Batschelet 1981). Figure 6.12 illustrates this concept.
When the two steps of the path are aligned in the same direction, correlation is
1.0; when they are at right angles, the correlation is 0; and when they are directly
opposite, it is —1.0. Turchin (1998) suggested that this statistic should not be used
for turning angles because ‘turning angles are typically concentrated around zero
(so that) the difference between two successive turning angles is likely to be near
zero, even if there is no autocorrelation. This would result in a significantly positive,
but spurious, angular autocorrelation’. We disagree and would argue that turning
angles concentrated near zero, indicating a tendency for motion to continue in the
same direction, is real autocorrelation as a characteristic of the data.

As a preliminary analysis of movement data, we suggest calculating the radial
(distance) and angular correlation for a range of lags. Figure 6.13 shows the results
of this kind of analysis for five sets of artificial data with different kinds of auto-
correlation. (We could also look at the autocorrelation of net displacement as a
function of lag.) Turchin (1998) discussed the possibility of problems associated
with ‘oversampled’ data sets; i.e. if an animal’s location is recorded every sec-
ond, there is so much autocorrelation in the data, that we may seem to have too
much data for the information we can get out of it. The exploratory analysis recom-
mended here, however, will allow a simple evaluation of the ‘resolution’ of the data.
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Figure 6.12 The cosine of the turning angle as a measure of angular
autocorrelation.

Similarly, Turchin (1998) also discussed the aggregation of individual steps (the
finest scale of resolution of the movement) into ‘moves’, with more recognizable
breaks or turns between them (Figure 6.14a). This may not be necessary or desir-
able; the evaluation of radial and angular correlation as a function of lag should
provide the information needed. In addition, the angular correlation graph will allow
an assessment of whether there tends to be an alternation of right and left turns,
without the need for a separate runs test (cf. Sokal & Rohlf 1995). If that question is
of particular interest, that approach can also be used to provide an actual statistical
test rather than just an exploratory indication of tendency.

The most difficult problem to deal with in real field data may lie not in the
resolution of the data, or in over- or under-sampling; it may lie in the lack of
stationarity of the process. As an example, a colleague has provided us with about
3,000 locations of an individual elk taken every 2 hours with a GPS radio-collar
(Merrill unpublished). Even one-tenth of the data represents about a month of time,
and it is easy to imagine how an elk’s behaviour might change from the first half
of a month, such as July, to the second half, as the montane vegetation changes
rapidly. This possible departure from the underlying assumptions must be taken
into account both in analysis and in interpretation.

As a simple null hypothesis, with which to compare the observed charac-
teristics, we might consider the well-known ‘random walk’ (cf. Turchin 1998).
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Figure 6.13 Pairs of paths and the autocorrelations of the units’ lengths and
angles as a function of distance or lag: (a), (b) short-range positive
autocorrelation in both length and angle; (c), (d) angles and lengths both
independent; (e), (f) directional bias, but lengths independent; (g), (k) directional
cycles, lengths independent; and (i), (j) cyclic behaviour in lengths, angles
independent. The dots in the illustrations of paths are the corners of the study
area.
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Figure 6.14 (a) The proposed aggregation of unit steps into ‘moves’.
(b) Movement has more turns and shorter lengths in preferred habitat. (The
curved boundaries delineate different habitat types.)
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The null model of the random walk is that the direction of each unit of movement
is randomly chosen from the full circle of possible directions and that the length of
the unit is drawn from a distribution of unit lengths, which can be estimated from
the data. It is easy to calculate the expected displacement of the individual (the
expected net displacement is 0), and other characteristics such as the distributions
of angles, resulting from a random walk, and in general the paths of clonal plants
and mobile animals do not match those well. Angles near 180° are less common
and displacement tends to be greater than in this model (Turchin 1998).

As an alternative to the random walk model, comparisons with a ‘correlated
random walk’ (CRW) model are popular (Kareiva & Shigesada 1983). In this model,
the expected net displacement is still 0 as in the simple random walk, but its other
properties are different because of autocorrelation of the units that make up the path.
The model usually looks at the first-order autocorrelation of length and direction
of the units of movement and compares the observed and expected net squared
displacement and path ‘tortuosity’ (Wiens ef al. 1993) or ‘sinuosity’ (Williams
1992; Sanuy & Bovet 1997). Kareiva & Shigesada (1983) examined this model and
provided details on the derivation of the expected values. Another approach to the
evaluation of the appropriateness of the CRW model is to compare the observed net
displacement after n steps (or the net squared displacement) with that predicted from
the model. Many studies have used one or other of these approaches to evaluate
the movement of caribou, clover, golden rod, toads and caterpillars (Cain 1990;
Cain et al. 1995; Sanuy & Bovet 1997; Bergman et al. 2000; Doak 2000). Kareiva
& Shigesada (1983) recommend that we should go beyond the simpler first-order
models and look at more complicated examples using higher-order Markov models.
That is, the length and direction of a movement unit can depend not just on the one
immediately preceding it, but perhaps on the characteristics of the last two, three or
more units of movement. For example, Figure 6.13f illustrates behaviour that has
strict cycles, but a more realistic version of the same cyclic behaviour but with a
random component could be modelled by a high-order Markov model.

Another alternative is to examine ‘biased correlated random walks’ in which a
general directional tendency, either absolute or relative to some habitat element,
is included (Turchin 1998), so that the expected net displacement is not 0. This
approach is similar to adding ‘drift’ to the model, by including a set absolute
directional component to each unit of movement (Wiens et al. 1993). For example,
Schultz & Crone (2001) looked at the tendency of the ‘Fender’s blue’ butterfly
(Icaria icarioides ssp. fenderi) to move toward its host plant (Lupinus sulphureus
ssp. kincaidii) by including a bias component of movement toward a nearby lupin
patch in a correlated random walk model, whatever its absolute direction. The bias
component was significant for a range of distances from a patch. Whichever kind of
model is used, randomization techniques based on re-ordering the individual units
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of the movement or Monte Carlo procedures using parameters determined from the
observed characteristics of the path can be used to evaluate the results (cf. Manly
1997), but we will describe some general concerns about randomization tests in
Chapter 7.

In characterizing the spatial complexity of movement, a number of authors have
advocated measuring the fractal dimension of the path, either using the ‘dividers’
method (see Chapter 3) or based on re-normalization procedures (Wiens et al.
1993). Turchin (1996) advised that this is a risky procedure unless the path is truly
self-similar so that the fractal dimension remains constant over a range of spatial
scales. This seems to be good advice, and this method should be used only with
an understanding of that risk of misinterpretation. In addition, Schultz & Crone
(2001) pointed out that descriptive measures of fractal dimension (or tortuosity)
are difficult (impossible?) to translate into useful movement parameters that can
then be used to predict the distributions and dynamics of populations. This is an
important deficiency because for the wildlife biologists who use these methods,
prediction is what it is all about.

Another important theme in the analysis of this kind of data is the search to
associate the locations and the characteristics of movement paths with the types of
habitat through which the animal moves and thus to evaluate differential habitat
preference and habitat use (see Figure 6.14b). A difficult and controversial aspect
of this analysis is how to carry out statistical tests relating animal movement to
habitat type, and Manly et al. (2003) provided a useful review. Before we proceed
to discuss this topic we suggest that you... STOP.

Stop reading this book for a few minutes and go to your stack of reprints (or
‘e-prints’!) and re-read Hurlbert’s (1984) discussion of pseudo-replication and the
design of ecological field experiments. We need to make sure that our understand-
ing of ‘units’ and ‘replication’ is clear and thorough. An important concept that
is brought out in Hurlbert’s discussion begins with a description of an experiment
to compare the rates of decomposition at 1 and 10 m depth in water. Eight netting
bags filled with leaf material are placed at 1 m depth and eight at 10 m depth. The
important concept here is that, in this case, the leaf bags are not the experimen-
tal units; the locations at which they are placed are, and the bags are really just
measuring devices. If the eight bags for each depth are placed at only one location
for each depth, we cannot really test for differences between depths. We can only
test for differences between two locations, one of which happens to be at 1 m and
the other at 10 m; i.e. we have simple pseudo-replication. In order to examine the
effects of depth, the leaf bags must be dispersed to allow us to make inferences more
general than the results of just two locations. Sacrificial pseudo-replication occurs
when there are true replicates, but the data for replicates are pooled before analysis
or where two or more samples taken from each experimental unit are treated as
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independent samples. Hurlbert’s discussion reminds us that we need to consider
the identity of the experimental unit and the identity of a replicate in proceeding
to design statistical tests for locational data. It also reminds us that we need to
approach the practice of pooling data with great caution. ..

NOW, ... toreturn to the topic of testing the relationship between animal location
and habitat type.. ..

The simplest approach is to look only at the locations of the animals, without
considering the properties of the path of movement. Neu et al. (1974) advocated
a simple goodness-of-fit test to compare the frequency of animals’ presences in
particular habitat types with the availability of those habitat types in the landscape.
For example, with only two habitat types, A and B, known to be present in a ratio
of 2 : 1 in the landscape, the observed data of 175 animal locations in type A and
125 in type B would be compared with the expected values of 25 x 300 = 200 for
A and !5 x 300 = 100 for B by calculating:

(175 — 200)? L 25— 100)?
200 100

X2

= 9.375. (6.10)

The test statistic X? is compared with the x 2 distribution with one degree of freedom
and in this example the result is highly significant. The conclusion is that the animal
is preferentially using habitat B. It is worth reminding ourselves that this goodness-
of-fit test is sensitive to the overall sample size. Given the same proportions but
only 60 observations, 35 and 25 in the two habitat types, the result would not be
significant. With 10,000 observations, the result of this test is almost certain to be
significant if there is any tendency at all to depart from non-preferential habitat use.

If more than two habitat types are being considered, following the overall test, a
Freeman—Tukey standardized residual could be calculated, comparing the observed
and expected value for each habitat type, to determine which contribute most to the
overall significance. Values of magnitude greater than 2.0 indicate important con-
tributions to the overall significance, but we cannot ascribe a particular significance
value to individual cells (cf. Bishop et al. 1975). Table 6.1, following, provides an
example.

The table shows an apparently significant departure of the observed from the
expected (X*> = 71.3 on 4 d.f.; G = 58.5; compare with 7> = 54.9) with the
avoidance of habitat type C and the preferential use of D and E contributing most
to the overall significance.

The table below is based on the situation in which the proportions of the five
habitat types can be treated known, perhaps from airphoto interpretation or GIS
analysis. If, on the other hand, the values in the third column represent the frequen-
cies of the habitat types in 400 random samples, the analysis is different. The null
hypothesis now is that columns 2 and 3 in the table are both estimates of a common
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Table 6.1 A comparison of habitat use with habitat availability

Habitat type Observed count Expected count Freeman—Tukey z¢
A 180 200 —1.43
B 110 100 1.00
C 30 60 —4.48
D 50 30 3.21
E 30 10 4.64
Total 400 400 T2 =549

¢ The Freeman-Tukey statistic is a standardized residual that can be compared with
N(O0, 1) for assessment.

frequency distribution and so expected values are calculated for both. For example,
the expected value for both columns and type A is 190. Now, X*> = 26.5 on 4 d.f.
(G =27.2) and only habitat type E has a Freeman—Tukey standardized residual with
an absolute value greater than 2. The fact that the evaluation of habitat availability is
based on a sample has greatly lowered the value of the test statistic and has changed
the interpretation to one that would concentrate on the disproportionate overuse of
habitat type E.

This contingency table approach, as proposed by Neu et al. (1974), has some
advantages, including the fact that it can be used for one or for several animals
(with suitable caution in how the results for several animals are combined; White
& Garrott 1990). Remembering that Hurlbert (1984) pointed out that this kind of
goodness-of-fit test is the most misapplied statistical procedure, we might have
some concerns about what is being implicitly defined as the experimental unit
and as the replicate if we include data from several animals. Thomas & Taylor
(1990) shared the concerns about the possible misuse of the goodness-of-fit test
and point out a number of other problems including tests that do not control the
‘experiment-wise’ error and the sensitivity of tests to the subjective inclusion or
exclusion of resources. Even leaving those concerns aside, this approach cannot be
used as described because it has one truly fatal flaw.

The problem is, of course, that in using the standard goodness-of-fit test, auto-
correlation in the data has not been accounted for. Positive autocorrelation makes
statistical tests too liberal, giving more apparently significant results than the data
actually justify. We have discussed this general problem at length in the previous
chapter, in the context of the effect of spatial autocorrelation on statistical test-
ing. The same sorts of considerations will apply, however, to the spatio-temporal
autocorrelation inherent in animal movement data. It is a bit strange that in rec-
ommending Neu’s approach, White & Garrott (1990) mentioned the problem of
autocorrelation without any suggestion of how it can be addressed.
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The optimistic view is that if you thin out the data so that the observations
used in the analysis are further and further apart in time and space, at some point
they will become independent of each other. This is the concept of ‘time to inde-
pendence’, which has received some attention in the behavioural ecology litera-
ture (Swihart & Slade 1985, 1986; Solow 1989; Salvatori et al. 1999). It seems
unlikely to apply well in the case of studying a single animal, the behaviour of
which may be more consistent than comparisons among animals, just because it
is the same animal with its own idiosyncrasies, memories and so on. Differences
in the approaches used depend on whether the focus is on a single animal or on a
population (Manly et al. 2003). Millspaugh et al. (1998) emphasized the impor-
tance of considering the biological characteristics of the organisms in attempting
to assess autocorrelation and the independence of observations. Second, behaviour
may exhibit cyclic patterns, which may introduce negative autocorrelation at some
lags (temporal or spatial), and does not provide independent samples or observa-
tions either.

Without repeating too much of the material of the previous chapter, it is sufficient
to say that there is no easy solution to this problem and no simple ‘time to inde-
pendence’ trick that will make it disappear (see Rooney et al. 1998). The fact that
autocorrelation is not significantly different from zero (cf. Swihart & Slade 1985)
does not mean that it has been shown to be zero and can therefore be treated as such.
In the preceding chapter, we gave a good example of how ‘insignificant’ autocor-
relations can have a large cumulative effect. Minta (1992) concluded that time to
independence may be ‘practically unachievable’ for many species, and Rooney et al.
(1998) recommended the use of short temporal sampling intervals to produce a rich
data set. Otis & White (1999) pointed out that there seems to be disagreement in
the literature concerning the importance of autocorrelation in the analysis of habitat
selection. (Surprisingly, Otis’ 1997 paper on habitat selection with multiple patches
does not discuss problems arising from autocorrelation.) They recommended using
tests based on the variation among individual animals for which the number of
degrees of freedom is not affected by the number of locations for each animal. For
example, if the habitat use by each of 10 animals can be used to create 10 rankings
of habitat preference, the rankings can be compared using a non-parametric rank
test (Friedman 1937; Conover 1980). What would be the experimental unit and
what is a replicate here? Of course, if some of the animals used are part of the same
family or the same herd, problems with pseudo-replication can still arise because of
lack of independence among the units treated as replicates (cf. Weber et al. 2001).
Manly et al. (2003) provided detailed advice on designing studies depending on
whether an individual or a population is the subject of interest. They also described
the use of a resource selection function, which is based on the ratios of observed to
expected sample counts in the different habitat categories.
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The question remains, however, whether there is a way, using the characteristics
of the path of a single animal, to look at preferential habitat use. We will now
describe one approach. It is based on the fact that in favoured habitat, the movement
will have greater tortuosity with more frequent and tighter turns; this leads to less
net displacement and greater residence time in those patches (Turchin 1998). Any
set of k steps in a movement path can be assigned an index of tortuosity, or as we
express it ‘compactness’. A number of different measures could be used for this
purpose, but we will describe one that we believe is new to the literature. The index
of compactness can be based on the ‘convex hull” of that portion of the path, which
is the smallest convex polygon that contains it. Where m is the diameter of the
convex hull, the largest node-to-node distance in the convex hull, and L is the total
path length within it, then a simple measure of path tortuosity is L/m (Claussen
et al. 1997). The same authors also discussed a measure based on turning angles
but those can be used only when the total path is available for analysis, not just a
sample of it, such as spaced observations. Figure 6.15 shows two examples of this
measure; a number of other measures are also possible for this purpose.

For each point i in the path and integer k, we can calculate the compactness for a
subpath of length k centred on i. Then, those scores can be compared for different
habitat or vegetation types in which the centre points of the subpaths occur, either
by averaging or in some spatially explicit way (e.g. contour maps) for a range of
subpath lengths. Figure 6.16 gives an example. Statistical testing can be carried out
by superimposing the path itself, after random translation, rotation and reflection
on the habitat map, say 1,000 times, and recalculating the scores. The scores from
the original position of the path can then be compared with the values from the
randomizations and thus evaluated for significance. As always, the assumptions
that seem reasonable and the questions being asked will affect the randomization
procedure chosen. The usefulness of compactness as a measure will depend on the
pattern of behaviour.

As with the discussion of using position data to evaluate habitat use, there is
much discussion in the literature of the proper evaluation of an animal’s home
range or of an animal’s territory. Again, the presence of autocorrelation in the
data is an important feature that must be considered. We are not going to com-
ment on the technical aspects of home range evaluation, but we will point out
that spatial and temporal autocorrelation seem to be implicit in the concept of
an animal’s home range. We agree with the overall recommendations of de Solla
et al. (1999) and Rooney et al. (1998) that more data will provide clearer answers,
but that autocorrelation needs to be evaluated in the determination of those
answers.

There are other topics related to the analysis of the movement of individu-
als that we have not addressed here. For example, we have not discussed the
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Figure 6.15 Measures of path compactness or tortuosity. (@) A sample of elk
movement of low tortuosity: L /m = 1.56. The bold lines are the path and the
fine lines complete the convex hull. (b) A sample of elk movement with higher
tortuosity: L/m = 4.12.

mark-recapture methods associated with trapping session on a grid of traps. Usually
the aim is an estimate of density and other characteristics related to the temporal
dynamics of the population being studied, but it would be easy and straightfor-
ward to extract some spatial information from such data. As a general comment,
however, it is clear that the topic of the spatio-temporal analysis of the movement
of individuals is both important and worth further research on methods and their
application.
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Figure 6.16 Measures of path compactness or tortuosity can be localized for
given lengths of subpath, here 4 or 8 units; the bold lines are the path and the fine
lines complete the convex hulls in the two locations. The dashed lines are the
diameters, m. The measure of compactness is 1.64 for the first subpath and 2.31
for the second.

6.6 Process and pattern
6.6.1 Tree regeneration, growth and mortality

In both population ecology and its application in forestry, there has been an abiding
interest in the fates of trees after the regeneration of a forest following a major
disturbance such as a fire or harvesting. From the point of view of population
ecology, the emphasis is on the density of stems and the ‘self-thinning’ process, as
density declines with ongoing tree mortality (Kenkel ez al. 1997). The question for
naturally regenerating stands is to what extent the size and proximity of neighbours
determine the probability of mortality. From the point of view of forest managers,
the emphasis is on the appropriate densities for planting and the size and age at
which thinning should be carried out to maximize economic yield. In mixed forest
(e.g. deciduous and conifer) there may also be questions about the timing and
intensities of interventions to adjust the ratios of different species. For either kind
of question, there is value in the long-term study of permanent plots in which the
establishment, growth and mortality of identified individual stems are recorded at
regular intervals over many years. Data on tree growth increments are typically
analysed by multiple regression procedures, with the spatial factors being included
as the distances to or densities of neighbouring trees, together with their heights
and canopy volumes. Mortality can be analysed in a similar way, but using logistic
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regression to evaluate the probability of mortality as a function of those kinds of
variables (Woollons 1998).

In the absence of established permanent plots, it may sometimes be possible to
obtain some of the same kinds of information by reconstructing the history of a for-
est stand based on tree rings, the sizes and positions of living trees and the sizes and
positions of recent and not-so-recent mortalities. For example, Carrer & Urbinati
(2001) analysed structural and tree-ring variables of a timberline forest (Italian Alps)
at fine spatial and temporal scales, and found that the positive autocorrelations they
observed could be attributed to microsite differences, but that the spatial structure
of radial growth was sensitive to extreme meteorological events. They concluded
that succession seemed to be moving the forest toward a system governed by gap
regeneration dynamics that would maintain the coexistence of the two main tree
species, Larix decidua and Pinus cembra. Brodie et al. (1995) reconstructed the
history of a clone of poplar (Populus balsamifera) in northern Quebec from the age,
diameter and positions of all living and dead stems. Partial Mantel tests suggested
that the clone developed in three phases: post-fire colonization, consolidation and
then, directional expansion. The numerous small-diameter dead stems were aggre-
gated and the mortality seemed to be density dependent, probably due to intracohort
competition. These two examples (of the many available) illustrate the wealth of
information that can be obtained from such retrospective spatial analyses of trees
and the insight they can provide in the ecological processes that they document.

6.6.2 Plant mobility

The interest in the spatial dynamics of forest stands is driven at least in part by
their economic importance, and the persistence of tree rings, as records of past
processes, provides a useful insight to the past. An obvious disadvantage of trees
as study organisms is that the processes take such a long time. Many authors have
looked at the spatio-temporal structure of plant populations and communities by
using herbaceous plants for which the processes are considerably more rapid. Here
the rhizomes or runners, rather than annual growth rings, provide the record of past
processes, such as clonal expansion.

For example, Evans & Cain (1995) studied the ‘foraging behaviour’ of a clonal
plant, Hydrocotyle bonariensis (Apiaceae), in response to patches of grass. Instead
of calculating a ‘bias’ component from growth angles, as described for Schultz &
Crone (2001) above, they classified rhizome growth in the vicinity of grass patches
into three categories: veers toward patch, veers away from patch and no change in
direction. The numbers in the three categories were then subjected to contingency
table analysis which showed that where the grass was patchy, the rhizomes tended
to veer away from it. Where the grass was uniform or absent, no significant veering
behaviour was observed. We might be tempted to use this approach to study animal
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movements, rather than using the biased random walk approach described above,
but we would have to be very concerned in the statistical analysis about the large
amount of positive spatial autocorrelation in the data (from using one or only a few
animals), as we have already discussed.

Cain & Damman (1997) studied the patterns of reproduction and clonal growth
in the woodland herb, Asarum canadense, comparing the characteristics in an early
successional forest with those in a late successional forest. They used the Pearson
correlation coefficient to examine the autocorrelation of rhizome length and branch-
ing angles over time. Rhizome lengths were autocorrelated (first order, we assume,
but it is not stated) in both ages of forest, but apical angles were not. Lateral
branching angles, however, were negatively autocorrelated (first order again), with
a tendency to alternate branching to the left and to the right of the parent rhizome.
This study provides a relatively rare ecological example of the spatial analysis of
branching linear structures.

This topic again leads us back in the direction (!) of a discussion of spatial
autocorrelation and its effect on our evaluations. For the purposes of the current
topic, we can end by pointing out only that it is an important first step to assess and
quantify the autocorrelation in the data. Even that first step may provide some insight
into the characteristics of the processes underlying the observed spatio-temporal
patterns.

6.6.3 Lichen boundaries

Just as it may be possible to reconstruct past history from tree rings, persistent
rhizomes and other similar data for a forest stand, in other systems there may be
other obvious traces of the past that can be used to reconstruct process from pattern.
One such example is the boundaries of crustose lichens growing on rocks. Lichens
are composite organisms, consisting of a specialized kind of fungus with one or
more photosynthetic algae, and have an amazing range of growth forms, colours
and ecological situations (documented in a recently published and wonderful book
by Brodo et al. 2001). Crustose lichens are those that have no lower cortex and are
therefore so intimately attached to their substrate that they cannot be removed from
it; many of them have their thallus fringed by a region of unlichenized (fungus
only) tissue called the prothallus (Brodo ef al. 2001). The thallus itself is often
divided into coloured photosynthetic patches called aureoles, as in Rhizocarpon
species (Figure 6.17). Although it is possible for one crustose lichen to invade
another’s thallus (Brodo er al. 2001, Plate 4), it also seems common for a ‘truce’
boundary to be established between two colonies, particularly if they are of the
same species, often resulting in a complete mosaic of colourful patches separated
by the black lines of the prothallus (which is why the Rhizocarpons are commonly
known as ‘map lichens’). If the observed interthalline boundaries represent a truce
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Figure 6.17 Three small thalli of yellow Rhizocarpon. The black prothallus and
coloured aureoles are obvious. There appears to be a ‘truce’ boundary between
the two larger thalli.

line, established and maintained from the time of contact, then we can deduce the
relative rates of thallus growth from the shape of the boundary as we will now
describe, following Dale (1985).

We can begin by considering a number of different models of how the radial
growth rate of a crustose lichen thallus (pictured as a perfect circle) might depend
on the radius of the thallus.

(1) Model A: growth independent of radius, which gives linear growth at a constant rate a:

dr

7 =¢ (6.11)
(2) Model B: growth rate proportional to radius, giving exponential growth:

d_r = ar. (6.12)

dr

(3) Model C: growth rate proportional to radius, up to radius s and constant thereafter,
because only those parts of the thallus closer than s to the margin can contribute to
radial growth:

dr

— =arl|r <s;

dr

dr

— =aslr >s. (6.13)

dt
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(4) Model D: growth rate at first proportional to radius but declining after reaching
radius s (Benedict 1967):

dr

— =arlr < s,

dt

d

d—::q < aslr >s. (6.14)

(5) Model E: growth rate changes very slowly from exponential to linear (Hill 1981):

dr ars
— = . (6.15)
dr r—+2s

If the two thalli are the same size when they meet, under any of the five models
just described the resulting boundary will be a straight line. For thalli of unequal
sizes, Model A produces a boundary that is a hyperbola (concave toward the
smaller thallus, of course) and Model B produces a boundary that is a circle (see
Figure 6.18a, b). Model C gives a boundary of two parts with an obvious tran-
sition (Figure 6.18c¢), and Model D produces one that folds back on itself, as in
Figure 6.18d. Hill’s model results in an oval-shaped boundary (Figure 6.18¢) in
which it is possible that the smaller thallus becomes completely surrounded by its
larger and faster-growing neighbour.

Based on the preliminary investigation of saxicolous lichens in the Canadian
Rockies, described in Dale (1985), it was reported that straight boundaries between
thalli of approximately equal size were common, boundaries were usually smooth
with no obvious ‘break’ points and curving boundaries were almost always concave
toward the smaller thallus. Further research confirms these features, suggesting that
the growth rates tend to follow a smooth transition from exponential to linear growth,
as in Hill’s equation, Model E above (Armstrong 1992; Armstrong & Smith 1996).
There is no evidence in the boundaries between thalli we have examined that radial
growth actually slows down at larger sizes as suggested by Armstrong’s data for
Rhizocarpon geographicum (Armstrong 1983).

We admit that the shape of the growth curves of lichens as a function of radius
may not be of broad ecological interest, but there are closely related topics in the
general area of spatio-temporal analysis that are. In discussing the five models
above, we made the comment that, no matter what the shape of the growth curve,
provided it was the same for all thalli, the boundary would be a straight line if
the thalli were the same size when they met. We can describe the same fact with
another image: a number of propagules colonize a plane surface at the same time,
producing circular colonies that grow outward at the same rate, with growth ceasing
at any points of contact; this creates boundaries that are straight lines (Figure 6.19).
If the process continues until the plane is filled, the result is the familiar tessellation
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Figure 6.18 The predicted interthalline boundary shapes for different models
of growth: (a) Model A, constant; (b) Model B, exponential; (c) Model C,
exponential and then constant (redrawn from Dale, 1995); (d) Model D,

exponential and then declining; and (e) Model E, exponential declining gradually
to constant.
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Figure 6.18 (cont.)
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Figure 6.18 (cont.)

known variously as Dirichlet, Voronoi or Thiessen polygons (cf. Okabe ef al. 1992
and Chapter 2 of this book). This is often alluded to in the study of plant population
ecology, particularly for processes like competition and self-thinning, because the
polygon associated with a plant (or event or propagule) is the area and the resources
that it can pre-empt because they are closer to it than to any other (Mead 1966).
Those seedlings, for example, with the smaller polygons have fewer resources easily
available and are more likely to suffer mortality (Watkinson et al. 1983; Mithen
et al. 1984; Owens & Norton 1989; cf. Kenkel 1991).

Given the same picture, of propagules arriving on a plane surface and growing
into colonies that stop where they meet, if they do not arrive simultaneously, the
resulting boundaries will not be straight and the shape will now depend on the
growth rate model (Figure 6.20). Boots (1980) and Frost & Thompson (1988) have
examined a number of different curved boundary tessellations that might arise in
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Figure 6.19 Synchronous colonization produces straight interthalline
boundaries.

this way, but there are few applications of this interesting concept in an ecological
context (cf. Kenkel 1991). This is another area in the general field of spatial ecology
that deserves and would reward further investigation.

6.7 Spatio-temporal orderliness and spatial synchrony

The basic concept of spatio-temporal autocorrelation analysis is that samples that
are closer together in space or time probably are more similar than samples that
are taken further apart. In a simple world that might be true, but in both space and
time, it is also possible for more widely spaced samples to be similar. In space, a
simple alternation of patches of high density with gaps of low density will produce
cyclic behaviour for almost any measure of spatial autocorrelation as a function of
distance. Temporal cycles will produce the same behaviour as a function of time and
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Figure 6.20 Asynchronous colonization can produce curved interthalline
boundaries, with the shape depending on how the growth rate changes with size.
The circles are boundaries at time 1 and the other lines are boundaries at time 2.

we are familiar with many examples in ecology, such as masting by trees and the
famous population cycles of snowshoe hares and lynx, or small mammals such as
lemmings and voles. Often these cyclic phenomena are more-or-less synchronized
over large areas, and a number of studies has examined the relative effects of the
characteristics of population dynamics and dispersal and of external forces, such
as climatic events, in causing large-scale synchrony. Synchronous cycles are not
the only form of spatio-temporal organization observed in natural systems or in the
models used to investigate their properties. Expanding circles, travelling waves and
spirals of high density are other possibilities, somewhat like the wave-regeneration
in some forests or the development of banded vegetation in ‘brousse tigrée’
described above. Much of the literature on spatio-temporal organization has concen-
trated on the obvious cycling of certain populations because they are widespread
(in more ways than one!) and provide a challenge to our understanding of the
factors that determine the abundances and distributions of organisms (cf. Krebs
2002).

Given a cyclic system that is found over a wide geographic area, it is of interest to
ask about the relationship between the cycles at different locations, as a function of
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distance. Do the cycles exhibit the same periodicity or does the period change with
location? If the cycle lengths are more or less the same, are the cycles in synchrony
over the geographic range or does synchrony decline with distance?

There are several different, but closely related, ways of analysing data from a set
of spatial locations in order to answer these kinds of questions. In general, the data
for any particular location, i, will consist of a time series of population densities,
N; = Nii,..., Ni,..., Ni7. Density data are often log-transformed before
analysis:

The method described by Hanski & Woiwod (1993) uses these log-transformed data,
but removes the first-order temporal autocorrelation effects by fitting the equation:

Xl+1 =Cl+bX,, (6.17)
and then using the residuals for further analysis:
R =X, —(@+bX,_)). (6.18)

One general approach is the calculation of the cross-correlation coefficient
between the two series with a time lag of zero. Where there are two time series, x;
and x,, both of length 7, their cross correlation is:

T
> (v — B — %)
r(0) = —= . (6.19)
T
Z(xlt — %) (xy — %)’

=1

Where the data consist of two time series for each of a number of locations, it
is also possible to examine the effect of spatial distance on the cross correlation
coefficient of the two time series. Tobin & Bjgrnstad (2003) provided an interest-
ing example of the application of this approach to a study of the spatio-temporal
relations between a prey species, the house fly Musca domestica, which is a serious
pest in commercial hen houses, and a predatory beetle, Carcinops pumilio. Given
the cross correlation of the two time series for each of a number of locations (108
in one large hen house and 162 in another), a kernel function can be used to give an
estimate of the cross correlation at any given distance. They found that during the
exponential growth phase of the fly population, the beetles were strongly negatively
cross correlated with their prey at local spatial scales.
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Hanski & Woiwod (1993) used a related approach to examine the spatial syn-
chrony of populations of single species. Studying the densities of different kinds of
insects (moths and aphids) in England, they used the cross correlation between the
residuals of conspecific population densities for each pair of sites, r;;, and plotted
them as a function of distance between sites, d;;. The y intercept of the linear regres-
sion of correlation as a function of distance was used as a species-specific measure
of synchrony to be compared with a measure of population variability through time.
They found a positive relationship between synchrony and temporal variability for
aphids and noctuid moths, but not for geometrid moths.

Another method is to make a direct comparison of the n x n matrix of correlation
coefficients, ;;, with the n X n matrix of inter-site distances, d; ;. The usual technique
for comparing such a pair of matrices is the Mantel test (Chapter 3), which uses a
randomization procedure to test for the significance of the relationship between the
two. Koenig & Knops (1998) cautioned that because there are more pairwise corre-
lation coefficients than there are sites, ‘the potential for pseudo-replication biasing
the results of statistical tests cannot be ignored’. They suggested that, because auto-
correlation is expected to decline with distance, the Mantel correlogram may not
produce results of ecological interest, when it detects only a decline in autocorre-
lation as a function of distance. Figure 6.21a gives an example of the correlation of
tree-ring widths in Picea glauca as a function of geographic distance in northern
Alberta (Peters 2003). The results for two trees per site and five sites show little
evidence of a systematic decline in correlation with distance, indicating that, in
this case at least, the situation is not the simple one that Koening & Knops (1998)
describe. In fact, the simple decline with distance may not be as common as those
authors suggest, as we described in Chapter 5.

The same authors (Koenig & Knops 1998) recommended the use of a ‘modified
correlogram’ to display the results graphically, by plotting the mean correlation
coefficient between the time series of randomly chosen pairs of sites within speci-
fied distance classes; to avoid pseudo-replication problems, each site is used only
once. Ranta et al. (1997) used a randomization technique to compare the level of
synchrony at any particular site with others, by choosing other sites at random,
thus avoiding the same problem. Figure 6.21b shows a re-analysis of the same
Picea glauca tree-ring data of Figure 6.21a, but using randomly chosen pairs of
trees that are then not re-used (sampling without replacement). The conclusions
drawn would be the same. Where each site has two time series of data, for example
acorn production and annual growth in oak trees, the cross-correlation coefficient
between the two series can be used in the same way (Koenig & Knops 1998). It
is not clear to us how great a problem this re-use of data really is; as described in
Chapter 2, many exploratory analysis techniques are based on the repeated use of
the same data; TTLQYV being an extreme example (Chapter 2). There is the usual
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Figure 6.21 Correlation of Picea glauca tree-ring widths as a function of
geographical distance in central Alberta. (a) Five sites, the same two trees per
site. (b) The same five sites, two trees per site, but the trees not re-used (sampling
without replacement).

trade-off between independence and the effective use of the information available.
This comment applies to a wide range of methods not just to the correlation tech-
niques being discussed here.

There is a number of variations on these basic methods. Sutcliffe et al. (1996)
used the non-parametric Spearman’s correlation to evaluate the synchrony of
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butterfly population dynamics. This approach uses the ranks of the abundances
rather than the values themselves and may be less affected by extreme values
(cf. Conover 1980). As with other correlation statistics, it applies to pairs of
series and for more than two series in a region, the measures for all pairs could
be averaged to give a regional measure of synchrony. An alternative is to use
Friedman’s measure of concordance for several series (Conover 1980). Bjgrnstad
et al. (1999) averaged the pairwise cross correlations to get a regional measure of
synchrony but based them on the year-to-year changes in density, not on the densities
themselves.

Bascompte & Solé (1998) describe how the analysis of two data sets confirmed
the predictions from spatially explicit dynamic population models of spontaneous
self-organization in the form of spirals or travelling waves of population density.
Since then, a number of studies have demonstrated the phenomenon of travelling
waves of density, e.g. in field voles (Microtis agrestis, MacKinnon et al. 2001)
and in red grouse (Lagopus lagopus ssp. scoticus, Moss et al. 2000). At a larger
scale (the entire Canadian boreal forest, of the order of 5000 km across), Viljugrein
et al. (2001) found that although there is broad-scale synchrony in the population
cycles of mink (Mustela vison) and muskrat (Odatra zibethicus), peaks and troughs
in these cycles generally appear first in the Athabasca basin and spread from this
epicentre. Similarly, while the basic oscillation of spruce budworm (Choristoneura
Jfumiferana Clem.) is the same across all of Ontario (about 1000 km), large outbreaks
appear first in the eastern zone, followed by the central zone, and then 5 or 6 years
later in the western zone (Candeau et al. 1998). It is not our purpose to review
the mechanisms believed responsible for this travelling wave phenomenon, but see
Sherratt et al. (2000) and Sherratt (2001) for interesting discussions. Travelling
waves are detected in the spatio-temporal data by looking for anisotropy in the
spatial covariance (Bjgrnstad er al. 1999a, b; Lambin et al. 1998). If there is a
travelling wave, cross correlation declines markedly with distance in directions
perpendicular to the wavefront, but does not decline with distance parallel to the
wavefront. The plot of cross correlation as a function of distance, described above,
is merely divided into a few direction classes and examined for differences. Lambin
et al. (1998) and colleagues have described a modelling method to help estimate
the speed and direction of such a travelling wave and to determine its statistical
significance.

There are two related questions of the consistency of spatial pattern through time
and of the synchrony of temporal patterns in space. This section has attempted to
provide a description of the various methods that can be used to answer these two
questions. Answering these questions merely leads (of course) to more questions,
now concerning the ecological processes that lead to the spatio-temporal patterns
we detect.
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6.8 Chaos

In the preceding section, we discussed some of the spatial aspects of population
dynamics, or the temporal aspects of patterns of population density, but we avoided
the topic of spatial (or spatio-temporal) chaos, because it is sufficiently interesting
and important to merit a section of its own. Used in a technical sense, ‘chaos’
refers to a system’s behaviour in time or space that is irregular and possibly very
complex but that is strictly deterministic. Chaos is not the same as randomness
or stochastic behaviour, although it may appear to be unpredictable and aperiodic.
One distinctive feature of chaos is that the overall behaviour can be very sensitive to
very small changes in conditions (the so-called ‘butterfly effect’, Schroeder 1991).
We will begin our discussion of chaos as it relates to spatio-temporal analysis with
a review of an example that is probably very familiar to the reader.

Consider the following difference equation that describes the dynamics of the
population density at a particular location and time, NV,, as a function of the density
at the preceding time, the growth rate of the population, r, and the carrying capacity
for the population, K:

Ny =rN, (K — N;-1)/K,
which can be rewritten as
ny =rn,_1(1 —n;_y). (6.20)

This equation describes logistic population growth, which is almost exponen-
tial when the population is well below the carrying capacity, with the growth rate
being slower at higher densities and decreasing to zero at the carrying capacity.
The growth rate is negative when the carrying capacity is exceeded and the pop-
ulation declines. The behaviour of the population that is derived from the appli-
cation of this equation depends on the intrinsic growth rate, ». When r takes the
value 2.5, the equilibrium value of #, is 0.6, and the population converges to this
value, no matter what the starting density. If we plot a two-dimensional diagram
of n, versus n,_;, any trajectory will converge to the point (0.6, 0.6), which can
be thought of as an ‘attractor’ under these conditions (Figure 6.22a). When r is
3.2, while there is an equilibrium value of 0.6875, it is almost never reached,
because the equilibrium is unstable, and n, alternates between two values, 0.513
and 0.7995 (Figure 6.22b). When r is increased to 3.4, n, cycles among four values,
approximately 0.875,0.383,0.827 and 0.501 (Figure 6.22¢). Further increases cause
doubling of the lengths of the cycles, but the behaviour soon becomes aperiodic
(chaos!). What is most fascinating about this simple system is that as r contin-
ues to increase, the behaviour returns to simple cycles, then back to chaos and so
on (usually illustrated with the ‘bifurcation to chaos’ figure that appears in many
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Figure 6.22 (a) When r = 2.5, the different trajectories in the phase space
converge to the equilibrium point of (0.6, 0.6). (b) When r = 3.2, the trajectories
do not converge to the unstable equilibrium value of 0.6875 (the star), but
converge to an alternation between two other values. (c) When r = 3.4, the
‘equilibrium’ is a cycle among four different densities.
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Figure 6.22 (cont.)

places, e.g. Schroeder 1991, Figure 12.11). While as a simple model of population
behaviour, this approach to chaos seems unrealistic because the values of r required
toachieve chaos are unnaturally high, it provides an important lesson on the potential
importance of non-linear dynamics.

How does this relate to spatio-temporal analysis? The first question is how to
detect chaos in time series from individual locations and to determine whether
natural systems indeed can be chaotic. In 1995, Solé & Bascompte wrote:

Detection of chaos in ecological data is one of the most challenging problems in con-
temporary ecology. It is not enough to certify that time series are complex, we need a
comprehensive approach to that complexity. . . . [T]he question of chaos in nature is still an
open one.

In that decade, much effort was devoted to trying to meet that challenge, but without
complete success, some of which we shall describe below (cf. Stone & Ezrati 1996;
Perry et al. 2000).

If chaos does exist in ecological systems, a second question then is what are
the relationships among chaotic data series at a number of locations and to find
whether the relationships have a spatial component. Another question is: if there is
such a thing as spatial chaos, how do we detect it and what are the characteristics
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Table 6.2 Two pairs of time series with slightly
different initial values

r=395 r=3.25

t n; m; A; n; m; A,

20.00 21.00 1.00 20.00 21.00 1.00
63.20 6553 233 5200 5392 191
98.22 8922 2,65 &8l1.12 80.75 0.37
29.51 3798 847 49.87 5052 0.74
82.16 93.05 10.88 81.25 81.24 0.01

LW =O

of its dynamics? We might also ask about the relationship between space and time
in chaotic systems and how we might determine that relationship.

We will begin by considering the first question, concerning the detection of chaos
in a single time series. At first glance, a chaotic time series seems indistinguishable
from a noisy stochastic series, and it may seem to be a challenging problem to detect
chaos: actually it is not, at least in theory. The basis for detecting chaos goes back
to a characteristic of chaos described above: the fact that small differences become
amplified. Let us consider an example based on Eqn (6.20) above. Consider two
cases, both with starting values for two series of n = 20 and m = 21, and examine
A; = |m; — n;| for increasing or decreasing differences; in the first case r = 3.95
gives chaos and the differences increase, and in the second, r = 3.25 does not, and
differences tend to decline (Table 6.2).

The diagram plotting n, against n,,, as in Figure 6.22, is called a phase space
diagram, in which time is not represented as an axis, but is included explicitly
in the drawing of the trajectories, through time, of the combinations of values.
In complex situations, we may plot only the ‘attractor’ to which the trajectories
converge (Figure 6.22b). The attractor may be a single point, as mentioned above,
a finite loop of 2, 4, 8, ..., points, or in the case of chaos, a ‘strange’ attractor that
is infinite but bounded and often (always?) fractal (of fractional dimension).

Where there is chaos, the trajectories that started close together diverged in the
phase space; where the behaviour was not chaotic they converged. To put it in more
mathematical terms, consider two trajectories in a phase space that are separated by
a small amount, ¢, at time #; at time 7 + 7, they are separated by ¢, = ee*”, where A
is a constant that is characteristic of the system, known as the Lyapunov exponent.
From the first four or five values of the two cases described in Table 6.2, above, in
the chaotic example, A is about 0.6 (calculated from In(10.88)/4) and in the cyclic
example, it is about —1.15 (calculated from In(0.01)/4). In fact, it is the Lyapunov
exponent that will allow us to detect chaos: if it is greater than zero, there is chaos.
If it is less than zero, there is convergence. An exponent of zero indicates cyclic
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Figure 6.23 The cyclic behaviour predicted by simple predator—prey models,
depicted in phase space (a) and as relative densities as a function of time (b). The
predator density increases when prey are plentiful, but high predator densities
drive prey density down. Predator density declines when prey are scarce.

behaviour such as the limit cycles predicted from simple predator—prey models,
familiar from ecology textbooks (Figure 6.23). It seems that all that is required to
detect chaos, then, is to determine the Lyapunov exponent from the data and then
draw a conclusion based on its value.

Problem solved. ..? Well, no, not exactly. The difficulty is that to get a reliable
estimate of A from real data, long data series may be needed, and those are seldom
available in ecological studies. One feature of ecological data is that even if there
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is a chaotic deterministic foundation to the data, we would expect a stochastic
component of exogenous factors to be added on somehow (Dennis et al. 2001), and
some methods of analysis may be affected by this ‘noise’ in the data (cf. Ellner &
Turchin 1995). Even if long data series are available, the characteristics of the
population, such as the intrinsic growth rate, may change over time, so that the
Lyapunov exponent we are trying to estimate is not constant. As Ellner & Turchin
(1995) concluded, it may be more sensible to ask of any particular system ‘When
and how often is it chaotic?’ rather than ‘Is it chaotic?” This suggestion fits with
one theme in this book, the distinction between global and local evaluation of the
characteristics of the phenomena being studied.

In addition to the technique of estimating the Lyapunov exponent, a number of
other methods to detect chaos have been proposed; see Stone & Ezrati (1996) and
Perry et al. (2000). Using response surface methods, Turchin & Taylor (1992) found
a number of different dynamics in natural populations of insects and vertebrates,
but only one, the aphid Phyllaphis fagi, was thought to be chaotic. Perry et al.
(1993) included further data from the same population of Phyllaphis fagi, and from
other populations of the same species, and decided that its dynamics were actually
stable, not chaotic. Dennis et al. (2001) in studies of laboratory populations of flour
beetle (Tribolium sp.) found that high period cycles were more likely to be a good
description of the population dynamics than chaos. Knowledge of the biology of
the system being studied seems to be essential for interpreting the dynamics, what-
ever techniques are used to investigate them. From Perry ef al. (2000), one might
conclude that many systems are on the ‘edge of chaos’, with Lyapunov exponents
around zero. While chaos may turn out to be rare in nature, it is important when
studying dynamics and spatio-temporal systems to keep in mind that it is possible.

Given that chaos is possible in purely temporal systems, what is possible when
a spatial structure is included? The easy answer is that, in theory, almost anything
can happen. A straightforward way to include a spatial element in simple dynamic
models is to have two or more metapopulations, each governed by the same under-
lying model, but linked by dispersal between adjacent subpopulations. Gonzalez-
Andujar & Perry (1993) investigated such linked populations and concluded that
linking the populations reduced the occurrence of chaos. Ruxton (1993) responded
pointing out that linked populations may still be chaotic. Doebeli & Ruxton (1998)
extended this work on metapopulation dynamics, showing that long-range disper-
sal can stabilize otherwise complex dynamics and that short-range dispersal can
destabilize otherwise stable dynamics.

To illustrate these effects, we will use a model of two populations, both governed
by Eqn (6.20), and either linked by dispersal or isolated from each other. We will
consider several different situations, all with » = 3.58. With starting densities of
n = 0.50 and m = 0.80, the behaviour is chaotic, with the attractor as shown in
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Figure 6.24 The effects of interchange between populations on the edge of chaos,
with r = 3.58. (@) n = 0.5, m = 0.8: chaotic behaviour; (b) 5% interchange: chaos
suppressed, a cycle of period 2. (¢) n = 0.9, m = 0.8, cycle period 4 with 5%
exchange; but with n = 0.85, m = 0.8, the chaotic behaviour returns as in (a).
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Figure 6.25 Something like spatial chaos in a cellular automata system,
Wolfram’s (2002) ‘rule 150°.

Figure 6.24a. When the same starting values are used, but the populations are linked
by an exchange (dispersal in each direction) of 5% of each population, the behaviour
becomes a cycle of period 2, as shown in Figure 6.24b. Because the system is ‘on
the edge of chaos’, the outcome can be changed merely by changing the starting
densities, while the degree of linkage is unchanged. Starting with n = 0.90 and
m = 0.80, the result is a cycle of period 4 (Figure 6.24¢). Starting with densities of
0.80 and 0.85, the two subpopulations essentially act as one and chaos returns, and
the situation reverts to that shown in Figure 6.24a. This example, based on a very
simple system of two subpopulations, illustrates well the potential complexities of
the behaviour of chaotic systems with spatial structure. Think of the possibilities
with greater spatial complexity! This kind of interaction between subpopulations
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Figure 6.26 Sensitivity to starting conditions in cellular automata: three
outcomes of Wolfram’s (2002) ‘rule 73’ with different initial patterns (top row).

should be considered in interpreting spatial dynamics or the spatio-temporal patterns
of density.

Spatial chaos? Why not? At least in theory... Any model that can generate
chaos in time can generate chaos in space, but it is not clear how applicable
such models would be in describing real systems. On the other hand, Petrovskii &
Malchow (2001) described a spatially explicit predator—prey model in which spatio-
temporal chaos appears in a subdomain of the system and then spreads to take over
the whole space. A kind of purely spatial chaos can be found in the develop-
ment of some cellular automata models. For example, Wolfram (2002) displayed
a number of examples which seem to have complex aperiodic behaviour, which
he refers to as ‘random’, but which, because they result from deterministic rules,
should more properly be referred to as chaotic (e.g. p. 227, ‘rule number 150°,
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Figure 6.26 (cont.)

Figure 6.25). Some cellular automata resemble chaos in their sensitivity to initial
conditions; Wolfram’s ‘rule 73’ produces qualitatively different patterns for dif-
ferent starting conditions (Figure 6.26a, b, c). These cellular automaton systems
resemble temporal systems more than spatial chaos, in some ways, because there
is a strict directionality in them for cause and effect (top to bottom in our figures).

Given the interaction of deterministic effects, stochastic factors and the under-
lying spatial structure, it will probably be even more difficult to demonstrate true
spatial chaos in nature than it has been to demonstrate true temporal chaos. Diks
etal. (1997) warned that if spatio-temporal chaos exists and we study it only through
time or in space, we may be misled because we need to look at both space and time
together.

For the purposes of this book and of this chapter on spatio-temporal analysis,
we have probably said enough on the fascinating topic of chaos. The main point
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Figure 6.26 (cont.)

is to be aware that in biological systems, non-linear dynamics should always be
considered as a possibility, and that chaos and the near approaches to chaos cannot
be totally ruled out as reasonable explanations of the observed behaviour.

6.9 Concluding remarks

The area of spatio-temporal analysis, and the phenomena with which it deals, is
definitely one of the most fascinating and rapidly developing in ecology today. It is
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critical to a mature ecological understanding, not just in the sense of spatial pattern
and temporal process, but also in the sense of spatial dynamics and temporal pattern.
For example, the work on spatial synchrony and asynchrony described in the section
above is providing important insights into the basic drivers of population dynamics
and community interactions. The analysis of animal movement through its habitat,
and how that is related to the habitat structure is an area of active research where
we expect to see rapid developments. The analysis of polygon change is also one
that deserves further work and effort.

6.9.1 Recommendations

Spatio-temporal analysis is a field which can handle, or perhaps requires, rich data
sets; many of the techniques described here will be most rewarding with detailed
spatial information and many times of observations.

In conducting statistical tests for this sort of study, we need to be constantly
aware of spatial and temporal autocorrelation, their effects and the processes that
give rise to them. In many instances, we also need to be concerned about the possible
pitfalls of pseudo-replication. A constant theme throughout this book is the lack
of independence between observations. While that lack of independence causes
problems for statistical tests through autocorrelation, it is also the property that
makes prediction possible, and prediction (of many kinds, including interpolation
as well as extrapolation) is crucial to the scientific value of ecology. Predictions, in
general, are more powerful and potentially more useful when they are quantitative,
and so our advice is to have lots of high-quality numerical data. We discussed the
problems and interesting qualities of spatial and temporal autocorrelation in the
previous chapter, and it is an important consideration in analysing spatio-temporal
data of all kinds. We do not agree with the concept of somehow thinning out data
in order to get ‘independent’ observations because it is wasteful and it may not
work, as discussed in Chapter 5! The concept of time-to-independence or distance-
to-independence is mistaken. We need to learn to take advantage of that lack of
independence in the data and use it for our own purposes. Therefore, it is much
better to use all the information available and to evaluate the characteristics of
autocorrelation in the data to be used in later analysis.
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Closing comments and future directions

Back to basics

Both authors of this book are very visual in their approach to problems, as is
evident in the number of figures we have used. It is not surprising, therefore, that
we advocate the visual evaluation of every step of the analysis process. Plot the
data, plot the results of analysis and, when fitting a model, plot the residuals. There
are insights to be gained throughout the process.

The first step in any analysis is to plot the data. Many problems can be avoided
by this simple step, combined with an awareness of potential problems and some
thought. A common mistake in dealing with spatial data is that the x- and the
y-coordinate axes (the columns in a data file) are not used in the right order during
the analysis. Indeed, the input format needed varies with the statistical software or
GIS package being used; for example, the location of the origin (0, 0) can be either
in the upper left corner (as in a matrix array) or in the lower left corner (as sampled
in the field). This difference in the location of the origin can result in analysing the
mirror image of the data, which is not always an important problem but in some
applications may be critical. Furthermore, plotting the data can provide obvious and
useful information to guide the choice of which spatial statistics to use and which
methods will detect the spatial structure of the data. This early informal evaluation
of the spatial behaviour of the data is also useful later in interpreting the results of an
analysis and in understanding the spatial patterns and the processes that generated
them.

Having analysed the data, plot the results. It is quite possible for a global analysis
to detect very little pattern in non-stationary data, but the non-stationarity could be
revealed by spatially explicit local analysis. For example, in point pattern analysis,
Ripley’s K-function may show little departure from CSR, where Getis’ method of
plotting the scores may reveal spatial trends (see Chapter 2). In our analysis of
published variograms of ecological data, described in Chapter 5, we found many

317
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Figure 7.1 A variogram model (line) fit to observed variances as a function of
distance (points). In some senses, the model explains much of the characteristics
of the observed values but, in other ways, it is not a good fit.
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Figure 7.2 The residuals of the model fitted in Figure 7.1. They are clearly not
independent.

instances of variogram models used for data that obviously were not good descrip-
tions. Figure 7.1 gives an example, in which the model explains a large proportion
of the variability in the data and yet is not really a good fit in other senses. Plotting
the results and some thinking about what they show might persuade us to change
the approach we use.

When fitting models, plot the residuals. The last example can also illustrate the
importance of plotting the residuals of a fitted model. The assumption is often that
the residuals have a normal distribution with a constant variance and are indepen-
dent of each other. The residuals plotted in Figure 7.2 clearly do not meet those
conditions.

In the same spirit of understanding how the data are analysed, some detailed
knowledge of data storage and the analysis algorithm is always beneficial. Some
statistical and GIS software packages are too user-friendly and the user is kept
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unaware of the details of analyses actually performed. Understanding the pro-
grams will make you more alert to potential miscoding that could have taken place
in some, especially when using shared code from website sources. The spatial
analyses for this book were performed using both software packages (Passage,
BoundarySeer, ClusterSeer, Splus+Spatial, GS+, Surfer, CANOCO, IDRISI
and ArcGIS) and specifically written programs in computer languages (Fortran,
VisualBasic, QuickBasic).

The selection of the appropriate spatial extent and grain at which to study the
process of interest can be tricky when prior knowledge is not available. To perform
a meaningful study, information about the spatial and temporal domains of the
process, as well as spatial and temporal response scales of the patterns, is needed.
Such information can be obtained by carrying out a pilot study (see Legendre et al.
2002, among others). To facilitate the sampling design of a pilot study or the actual
field work, when there is no time available for a pilot study, a variety of other
sources may be useful. These include aerial photographs, remotely sensed images,
vegetation maps, digital elevation maps, hydrologic maps and bathymetric charts,
as well as knowledge from previous studies on the variables, species and systems
of interest from reports, papers and colleagues’ expertise.

Another important, and also simple, suggestion is that larger sample sizes often
offer more options for analysis, as well as more power. This may be particularly
important when the particularities of the data do not permit parametric analyses,
and randomization methods seem to be the best approach to analysis. We know that
in many areas of ecology it is rare to have sample sizes of n = 30 or more. From
examining the problems of fitting models to data (of known structure) described in
Chapter 5, it is clear that in some circumstances, a sample size of even n = 100
is really too small. To model the spatial structure of the data may require much
larger samples than we are used to having available. Similarly, for the detection of
spatial pattern, a transect of 40 contiguous quadrats is definitely too short, because
of the very limited number of lags or block sizes that can be examined. Under those
circumstances, smaller and more numerous sample units will be more effective. For
studies in two dimensions, the same considerations apply, but there is the important
issue of the trade-off between extent and grain of sampling when resources are
finite. As for many of these issues, a balance of considerations and limitations is
required.

More data does not always mean better data. Indeed, more and more ecologi-
cal studies are carried out at the landscape level at which novel and challenging
questions can be investigated. Usually, such studies use either aerial photographs or
remotely sensed data, which can provide very large data sets (e.g. tens of thousands
of pixels). Beside the obvious problems with remotely sensed data, such as spatial
accuracy, image distortion and misclassification (see Burrough & McDonnell 1998),
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the data usually cover a large area where several environmental factors and ecolog-
ical processes can occur and therefore non-stationarity, rather than stationarity, can
be assumed (see discussion in Section 7.2). In such a context, global spatial analyses
(Chapters 2 and 3) of the data for the entire area should not be performed unless the
data are first spatially stratified and partitioned into spatially homogeneous subar-
eas (see Chapter 4). We recommend using local spatial statistics (Chapter 3) under
these circumstances.

7.1 Programming skills

In offering advice to graduate students in almost any branch of ecology, one of the
most important recommendations is to acquire at least some programming skills.
This may sound like an old-fashioned suggestion, given the wealth of software
packages available, but that wealth of software is itself part of the reason for the
advice. It is very dangerous and potentially very misleading to use software pro-
grams when the details of their calculations are not made explicit. As a single
example, one popular analysis package, in calculating the variogram for a range
of spatial displacements (h), uses divisor n for all spatial intervals rather than ny,
(i.e. the number of pairs at the spatial displacement h). The user needs to know this
difference in the divisor used in order to interpret the results correctly. The second
reason for the advice ‘learn to program’ is that it opens the door for the researcher
to explore methods or variants of methods of their own devising without relying on
others for help, providing greater flexibility. In addition, there may be a time lag
between the creation and publication of a new method of analysis and its general
availability in popular software packages. The ability to write or to modify analysis
programs will allow the researcher to implement the most up-to-date methods.

7.2 Stationarity

In thinking about the assumption of stationarity and the detection of non-stationarity,
it is important to acknowledge that, depending on the relative scale used and ‘the
luck of the draw’ (i.e. the characteristics of a particular realization of an underlying
process or model), a stationary process can give rise to an inhomogeneous or appar-
ently non-stationary pattern. For example, a Poisson—Poisson or Neyman Type A
process gives rise to clumps of events and, given only a few clumps, it is possible
they will occur in the same part of the plane. For example, Figure 7.3 shows a
randomly generated pattern, which appears to exhibit non-stationarity. There are
five clumps of events, but they are all on one-half of the plane even though all parts
of the plane have an equal probability of a clump occurring in it. The probability
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Figure 7.3 An apparently non-stationary pattern of events (dots) resulting from a
stationary underlying process.

that all the clumps occur in one-half of the plane is something like 1/2% = 0.0625;
so that while this kind of pattern would be somewhat rare in randomly generated
patterns, it is not unexpected.

As we stressed before, the data set collected from field sampling is, at best, very
much like a single realization of an underlying model, and apparent inhomogeneity
may be the result of processes that are, in fact, stationary. A related comment
is that we need to be concerned about the power of our procedures to reject the
null hypothesis of interest, especially the null hypothesis of stationarity. In many
instances, a useful exercise is to determine in advance the strength of the spatial
pattern that would be required to reject the null hypothesis, given the sample size
or effort expended (i.e. the power of the test). Combined with a pilot study to
determine some of the characteristics of the spatial structure of the system being
studied, this prior knowledge of the magnitude of sample size needed can provide
important guidance in the study design and in subsequent analysis.
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In trying to determine the fit of different kinds of models to data in spatial series,
such as the AR or MA models described in Chapter 5 or some combination of them,
the same proviso applies. Short series may not provide sufficient data to allow us to
determine correctly the underlying model. In Chapter 5 we gave artificial examples
in which the series of data with n equal to 100 were not best fit by the model that gave
rise to them. With field data, the same concern will apply, with the added potential
problem that to have longer data series may require greater spatial extent, increasing
the risk of encountering true non-stationarity in the underlying processes. Larger
data sets may be necessary to detect weak patterns.

7.3 Null hypotheses

One of the themes of this book is the suggestion that a single simple null hypothesis
(e.g. the complete spatial randomness of events) may not be particularly interesting
or particularly useful in an ecological context. In many instances, a hierarchy of null
hypotheses of increasing restriction and sophistication will be much more informa-
tive. In parallel, when we consider the use of randomization techniques for testing
these hypotheses, a series of increasingly restricted randomization schemes will tell
us a lot more that is meaningful than a single unrestricted randomization which can
only test the simplest null hypothesis. In designing randomization procedures, it is
also important to think through the worst possible case, the ‘pathological’ data set
and how the proposed procedure would respond to it. We may be able to resolve our
concerns about a particular randomization procedure by finding a counter-example
that shows up its faults.

As an example, consider a sampling design of eight transects of four sample
plots each, with three in unburned forest and one in a burned area. The abundance
of a particular species was determined in each plot and the question of interest is
whether the abundance is different between the burned and unburned areas. The
analysis first proposed was to use 1000 iterations to create a reference distribution
of the density in the unburned forest, by taking only one of the three ‘unburned’
values in each transect and calculating the average. These averages were then to be
used to create a distribution of mean densities and the mean density of the burned
area plots (calculated once) was to be compared to the distribution. This mean was
to be declared significantly different from the unburned area mean if it fell above
the 97.5% value of the distribution or below 2.5%. This initial proposal seems
straightforward, but Table 7.1 below gives a counter-example of why the proposed
analysis is not the best.

The mean value for the intact forest is 6.0 in every iteration, and so the distri-
bution is very narrow. The burned area has a mean of 5.0, which is outside the
distribution, leading to the conclusion that it is significantly low. An examination
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Table 7.1 The abundance of a given species in
32 plots arranged in 8 transects

Transect
1 2 3 4 5 6 7 8
Condition 10 10 6 6 6 6 2 2
Unburned 10 10 6 6 6 6 2 2
10 10 6 6 6 6 2 2
Burned 7 7 5 5 5 5 3 3

of the distributions of the two sources of data suggests that they overlap greatly,
and that the conclusion may be mistaken.

This example provides a good illustration of the close relationship between the
null hypothesis and the randomization method used to test it. What was actually
tested here was the hypothesis: ‘The burned area mean is not different from the
unburned area mean (which can be treated as a given)’. A better version of the null
hypothesis is that the densities of the two areas are the same, so that the observed
values in the two areas provide an estimate of a common mean. This logic leads to a
different randomization method: the observed difference in mean density between
the two areas (6.0 — 5.0 = 1.0) is compared to the distribution of the difference when
all 32 observations are randomized. When that approach is used, the difference is
not significant: 155 of 1,000 trials have an observed difference greater than 1.0. That
is the result of a complete randomization, which destroys all the spatial structure
in the data. Given the obvious trend in overall densities in the transects, a restricted
randomization, within transects, should be considered. Then the null hypothesis is:
‘Given the overall density within each transect, the burned and unburned densities
do not differ.” Randomizing within transects produces a significant result, with only
4 of 1,000 trials giving a greater difference between the means than that observed.

In addition to showing the close relationship between the hypothesis being tested
and the randomization technique used, this example also shows the potentially very
important difference between complete and restricted randomizations (see also the
discussion in Section 7.6).

7.4 Numerical solutions

Another theme for this book, which was not as well developed or as obvious as
some of the others, is the usefulness of numerical, as opposed to analytical, solu-
tions to methodological problems. As a single example, consider the details of edge
correction for a technique such as Ripley’s K-function analysis. For a simple square



324 Closing comments and future directions

or rectangular plot, there are edge corrections available based on the position of the
index point and the radius of the circle being used, . If, however, the study region
is not a simple rectangle, or worse yet, has curving boundaries, formulae for edge
correction would be very complicated. A numerical solution such as described in
Chapter 2 seems like a sensible alternative, particularly as the power of personal
computers continues to improve at an impressive rate. The same increase in com-
puting power makes possible a range of computer-based solutions to problems,
such as the ‘model and Monte Carlo’ approach to dealing with spatial autocorrela-
tion in statistical testing. It also changes the way in which models can be used by
ecologists. We can use them to explore the effects of particular structures on our
understanding of what is occurring (cf. Legendre et al. 2002), rather than trusting
models as reasonable representations of the data themselves, and then basing the
analysis on that trust. (Watch the assumptions!)

We have not spent much of this book on discussions of ‘classical’ questions
of experimental design and the analysis of variance (ANOVA), except to provide
some thoughts on the relationship of design and analysis to the spatial structure
(spatial autocorrelation) of the environment in which the experiment is carried
out (Chapter 5). Without citing specific examples, the reader will probably not
need much convincing that this can be a rather confusing area, particularly with
complex designs, even before spatial considerations are included. Statistical text-
books may sometimes seem to disagree, or are not always clearly in agreement,
which makes life difficult for ecologists, trying to analyse and interpret their data
correctly. (One graduate student, after a seminar on some tricky statistical con-
cepts, asked, ‘Does this mean we have to be statisticians as well as ecologists?’
The answer was, ‘No, but you do need to know where to get reliable advice.”)
Faced with several possible alternatives for ANOVA (often all apparently equally
justifiable), one approach is to use artificial data to provide guidance. Generate
several sets of 1,000 (say) iterations of data equivalent to those you wish to
analyse with small to large treatment effects (3, 5, 8, 12, 20, 30%,...) and examine
the behaviour of Type Il error. That should provide a realistic guideline for the choice
of analysis. As a more general suggestion, it may be useful in many circumstances,
particularly when beginning a new type of project, to create and analyse artifi-
cial data of the form expected to be produced, to anticipate analytical problems in
advance.

In the same way that the researchers have to be precise about the null hypothesis
tested, they need to be certain that the spatial statistic they use is indeed doing what
they want. For example, Mantel tests, as well as partial Mantel tests, estimate the
degree of relationship between coefficients of similarity (distances) between pairs
of observations, rather than working with the original data while considering the
relative spatial arrangement of the sampling locations. Therefore, Mantel tests do
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not take into consideration the spatial autocorrelation itself, but rather the relative
spatial arrangement of the samples.

7.5 Statistical difficulties

There is a variability in geostatisticians’ abilities to determine the most appropriate
geostatistics (Englund 1990), and also among spatial statisticians and statisticians
per se. Hence, ecologists (like all biologists) need to be responsible about their data
analyses and subsequent ecological interpretation. Statistical significance does not
always result from a significant ecological process. For example, there could be a
significant difference between the degree of spatial patchiness between two popula-
tions due to the spatial structure of the habitats rather than to the species’ ability to
move in a fragmented landscape. The reverse is also true; a non-significant statistical
result can still have an important ecological meaning. This is especially true for
the detection of spatial pattern in the presence of positive spatial autocorrelation:
each sampling unit does not contribute a full degree of freedom to the statistical
tests (Chapter 5), but we actually want to learn about the pattern itself. In the case
of adjacent sampling units in the presence of spatial structure, each sampling unit
does not bring a full degree of freedom but the similarity of adjacent samples tells
us something else about the size of the spatial structure: that it is larger than the
sample units. Consequently, when adjacent units have similar values, this ‘redun-
dant’ information is informative about the scale of pattern.

Some parametric tests are more sensitive, less robust, than others to the presence
of spatial structure in the data. For example, the ¢ distribution does not actually
change much in shape between an effective sample size of 20 and one of 50. There-
fore, tests based on that distribution may be more robust than others (see Chapter 5)
and large changes in the effective sample size due to spatial autocorrelation may
have little effect on the interpretation of the data, particularly if # is large to begin
with. In contrast, the x? distribution changes markedly with the number of degrees
of freedom and some tests that use it are also sensitive to the total sample size. This
difference may lead to a different selection of statistical tests when there is a choice
to be made.

We must remember that the critical probability levels used by ecologists, such
as o = 0.05, are only there to use as guidance for making decisions. In many cases,
the fact that the nominal significance level of 5% is actually 9% or 2% because of
spatial autocorrelation may not have a big effect on our interpretation of the data.
Again, larger sample sizes can help. In addition, where testing and interpretation are
sensitive to the distribution of the variable of interest (e.g. normal), larger sample
sizes may allow us to be more confident in the analytic distribution of the variables
we are using. Unfortunately, most of the time we do not know for sure that the
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variable actually follows the distribution we assume and we have to rely on the
robustness (to departures from the assumptions) of the tests we use.

7.6 Randomization and restricted randomization tests

As mentioned in Section 7.3, an understanding of how ecological hypotheses trans-
late into statistical hypotheses is essential in any study, but even more so when for-
mulating randomization tests. This conversion has implications for the design and
computation of the randomization tests. We need to understand each step involved
in the analysis of ecological data and their interactions:

(1) the definition of the hypothesis,

(2) its translation into a statistical hypothesis, and

(3) the selection of the appropriate statistic and subsequent significance testing procedure
(as illustrated in the example of Section 7.3).

In using parametric tests, ecologists rely on predefined statistical hypotheses,
statistics and significance procedures that require the independence of the data and
this may limit the scope of questions that can be asked.

Randomization tests provide an attractive alternative to parametric tests. One
interesting feature of randomization tests is that significance is evaluated based on
empirical distributions generated from the observed sample. This property is quite
appealing to ecologists faced with small data sets that do not meet the assumed
parametric distribution. Furthermore, although randomization tests do not offer
the security of predefined methods, their flexibility provides the means to analyse
complex ecological data using custom experimental designs for which classical tests
have not been developed. Ecologists can also develop their own statistics, opening
up the possibility to test novel questions. For example, the boundary statistics
presented in Chapter 4 were developed to investigate and to test the properties of
coherent boundaries.

While randomization tests may involve fewer assumptions, this does not mean
that they have no assumptions. In fact, randomization tests are based on the premise
that the data are independent such that re-arrangements (i.e. re-orders, exchanges,
shuffles) of the data are equally likely. In a spatial context, this assumption cor-
responds to a statistical null hypothesis of complete spatial randomness (CSR) of
the data. In the presence of spatially autocorrelated data, this assumption is invalid.
Therefore, restricted randomization tests that consider the spatial structure of the
data have been proposed (Legendre et al. 1990; Sokal et al. 1993; Manly 1997).

There are different ways to perform restricted randomization tests that keep the
spatial pattern of the data (Manly 1997; Fortin et al. 2002). One of the earliest pro-
posals to preserve the spatial structure of the data was the toroidal shift (as presented
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in Chapters | and 5). In this torus procedure, the restriction is that randomization
is not performed at the level of the sampling locations but rather at the level of the
entire study area. Indeed, a two-dimensional torus is constructed by connecting the
study area margins and then sliding randomly the torus map as many times as is
needed to generate a reference distribution. Such a torus procedure maintains most
of the spatial structure of the data within the study area and assumes that the spatial
process is stationary inside and outside the study area. If this is not the case, the
torus procedure can produce a test that is too liberal.

As another example of potential problems with randomization procedures, con-
sider the following situation: in a transect of 100 contiguous sampling units, we
have recorded the presence or absence of tree canopy and the presence or absence
of a shrub layer. By amazing coincidence, only 10 sampling units have no tree
canopy (all in a row) and only 10 have a shrub layer (also all in a row). Inter-
estingly, the canopy gap and the shrub patch are offset somewhat, so that only 7
sampling units have shrubs and no canopy. By a restricted randomization test (the
one-dimensional torus method, also known as caterpillar randomization), this is
not a significant match (with « = 0.05) because there are 7 of 100 random rela-
tive positions that have an overlap as great, with overlaps of 7, 8, 9, 10, 9 and 8,
and 7 sampling units. If the transect were just a little longer, and the pattern was
maintained, the result would be significant!

Other restricted randomization procedures are more appropriate to keep the
spatial structure of ecological data in generating the reference distribution using
Monte Carlo procedures or stochastic spatial models (see Chapter 5 and Manly
1997; Fortin & Jacquez 2000; Fortin et al. 2003). Such restricted randomization
tests assume that the underlying process is stationary within the study area. This
is not the case when we are studying the significance of boundaries, where, by
definition, ecological boundaries are at the interface between two patches, systems
or ecosystems and which can be the result of a single process but more likely
from the spatial interaction of two or more processes. This is the case where even
restricted randomization tests do not seem appropriate and one would need to rely
on modelling ecological processes.

We must exercise caution, therefore, to ensure that the null hypothesis implied by
the restricted randomization is ecologically tenable. Randomization and restricted
randomization tests in ecology are particularly prone to mis-specification of the null
hypothesis, primarily because the null hypothesis is embedded in the randomization
procedure and is not self-evident. A clear understanding of the null and alternative
hypotheses of the chosen randomization test is required in order to ensure the
biological and ecological questions under study are correctly addressed.

Furthermore, the null hypotheses, and subsequent randomization procedures,
need to leave out the key process tested. Indeed, if all the processes are included
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in the null hypothesis, there is nothing left to test! For example, in Chapter 4, the
overlap statistics have been developed to test whether or not the spatial locations
of two boundaries, based on two different data sets (e.g. plant species and animal
species), spatially overlap. In such a case, the null hypothesis is that there is not
a spatial relationship between the plant and animal boundaries: Hy = no spatial
association between the boundaries. The alternatives are: H;, = the boundaries are
spatially positively associated, and H, = the boundaries are spatially negatively
associated (i.e. spatially repulsing one another). So the null hypotheses are at the
boundary level. Consequently, the randomization procedure should also be at the
boundary level. There are several ways to do so, for example by using the torus
procedure (Fortin et al. 1996) or by randomly placing the boundaries (location
and orientation) within the study area (Sokal et al. 1988). We might be interested,
however, in testing which ecological processes are involved in the actual location
of the boundaries. In that case, the randomization should be at the species level.
Then we could examine two ecological processes:

(1) the spatial structure (spatial dependence and spatial autocorrelation) of each species,
and
(2) the spatial interaction among plant or animal species in the structure of the community.

If only the spatial structure of the species is of interest, then each species can
be spatially randomized separately; if both the species and the community spatial
structures are of interest then the spatial randomization of each species needs to
be linked to the randomization procedure of the other species. These randomiza-
tions can be trickier to realize and require a clear understanding of the ecological
processes, or concepts, that are involved.

In conclusion, randomization and restricted randomization tests free ecologists
from parametric tests that were not designed to accommodate their novel questions
and the inherent spatial structure of ecological data.

7.7 Complementarity of methods

Dale et al. (2002) described how many of the methods used for spatial analysis
are closely related to one another, either conceptually or mathematically. This is
true, in an even more general way, of the broader range of methods described in
this book. Knowing the relationships enables us to choose and use sets of methods
that provide complementary insights, as with descriptive methods and inferential
statistics. The methods chosen can be complementary in the characteristics they
detect or in the range of their treatment, global vs. local. The methods may also
complement each other by the interconversion of data type (e.g. points vs. sampling
units) or by being cumulative (blocking) as in TTLQYV or Ripley’s K-function vs.



7.7 Complementarity of methods 329

A
Wm & hp L scores
or —> or
A
1-D L probability calculations
Detect non-randomness Locate clumping
or or

detect scales of non-randomness  locate boundary clusters (see text)

Figure 7.4 Complementary methods in one dimension: W,, and 4, or
one-dimensional Ripley’s K-function to characterize non-randomness and local
scores or probability calculations to detect regions of event clumping.

decumulative (e.g. using individual units) as in PQV or Condit’s 2-function. Finally,
methods may complement each other by having one method that provides evalu-
ations at individual points in time (such as boundary detection) and another that
provides evaluations at changes through time (such as polygon change analysis).
It would be impossible to give an exhaustive list of all the combinations of meth-
ods that researchers might use to answer sets of related questions of their data,
but we will give some examples to illustrate the concept and to provide some
guidance.

The simplest spatial data may be a series of events in a single spatial dimension,
like waterfalls along a river or termite nests along a line transect. To analyse such
data, we can use the statistic W, to detect non-randomness and then #4,, to detect
clumping of events (see Chapter 2), or we can use the one-dimensional Ripley’s
K-function analysis to detect scales of over- or underdispersion. If clumping is
detected, we can plot the scores of the Ripley’s analyses to find the locations of
greatest clumping or those locations can be found using the probability calculations
described in Dale (1999). That approach finds the sections of the transect where
the probability of finding as many events as are observed in it has the lowest
probability based on the null hypothesis of randomness. Whichever approach is
used, the process of analysis involves the use of several complementary methods
that detect different characteristics of the pattern (see Figure 7.4).

As another example, consider a forest plot that has been mapped, recording the
positions, species and diameters of all the tree stems. A first analysis could be the
modified Ripley’s K-function analysis to determine the scales at which the stems (of
any species and any size) are aggregated or overdispersed. This could be followed
by a univariate version of Condit’s €2 analysis, based on rings rather than circles, to
determine whether there are any distance classes of particular interest. If the overall
pattern of the stems is patchy, Getis’ score mapping or circumecircle score mapping
could be used to examine the data for non-stationarity and to identify the positions
of patches and gaps. The next analysis might be a mark correlation analysis to
determine the aggregation or segregation of tree sizes as a function of distance.
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Locations only:
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Aggregation of tree sizes
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Multispecies analysis (e.g. K Transform to raster
or —> and
Network join count multiscale ordination

Interspecific relations: distance ~ Multispecies pattern: scale
or
interspecific relations: neighbours

Figure 7.5 Complementary approaches to the analysis of marked event data
(stems) in two dimensions: Ripley’s K-function or Condit’s €2 to characterize the
non-randomness of the events’ positions, with the Getis method or circumcircle
scores to plot the locations of the centres of patches or of gaps for a given scale.

Any of a number of the multispecies analysis approaches described in Chapter 2
could be used to examine the interspecific associations. Having already used
distance-based analysis on the data, however, a complementary approach would
be to use the neighbour networks to look at the join counts for species pairs as in
the Dixon method, which compares observed and expected counts. Finally, the data
could be converted to raster format of counts or other quantitative data, using square
units of a size chosen by the results of the previous analyses, and subjected to multi-
scale ordination (MSO, also Chapter 2) to investigate the existence of multispecies
pattern. This analysis scheme is illustrated in Figure 7.5.

Given abundance data for a single species from a transect of contiguous quadrats,
3TLQYV or the Mexican hat wavelet could be used to determine the scales of pattern
in the data, followed by NQV analysis to determine the sizes of the smaller phase
in those scales of pattern. If the abundances are patchy, wavelets or a moving-split
window (MSW) could be used to find the edges between the regions of high density
and those of low density. If an environmental factor such as altitude was recorded
for the same sampling units, any of the covariance methods described in Chapter 2
(B3TLQC or wavelet covariance) could then be used to determine the scales at which
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3TLQV Wavelet 3TLQC
or —>» NQV —>» or —> or
Mexican hat SMwW Wavelet covariance
Scales of pattern Size of Find patches Relationship with
smaller phase or edges environmental factor

Figure 7.6 Complementary methods for analysing density data in a string of
contiguous quadrats: 3TLQYV or the Mexican hat wavelet analysis to detect the
scales of pattern in the data, with Galiano’s NQV to detect the size of the smaller
phase, and local wavelet analysis or a split-moving window to detect patches or
edges. If an environmental factor is also recorded, 3TLQC or wavelet covariance
analysis can be used to detect the scales of positive or negative association of
density with that factor.

the species abundance covaries (positively or negatively) with the environmental
variable (see Figure 7.6).

For the quantitative single-variable data collected at spaced locations, there is
also a range of methods that can be used to evaluate different spatial characteristics
in the data (Chapter 3). For example, an omnidirectional correlogram or variogram
can be used to evaluate the (isotropic) autocorrelation structure of the data as a
function of distance. LISAs may then be used to plot localized areas of high and
low spatial association. A complementary approach, not using actual distance would
be to look at the correlation of first-order neighbours in a neighbour network, then
second-order neighbours and so on. Then, spatially constrained clustering can be
used to identify aggregations of similar values or triangulation-wombling can be
used to detect boundaries (Chapter 4). Depending on the purpose of the study,
having evaluated the nature of the spatial autocorrelation as a function of distance,
interpolation techniques like kriging can be used to provide an estimate of the
variable over the whole study area. Lastly, if that analysis indicates areas of high
variance, and thus poor quality prediction, subsidiary sampling may be indicated to
improve the quality of the interpolation. This sequence of analysis steps is shown
in Figure 7.7.

As a last example, consider the hourly position records for a radio-collared
animal and a habitat map on which those positions can be located. A first analysis
would be to quantify the radial (distance) and angular autocorrelation as a function
of lag, as described in Chapter 6. Local autocorrelation scores or local tortuosity
measures would allow us to detect non-stationarity in the data. If the stationarity
is a reasonable assumption (or piecewise stationarity), we might then model the
data to achieve a reasonable basis for Monte Carlo generation of artificial data for
comparison (cf. Chapter 5). We could then compare the actual habitat use with
either these Monte Carlo ‘data’ or with randomized positions of the original path
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Figure 7.7 Complementary analysis of irregularly spaced records of a
quantitative variable: variogram or correlogram analysis to characterize the
overall autocorrelation structure as a function of distance, with LISA methods to
detect local characteristics. Neighbour networks could be used to characterize the
autocorrelation structure, based on connections rather than distance, with
constrained clustering to find local clusters of similar values or wombling to
detect boundaries between regions of different values. Kriging can be used to
locate areas with high estimated variances, indicating a need for greater sampling

intensity.
Radial autocorrelation Local autocorrelation Monte Carlo based model
and —> or —> or
angular autocorrelation local tortuosity measures random placement of path
Autocorrelation structure Local characteristics Test relation with habitat

Figure 7.8 Complementary methods to analysis of radio-collar position data
referenced to a map of habitat types: radial and angular autocorrelation analysis
will characterize the autocorrelation structure, which might then be modelled.
Local scores of measures such as tortuosity can then detect areas of behavioural
intensity. The relationship between the path characteristics and the habitat can be
tested by comparison with paths generated by a Monte Carlo method based on
the model generated in the earlier steps, or by randomization of the path’s
position relative to the habitat map.

of movement on the habitat map to evaluate non-randomness in habitat use. This
scheme for analysis is illustrated in Figure 7.8.

While clearly we cannot go through all possible combinations of analysis tech-
niques that might be used, these few examples can at least provide an idea of what
we mean when we talk about complementary techniques. Figure 7.9, which is based
on the ‘relationship’ diagrams in Dale ef al. (2002), shows the relationships among
the groupings of methods we described in our examples. It is clear from the figure
that there are many other combinations of complementary analyses that could be
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Figure 7.9 Relationships among the spatial analysis methods showing subsets of
previous figures. Relative positions reflect the degree of similarities among the
methods.

pursued. In some cases, the choice of subsequent methods will depend on the results
of the preceding step.

7.8 Future work

Throughout this book, we have pointed out areas of methodological research that
seem to need and deserve further efforts. A few of these are polygon change analysis,
spatio-temporal analysis, dealing with autocorrelation in statistical tests, entropy
approaches to categorical data and the analysis of multispecies point patterns. This
list is not exhaustive, but gives some idea of the range of topics that are worth fur-
ther investigation. For ecologists, the ‘bottom line’ is still to clarify the relationship
between process and pattern. In many instances, our concerns about methods, and
their possible weaknesses, would be solved by knowing more about the biology
of the system being studied. In particular, very detailed knowledge about spa-
tial processes would enable us to refine the methods we use. This parallels the
suggestion that pilot studies (any prior information in fact) can help us make bet-
ter decisions when we design surveys or experiments to investigate ecological
phenomena.

We still face problems related to ‘detrending’ and ‘pre-whitening’ data prior to
analysis. When all the processes and species’ responses are linear and additive, these
procedures seem to be straightforward. When the processes and species’ responses
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are non-linear (quadratic, cubic, unimodal, multimodal), by removing the trends
we may also remove embedded patterns so that the residuals may contain distorted
and false spatial structure. The relationship between detrending and pre-whitening,
on the one hand, and dealing with the effects of spatial autocorrelation, on the other,
is not direct, and may need careful clarification when used together. As Haining
(2003) pointed out, ‘in general, pre-whitening alone is rarely sufficient to cope with
the problem raised by spatial dependence’.

Another issue that is yet to be fully resolved is the testing of spatial indices
and measures for statistical significance. As discussed in Chapter 2, the search for
significance tests is greatly complicated by the various forms of lack of indepen-
dence, both in the data themselves and the calculations on which our statistics are
based (TTLQV, Moran’s I, Geary’s ¢, and semi-variance being extreme examples
of the re-use of data). The sensible use of restricted randomizations seems to be the
solution, again going beyond (we hope) the obvious and simple null hypothesis of
‘there is no pattern’. Similarly, it is becoming more and more of interest to be able
to compare the spatial pattern of two different areas or of the same area at different
moments. When it is the case of the same area at different times, it is more likely
that the same underlying process is at play; but in the case of two different areas,
it is not so. Moreover, a spatial pattern is only one realization of a process and so
the pattern may be ‘significantly’ different at two locations, despite having resulted
from the same process. These issues related to the comparison of spatial pattern can
be only partially addressed by means of stochastic spatial modelling (Chapter 3,
Fortin et al. 2003).

In Chapter 5, we spent a considerable amount of effort discussing models of
spatial autocorrelation, particularly as a learning tool. While the patchiness, which
we determined is a common characteristic of ecological data, can be modelled in
the AR—-MA structure, it is not clear how biologically realistic such models would
be. We have to ask what the ecological processes are that would give rise to the
kinds of spatial autocorrelation we described. Dieckmann et al. (2000) provided
some helpful discussion of this issue, but we will provide a couple of examples. In
most statistics text books, the analysis of variance is often presented using a model
such as:

Xij=Bi+Tj+€ij. (71)

The observed value (suppose it is crop yield) is interpreted as the sum of a block
effect, B;, a treatment effect, 7}, and an error term, ¢;;. When the error term is
attributed to variation in soil nutrients, soil moisture and light availability, the
autocorrelation in yield is very similar to the induced structure (Model 3) described
in Chapter 5. In a well-known plant competition experiment, Franco & Harper
(1988) found that the sizes of first neighbours were negatively correlated while
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those of second neighbours were positively autocorrelated. That is, large plants had
smaller neighbours and small plants had larger neighbours, probably as a result of
competition. In this case, a first-order autoregressive model (Model 2 in Chapter 5)
with p negative, would be a biologically realistic model of the spatial structure.
As we suggested above, in many ecological examples, we expect the variable of
interest to have both inherent and induced autocorrelation, but the biological and
physical processes that give rise to it may not always be clear, and so realistic
models may remain a challenge for us all.

Although we have tried, in this book, to cover a wide range of issues related
to the spatial analysis of ecological data, we have left out several related areas of
research such as the spatial aspects of species diversity and the spatial association
of different species (cf. Dale & John 1999; Plotkin et al. 2000; Shimatani 2001).

Finally, the new challenging area of research is in the merging of spatial and tem-
poral data, patterns and models to create a better understanding of spatial dynamics
of ecological processes.



Appendices

Appendix 1 Classification of spatial statistics according to data types

Data®
Population
Sample
Data types Point (x—y) Lattice (x—y, v) Sparse (x—y, v)
Xy Aggregation indices
k-nearest-neighbours
[i,1,t]
Ripley’s K (uni-,
bi-multivariate [i, r, p]
Circumcircle [r, p]
Fractal dimension [i, r]
Spectral analysis
Qualitative Join count [i, r, t] Join count [i, r, t] Mantel correlogram [i, r, t]
Mantel correlogram [i, r, t] Mantel correlogram Mantel and partial
Mantel and partial Mantel [i,r, t] Mantel tests [i, t]
tests [i, t] Mantel and partial Mantel
Mark correlation tests [i, t]
Quantitative Global Moran’s I, Geary’s c, Global Moran’s I, Geary’s ¢ Global Moran’s I, Geary’s
[i, r, d, t], semi-variance [i, , d, t], semi-variance cli,rd,t],
[i,r, d, p] [i, 1, d, p] semi-variance [i, 1, d, p]
Local Moran’s I, Getis’ G*, Local Moran’s I, Getis’ G*, Local Moran’s I, Getis’
Ord’s O [i, 1, t] Ord’s O [i, 1, t] G*,0rd’s O [i, 1, t]
Mantel correlogram [i, r, t] Mantel correlogram Mantel correlogram
Mantel and partial Mantel [i, , t] [i, r, t]
tests [i, t] Mantel and partial Mantel Mantel and partial Mantel
Fractal dimension [i, r] tests [i, t] tests [i, t]
Mark correlation Fractal dimension [i, r] Fractal dimension [i, r]
Lacunarity [i, r]
Block variance [i, r]
Spectral analysis [i, 1]
Wavelets [i, 1]
Ordinal/ranked Join count [i, r, t] Join count [i, r, t] Spearman Mantel tests

Mark correlation

Spearman Mantel tests

[i, 1]

[i, 1]

¢ v: ‘value’ of a given variable (either qualitative or quantitative) i: the method can estimate the intensity of the
spatial structure; r: the method can estimate the spatial range (zone of influence) of the spatial pattern; d: the
method can estimate the intensity of spatial pattern according to orientation/directionality (so it can differentiate
isotropic from anisotropic patterns); t: significance tests (either analytic or randomization tests); p: significance
tests (based on randomization tests).
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Appendix 2 Classification of spatial statistics according to the
goals/algorithms of the statistics themselves

Data

Population

Point (x—y)

Lattice (x—y, v)

Algorithm Sample
family Sparse (x—y, v)
Topology Networks Rook Networks (nearest-
(nearest-neighbour,  Bishop neighbour, relative
relative neighbour  Queen neighbour graph,
graph, minimum minimum
spanning tree, spanning tree,
Gabriel, Delaunay) Gabriel, Delaunay)
First-order
Aggregation Variance-to-mean
indices Clumping index
Green’s index
Lloyd’s index
Distance Morisita’s index
k-nearest-neighbour
Second-order
Distance Ripley’s K
circumcircle
Autocorrelation Moran’s / Moran’s 1
Geary’s ¢ Geary’s ¢
Semi-variance Semi-variance
Mantel and partial Mantel and partial
Mantel tests Mantel tests
Others
Interpolation ~ Voronoi polygons Trend surface analysis Trend surface
Kriging analysis
Kriging
Contiguous Block-variance
sampling methods
units Lacunarity
Spectral analysis
Wavelets

Spatial geometry Fractal dimension

Boundary
detection

Fractal dimension

Moving-window
Lattice-wombling
Wavelet

Spatial clustering

Fractal dimension

Triangular-
wombling

Categorical-
wombling

Spatial clustering
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Index

aggregation (clumping, patchy, patchiness,
underdispersion), 6, 25, 35, 44, 79, 100,
263
aggregation indices, 25
Akaike information criteria (AIC), 138
analysis
analysis of movement see also movement, 269,
274-90
analysis of variance (ANOVA), 223, 229, 253, 324,
334, 335
angles (angular, direction, orientation), 269-74, 284,
293
angle class matrix, 132
angle parallelicity, 269, 276
angular autocorrelation, 276-82
angular correlation graph, 269, 277
anisotropic (anisotropy) see also isotropic, 10, 20, 91,
132, 135, 304
geometric, 135, 169
zonal, 135, 169
area pattern methods (surface pattern methods),
111
association of pairs of species, 87
attractor see chaos
autocorrelation, 6-9, 57, 212, 213, 222, 228, 229, 233,
239, 245, 247, 248, 269-74, 276
false, 9
first-order autocorrelation, 284
induced (exogenous), 7, 214, 220, 223, 229, 243,
244,255, 334, 335
inherent (endogenous), 9, 31, 124, 154,212, 214,
220, 246, 255, 334, 335
matrix, 228, 233
models, 224, 230, 254
negative, 2267, 232, 254, 334
range, 253
autocovariance function, 133
autoregressive (AR), 223, 227, 228, 229, 2301,
233-46, 247, 334
correlation, 238
first order, 216, 222, 223, 229, 248, 334
structure, 238

biased correlated random walks, 284, 293
bilinear function, 190, 196
binomial test, 196
bivariate data analysis, 43—103, 147
pattern, 46, 58, 86
point pattern analysis, 266
Ripley’s K, 44-6, 52, 147
spatio-temporal analysis (Ripley’s K-function),
269
block size, 33, 46, 82, 86
block variance methods see also quadrat variance
methods
covariance
paired quadrat covariance (PQC), 88
three term local quadrat covariance (3TLQC), 88
two term local quadrat covariance (TTLQC), 88,
89
variance
blocked quadrat variance (BQV), 82
new quadrat variance (Galiano’s NQV), 84-5,
262, 330
paired quadrat variance (PQV), 55, 83-6
three term local quadrat variance (3TLQV), 84,
89, 91, 98, 262, 330
triplet quadrat variance (tQV), 84, 88, 91
two term local quadrat variance (TTLQV), 55,
82, 84-5, 87-8, 89, 91, 97-8, 105, 302, 304,
334
blocked quadrat variance (BQV), 82
boater see wavelet
Bonferroni correction, 126-7, 131, 228, 233
progressive, 127, 131, 173
bootstrap see also randomization tests, 26, 132, 138,
241
boundary see also edge, 75, 89, 177, 211, 266, 272,
293-5, 328
cohesive, 196, 199, 202, 210
persistence, 196, 209
width, 185
zone, 195
boundary detection (delineation), 186, 329, 331
boundary statistics, 192, 196, 199-202, 211
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candidate boundary elements, 192-3, 199, confidence interval (confidence envelope), 37, 41, 46,
204 86, 132,241,242
Canny adaptive filter, 208 connectivity (connectedness, connections), 57, 65, 75,
edge detection, 36, 38, 39, 61, 98 120, 154, 198, 269, 276
fuzzy boundary, 183 matrix, 113, 119, 124, 148
match—-mismatch measure, 338 network, 118, 177, 180
moving split-window technique, 187-9 contiguous sampling units, 82, 94, 95, 111, 254, 319,
orientation (angle), 192 327
overlap statistics, 202, 328 contingency tables, 287, 292
scale-space analysis, 209 2 x 2,234, 235,267
singletons, 199 2x2x2,235
superfluity statistic, 201-2 multiway 2%, 235
wombling continuous non-parametric spatial covariance,
categorical, 193, 197-9 132
lattice, 190-205 convex hull, 289
triangulation, 190, 196-9 convex polygon, 289
box size, 79 correlation, 122, 2434, 245
bridge, 65 coefficient, 218, 227, 238, 253
butterfly effect, 305 matrix, 223, 230
correlogram, 153, 265, 266
canonical correspondence analysis (CCA), 153 counts of individual events, 94, 95
caterpillar randomization see randomization covariance, 87, 88, 100, 122, 217, 218-19, 222, 229,
causal (causality), 26, 212, 243, 256 238, 243, 330
cellular automata models, 313 matrix, 166
change in spatial statistics, 261 covariate, 253
change of support see also MAUP, 146 covariogram, 218
chaos, 305, 315 Cressie’s correction factor, 238
attractor, 305, 308, 310 cross correlation, 147, 301, 302
bifurcation, 305 cross-covariance function, 147
chaotic deterministic, 310 cross-product approach, 105
edge of chaos, 310, 312 cross-variance function, 147
spatial, 313—14 cross validation, 138, 167
spatio-temporal, 314 cross variogram, 169
strange attractor, 308 cut-point, 65
chess moves see also connectivity, 118, 224, 228, 230,
233 data see also sampling unit, pilot study
circle score maps, 103 accuracy, 17
circumcircle analysis, 60, 98, 100, 101, 329 continuous, 111, 222,229,257
patch circles, 99 discrete, 222, 229
clonal plant, 264, 269, 274, 292 ecological, 14
cluster analysis see also clustering, 266 lattice, 18
cluster change detection, 266, 272 multivariate, 147
cluster size, 52 point, 33
clustering population, 32-3
fuzzy qualitative (categorical), 32, 198, 333
c-means, 182 quantitative, 17,32, 111
k-means, 184 sparse (spaced), 21
spatial surface, 14
agglomerative, 176 data analysis, 32-3, 43, 258
k-means, 177-80 degree of a vertex, 65
spatio-temporal degree of freedom, 28, 288, 325
coefficients of distances, 324 Delaunay triangulation (DT) see also network, 58, 62,
coefficients of similarity, 324 63, 67,99, 196
complete randomization, 46, 86, 155, 157, 202, 239, design
254,323 experiments, 333
complete spatial randomness (CSR), 29, 33, 35, 36, surveys, 249-53, 321, 333
41, 52,211, 317 deterministic structural function, 132, 160, 313, 314
conditional annealing, 29, 170 detrended correspondence analysis (DCA), 187
conditional autoregressive model (CAR), 29, 160, detrending, 26, 150, 333
225,230, 233 diameter, 66

Condit’s analysis, 53, 329 Diggle’s F-function see also nearest neighbour
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Diggle’s G-function see also empty space, 43
directional

correlograms, 132

variograms, 135
Dirichlet see also polygon

polygons, 60, 160, 298

tessellation, 81
discriminant functions, 187
dispersal flux, 74
distance class connectivity matrix, 113-14
distance interval, 22
distance (dissimilarity) matrix, 148, 268
distance-to-crowding, 95
distance-to-independence, 249
distance to regularity, 94, 95
distance (adjacency) methods, 266, 274
diversity

alpha, 187

beta, 187
Dixon’s method, 49-50, 330
doubly autoregressive, 215, 217
drift, 135, 137-8, 169, 284
dummy variables, 151
Durbin’s autoregressive procedure, 131
Dutilleul’s correction, 238-9, 245

eccentricity, 66
ecological boundaries (ecotones), 184, 187
ecological fallacy, 146
ecotones see ecological boundaries
edge connectivity, 65
edge detection see also boundary detection, 36, 38,
39,61, 98
edge effects, 22, 116
edge correction, 38-9, 81, 323
edge enhancement see also boundary detection, 206,
210
edge see also edge detection, boundary, 35, 57,
184-5, 190, 206, 208, 330
connected, 57
degree, 65
node connectivity, 65
roof edge, 184
spike edge, 184
step edge, 184
vertex, 65, 74
effective sample size see also sample size, 221, 222,
325
eigenanalysis, 89-90, 234
eigenvector, 89-91
empty space function, 36, 41, 43, 44
entropy approaches, 333
envelopes see confidence intervals
environmental gradient, 75
epidemiology, 266, 269, 274
equidistant, 116
ergodic covariance, 135, 137
error
rate, 221
type I, 221,253
type II, 324
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Euclidean distance, 120, 149, 188

matrix, 151
Euclidean space, 114, 139
event-to-event nearest neighbour distance, 81
event-to-nearest-event function, 36, 43, 48, 81
exact interpolator, 160, 167
expected value, 126, 127
experimental design, 1, 247, 249-54, 285, 326
extent, 5, 18-19, 32, 33, 112, 113, 186, 319, 322-3
extrapolation, 316

Fibonacci spiral design, 249-51
first-order
moments, 9, 133
statistics, 25
footprint, 75
Fourier series analysis, 39, 98, 206
Fractal dimension, 13942, 144, 186, 269, 277, 285,
308
divider, 139
fragmentation, 64, 95, 261, 262, 325
Freeman-Tukey standardized residual, 99, 235, 286,
287
Friedman’s measure of concordance, 302, 304
functional network, 65
fuzzy
boundaries, 183
boundary zones, 183
classification, 181
c-means, 182
k-means, 184
membership, 183
set theory, 181

Gabriel graph (GG), 59-60, 63
Galiano’s NQV, 262
gap circles, 99
gap size, 100
Gaussian filter, 208
Geary’s ¢ (global Geary’s ¢), 126, 131, 134, 135, 154,
157, 172,258, 334
geometric anisotropy, 135, 169
geostatistics (geostatistical) see also kriging,
variography, variogram, 25, 132, 142, 165,
167, 170, 247, 325
Getis’ method, 317, 329
Gz and Gy, 43
geographical information system (GIS), 207, 317, 318
gleason, 187
¢gliding box see also moving window, 84, 94, 95
global
analysis, 5, 96, 317
conditions, 256
directional correlograms, 132
Geary’s ¢, 157
interpolator, 163
Moran’s I, 155
outcome, 152
pattern, 328
spatial analysis, 122-38, 153, 154, 159, 172,
320
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goodness-of-fit, 178-9, 235, 236, 247, 26687
grain, 18, 319
graph theory see also network, 57, 64, 65, 269, 276
complete, 65
edge, 57
connected, 57
node connectivity, 65
order, 65
vertex, 65, 74
network, 55, 57-64, 269, 274
Delaunay triangulation (DT), 62, 63, 74
Gabriel graph (GG), 59-60, 63
minimum spanning tree (MST), 59-63
mutual nearest neighbors (MNN), 63
nearest neighbors (NN), 63
relative neighbourhood graph (RNG), 59, 63
path, 33, 57
cycle, 57
planar, 65
polygons
Dirichlet, 60
Thiessen, 60
Voronoi, 60
subgraph, 59, 62
tessellation, 60
topology (topological), 57
tree, 57
Griffith’s space-time index, 258

H-functions, 48

heterogeneity (spatial heterogeneity), 11, 122

hierarchical global partitioning, 205

homogeneity (spatially homogeneous), 5, 11, 12, 89,
256

homogeneous regions, 206

I-function for multivariate point-pattern analysis, 48
image processing, 184
independent variables, 26
indicator functions, 135, 137
induced spatial autocorrelation, 214, 220, 223, 229,
243, 255, 334, 335
induced spatial dependence, 9, 31, 124, 154,212, 214,
334, 335, 338
inference tests, 21, 328
inherent spatial autocorrelation, 124, 154,212, 214,
220, 246, 255, 334, 335
inherent spatial structure, 204
inherent (internal, endogenous) process, 7, 204
inhibition (spatial), 29, 36
inhomogeneity (heterogeneity), 321
interpolation, 26, 57, 159-70, 172, 196, 257, 316, 331
inverse distance weighting, 116, 154, 160, 164, 165,
167, 172
kriging, 57, 132, 135, 137, 138, 160, 164, 165-70,
172
proximity polygons, 160
trend surface analysis, 153, 161, 163, 164, 167, 169
Voronoi polygons, 60, 160, 298
intrinsic hypothesis, 133
inverse of distance squared, 116
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inverse distance weighting, 116, 154, 160, 164, 165,
167,172

isotropic (isotropy), 20, 105, 125, 127, 131, 139, 167,
209, 210, 331

iteration process, 170, 180

Jack-knife approach see also randomization tests, 241
Join count statistics, 118, 261

H Moran (heterogeneous Moran), 122

k categories, 120

kernel filters, 189, 190, 199, 205, 206-9, 210
kernel function, 55, 301
K-function see also Ripley’s K, 41, 102
k-means clustering, 182, 193
Knox’s approach see also Mantel tests, 268
kriging, 57, 132, 135, 137, 138, 160, 164, 165-70, 172

blocked, 169

co-kriging, 147, 169

conditional annealing, 29, 170

errors, 166, 167, 172

indicator, 170

multivariate, 170

non-linear, 169

ordinary, 169

punctual, 169

stratified, 169

universal, 169

lack of independence, 85, 212, 228, 233, 258, 316,
334
lacunarity analysis, 79-81, 84, 94, 95, 261
lag, 9, 18, 21, 227, 232
lag (space and time), 264
landscape
connectivity, 64, 66
ecology, 64
metrics (indices), 13
patch structure, 66, 139
Laplacian filters, 207-9
lattice, 18, 189, 196, 223, 227, 230, 264, 265
lattice data, 114, 118, 122
lattice-wombling see also boundary, edge detection,
190-205
leaf, 74, 206
lichen, 293
linear dependence, 216, 220
linear independence, 253
linear model, 135, 137, 138
equations, 169
interpolation, 164
regression, 165, 220, 238, 244, 302
local
Geary’s ¢, 153
Getis G and G}, 157-9, 172
cold spots, 158
hot spots, 158
local indicator for categorical data (LICD), 159, 172
local indicator of spatial association (LISA), 154
join count, 159
Moran’s 1, 154-7, 158, 159



362 Index

local (cont.)
spatial analysis, 5, 13, 52, 153-9, 171, 172, 317,
320, 328
spatial pattern, 25, 96, 206
log-likelihood ratio (G statistic), 234
L-transform, 39, 41, 44, 76, 81
Lyapunov exponent, 308—-10

magnitude of change (rate of change), 196
Mabhalanobis distances, 188
Mantel tests, 148-53, 258, 268, 302, 324
Mantel correlogram, 150, 302
partial Mantel tests, 153, 172, 292
mark correlation analysis, 55-7, 63, 329
marked point analysis, 32, 57
Markov models, 223, 229, 235, 236, 284
process, 41
reversible, 234
mark-recapture method, 290
Mexican hat see wavelet
minimum spanning tree (MST), 59-75
models, 26, 213-18, 222, 229, 254,294,317, 318
autoregressive (AR), 223, 227, 228, 229, 2301,
233-46, 247, 334
conditional autoregressive model (CAR), 29, 160,
225, 230, 233
dynamic, 310
mathematical, 247
moving average (MA), 160, 224-31, 23346, 322,
334
simultaneous autoregressive (SAR), 160, 224-31,
233
spatial, 138, 139
modifiable area unit problem (MAUP), 146
modified correlogram, 302
Monte Carlo model see also randomization tests, 26,
35, 46, 86, 105, 189, 242, 254, 324, 327,
331
Moran’s I (global Moran’s [), 124, 334
mosaic, 89, 91, 175, 266, 274
mosaic of polygons, 105
movements, 293, 316
paths, 285
subpath, 289
through space, 261
moving average models (MA), 160, 224-31, 23346,
322,334
moving split-window technique, 187-9
moving window, 79, 133, 189, 230, 266
multiple linear regression, 26, 161
multiple testing, 126
multiscale
analysis, 206
ordination (MSO), 89, 90, 330
multispecies analysis, 90, 235, 330
multispecies point patterns, 89-91
multivariate analysis, 103, 172, 187, 190, 241,
266
multivariate point pattern analysis, 47, 63
mutual nearest neighbours network (MNN),
63

nearest neighbors, 33
distance, 2034
network (NN), 33-5, 43, 48, 57,63, 103, 118
refined nearest neighbour method, 35-7, 41, 47
neighbourhood matrix, 153
neighbours, 212, 223, 229, 269, 276, 291, 334
network, 98, 113, 177, 330, 331
weights, 225, 230
network see also graph theory, tesselation, 55, 57-64,
269, 274
Delaunay triangulation (DT), 62, 63, 74
Gabriel graph (GG), 59-60, 63
minimum spanning tree (MST), 59-63
mutual nearest neighbors (MNN), 63
nearest neighbors (NN), 63
relative neighbourhood graph (RNG), 59, 63
new quadrat variance (NQV), 84-5, 330
Neyman—Scott process, 41, 52
Neyman Type A process, 41, 320
noise (random), 5, 146, 189, 205, 208, 210, 220, 308,
310
non-linear trend, 7, 161
non-parametric rank test, 288
non-parametric spatial covariance function, 242
non-randomness, 332
non-stationarity, 13, 18, 85, 112, 113-14, 211, 253,
255,317, 320
normal distribution approximation test, 126
normalized difference vegetation index (NDVI), 205
nugget effect see also variography, 134, 144, 165
nugget model, 135, 137
null hypotheses, 27, 33, 36, 86, 105, 119, 120, 122,
149, 202, 219, 225, 233, 264, 277, 286, 322-3,
324, 327-8, 329, 334
null models, 52, 264, 266

omnidirectional
correlogram, 140-1, 155, 323
variogram, 1401
one-dimensional analysis, 75-81
optimal spatial sampling design, 24, 169
ordination techniques see also partial ordination
techniques, 153
canonical correspondence analysis (CCA), 153
multiscale ordination (MSO), 89, 90, 330
principal componenets analysis (PCA), 89
principal coordinates of neighbour matrices
(PCNM), 153
redundancy analysis (RDA), 153
overdispersion, 263, 329
overlap statistics, 202, 328
oversampled data, 276

paired quadrat covariance (PQC), 88
paired quadrat variance (PQV), 55, 83-6
partial ordination techniques see also ordination
techniques
partial canonical correspondence analysis (partial
CCA), 153,172
partial redundancy analysis (partial RDA), 153
partial correlation, 243
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partitioning methods, see also boundary, edge
detection, 12, 44, 52, 53, 206, 338
partition, 266
partitioned variances, 91
patch, 176, 177, 184, 193, 211, 254, 262, 288, 289,
293, 299, 329
patch size see also spatial range, zone of influence, 80,
100, 131
patchy (patchiness), 5, 127, 213, 228, 233, 249, 266,
269, 277, 325, 329, 330, 334
path, 33,57, 65
movement paths, 269, 276, 284, 285, 286, 289,
331
path sinuosity, 284
path tortuosity, 284
pattern, 5, 32-3, 46, 58, 86
peak, 82, 102, 189, 265, 266
peak (variance), 96
Pearson’s correlation coefficient, 123, 124, 126, 149,
172,293
Pearson’s X2, 234, 286-7
perimeter, 74
phase space diagram, 308
pilot study, 249, 255, 319, 321
pixel, 94, 95
planar graph, 65
point data, 33
point interpolators, 160
point pattern analysis, 25, 33, 37-55, 64, 66, 75, 102,
111, 114, 269, 274, 317
point-event distance, 81-2
point-to-nearest-event function + F(7), 48
Poisson cluster, 29
Poisson distribution, 25, 39
Poisson—Poisson distribution, 41, 105, 320
Pollard’s statistic, 35
polygon, 269, 274-90, 298
polygon change analysis, 261, 269-74, 316, 329,
polynomial regression see also regression, 153, 161
population of inference, 20
population data, 32-3
power, 142,253,319
pre-whitening, 220, 334
principal components analysis (PCA), 89
principal coordinates of neighbour matrices (PCNM),
153
process, 13-14, 26, 144, 212, 256, 261, 316, 320, 328,
333
process and pattern, 1, 2, 256, 261, 291, 316, 333
proximity, 291
matrix, 228, 229, 233
pseudoreplication, 285, 316

quadrat see sampling unit
quadrat variance analysis, 828, 96, 97, 126
covariance
paired quadrat covariance (PQC), 88
three term local quadrat covariance (3TLQC), 88
two term local quadrat covariance (TTLQC), 88,
89
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variance
blocked quadrat variance (BQV), 82
Galiano’s NQV, 262
new quadrat variance (NQV), 84-5, 330
paired quadrat variance (PQV), 55, 83-6
three term local quadrat variance (3TLQV), 84,
89,91, 98, 262, 330
triplet quadrat variance (tQV), 84, 88, 91
two term local quadrat variance (TTLQV), 55,
82, 84-5, 87-8, 89, 91, 97-8, 105, 302, 304,
334
quadtree, 206
quasi-stationarity, 133

random paired quadrat frequency, 91
random walk, 277-84
randomization tests, 26-9, 46, 52, 63, 81, 86, 94, 95,
126, 138, 149, 158, 204, 254, 284, 289, 302,
319,322-8
caterpillar, 240, 241, 327
complete spatial randomness (CSR) see complete
spatial randomness
envelopes, 37
Monte Carlo see Monte Carlo
null reference distribution, 27-8
probability, 27
reference distribution, 26
relation to null hypotheses, 322-3
restricted, 24, 29, 86, 149, 151, 202, 239-41, 322,
323,326-8, 334
sequential, 29
spatial dependence, 28-9
toroidal shift (torus shift), 23, 24, 29, 23940,
326-8
randomly (generated) pattern, 320
randomness see also randomization tests, 263, 266,
305, 329
range see spatial range
rate of change, 199, 206, 211
recruitment index, 74
redundancy analysis (RDA), 153
reference distribution, 26, 149, 234, 239, 327
regionalized variable theory, 132-3
Reich’s method, 51-2
relationship (spatial dependence), 21, 26
relationship, 243, 255
relative neighbourhood graph (RNG), 59, 63
relative spatial arrangement, 324
remote sensing, 207
repetitive structures, 253
resampling see also randomization tests, 241
residuals, 26, 30, 150, 220, 244, 247,317, 318, 334
restricted randomization tests see randomization
tests
response surface methods, 310
Ripley’s K-function, 3743, 47, 52, 329
bivariate, 35, 266
three dimensions, 81-2
robust, 122,221,242, 325
robustness, 126, 167, 236, 326
runs test of randomness, 236, 247, 269, 277
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SADIE see Spatial Analysis by Distance IndicEs
sample data, 111-12
sample size, 18, 112, 142-4, 222,229,286, 319, 321,
325
sampling design, 5-6, 13-24, 112, 146, 184, 249, 319
sampling units, 14, 25
contiguous (transect, lattice), 20-32
resolution (grain, size), 18, 19, 146, 189, 201, 235,
319, 325, 327, 328
shape, 10, 20, 112
scale(s), 1, 5, 18-20, 31, 33, 140, 213, 249, 292, 319,
320
scales of pattern, 82, 206, 325
scalogram approach, 153
second-order moment, 37, 41, 48, 133
second-order stationarity, 169
segmentation see also boundary detection, edge
detection
segregation, 44, 100, 101, 329
segregation index, 50
semi-variance see also variogram, 1334, 135, 147,
172,334
head locations, 135
tail locations, 135, 137
serial correlation, 241
shortest replacement path, 67
significance testing, 26-9
significance tests for quadrat variance methods, 85
simultaneous autoregressive (SAR), 160, 224-31, 233
smooth (smoothed, smoothing), 55, 159, 172, 196,
208, 209
space-time analysis see also spatio-temporal analysis,
257
Spatial Analysis by Distance IndicEs (SADIE), 94
spatial
arrangement, 144
association of categories, 118
asynchrony, 316
autocorrelation, 41, 85, 116, 124, 147, 176, 196,
205, 212, 220, 235, 249, 253, 334
surrogate, 30
autocovariance, 123
autoregression, 160
chaos, 313-14
clustering, 176, 177, 199
connectivity, 64—75
correlogram, 127
covariance, 133, 171, 304
dependence, 6-9, 28-9, 30-1, 153, 159, 160, 165,
167, 218, 234, 235, 236, 242, 244, 255, 328
direction, 192
distance, 18
epidemiology, 266
heterogeneity, 25, 112, 153, 180
homogeneity, 180, 192
independence, 213
lag (interval, space lag), 112, 116, 123, 133, 135,
140, 144, 288
legacy, 4
models, 159
neighbourhoods, 112, 113

Index

overlap, 202-5, 269-74
partitioning, 211
pattern, 21, 120
range, 127, 131, 134-5, 144, 166, 167
relationship, 147
resolution, 112
series, 213
significant, 21
statistic, 9, 13, 25-6, 113,261, 317, 324
assumptions, 11
synchrony, 299, 316
spatial and temporal autocorrelation, 316
spatially autocorrelated, 184
spatially explicit dynamic models, 257
spatially homogeneous areas (sub-areas, clusters),
192, 320
spatially partitioned, 320
spatio-temporal analysis, 2, 257, 307, 315, 316
autocorrelation, 258, 287, 289, 299
chaos, 314
Griffith’s space-time index, 258
join count, 2635
patterns, 313
relations, 301
Spearman’s correlation, 149, 303, 304
species turnover, 192, 197
spectral analysis, 95, 97
split-moving window (SMW), 330
spurious angular autocorrelation, 269, 276
spurious correlation, 26
squared Euclidean distance, 188
standardized residuals, 101-2
stationarity, 11, 13,41, 95, 122, 123, 124, 132, 133,
155,172,277, 320, 327
statistical analysis, 257
statistical testing, 213, 220, 248, 254, 269, 277, 289,
324, 325, 333
stochastic, 11-13, 308, 314
stochastic spatial process, 29, 170, 327
Sturge’s rule, 116
surface pattern analysis, 26, 111, 114
survey study, 254
symmetric matrix, 148
synchrony, 3004

Tavaré’s approach, 235, 236, 238
temporal
autocorrelation, 123, 258
chaos, 314
cycles, 299
edge effects, 268
interval, 123
lag, 288
temporal and spatial proximity, 268
tessellation, see also graph theory, network, 60, 114,
258
theoretical variogram, 134, 135, 137-8, 166
Thiessen polygon, 60, 160
three term local quadrat covariance (3TLQC), 88
three term local quadrat variance (3TLQV), 84, 89,
91,98, 262, 330
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three-dimensional marked point process, 81 models (theoretical), 134, 166, 318
three-dimensional sample, 94, 95 bounded (variograms with sill), 137-8
threshold distance, 75 exponential, 135, 137, 247
time lag, 301, 320 Gaussian, 138, 247
time series analysis, 142, 213, 257 nugget, 135, 137
time to independence, 288, 316 spherical, 137, 247
Tobler’s first law of geography, 112 unbounded (variograms without sill), 137
topology (topological space), 57, 74, 112, 113-14, nugget effect, 134, 144, 165
120, 180 range, 10, 131
toroidal shift (torus shift), 23, 24, 29, 239-40, 326-8 sill, 134-5, 137, 139
transforms, 95 vertex
transition probabilities, 234 connectivity, 65
transition zones, 185 removal, 74
travelling waves, 303, 304 Voronoi polygons, 60, 160, 298
traversability, 74 voxels, 94, 95
tree, 57
trend surface analysis, 153, 161, 163, 164, 167, 169 Walsh transform, 95
trend, 6 wavelengths, 95
triangulation-wombling, 190, 196-9 wavelets
triplet quadrat variance (tQV), 84, 88, 91 analysis, 968, 105, 110, 205-6
t-test, 223, 229, 253 boater, 99, 101, 102
turning angles, 269, 274, 289 covariance, 330
two part window, 82 French top hat (FTH), 97, 99
two term local quadrat covariance (TTLQC), 88, 89 Haar, 97
two term local quadrat variance (TTLQV), 55, 82, Mexican hat, 97, 330
84-5, 87-8, 89, 91, 97-8, 105, 302, 304, 334 Morlet, 97
three-dimensional sombrero, 98
uniform pattern (regular, overdispersed), 35 transform, 96, 97
univariate point pattern analysis, 32-3, 48, 99-100, variance, 96
266 Walsh transform, 95
unsampled locations, 132 wavelet transform, 95
weak stationarity (quasi-stationarity), 133
variance, 86, 140, 229, 233, 238, 241, 318, 338 weight matrix, 124, 154, 2267, 232
variance—covariance matrix, 57, 89, 166, 217, 227, whitening see pre-whitening
228, 230-1, 232, 233 window (template) approaches, 33, 57, 159, 189-90,
variance—mean ratio, 25, 94, 95 196
variography see also kriging, variogram, 132 windowing function, 97
h-scattergrams, 135 wombling see edge detection
Lagrangian multiplier, 166 categorical, 193, 197-9
Semi-variance (spatial variance), 25, 132, 140, lattice, 190-205
170 triangulation, 190, 196-9
variogram (experimental, sample), 134, 135, 139, 144,
165,247, 317, 320, 331 zonal anisotropy, 135, 169

directional, 135 zone of influence (patch size, range), 10, 131
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